Research on the Optimization of Dietary Energy Supply in Growing and Fattening Pigs Under a Low-Temperature Environment
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design and Diets
2.2. Animal Management
2.3. Measurement Indicators and Methods
2.3.1. Growth Performance
2.3.2. Nutrient Digestibility and Nitrogen Balance
2.3.3. Energy Metabolism
4.174 × CO2 − 1.761 × CH4 − 2.446 × UN (g)] × 17.58, OXFAT (kJ) =
[1.719 × O2 − 1.719 × CO2 − 1.719 × CH4 − 1.963 × UN (g)] × 39.76.
2.3.4. Serum Biochemical Indicators
2.3.5. Slaughter Performance and Meat Quality
2.4. Statistical Analysis
3. Results
3.1. Growth Performance
3.2. Nutrient Digestibility and Nitrogen Desposit
3.3. Oxidation Energy Supply and Energy Deposition
3.4. Serum Biochemical Indicators
3.5. Slaughter Performance
3.6. Unit Body Composition and Consumption of Digestible Protein and Energy
3.7. Meat Quality
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- China Statistical Yearbook. Edited by the National Bureau of Statistics; China Statistics Press: Beijing, China, 2020. [Google Scholar]
- Dong, X. Research on Residential Heating and Energy-Saving Design in Hot Summer and Cold Winter. Ph.D. Thesis, Xi’an University of Architecture and Technology, Xi’an, China, 2016. [Google Scholar]
- Guo, C. Study on the Effect of Environmental Temperature on Protein and Energy Metabolism and Utilization in Growing and Finishing Pigs. Ph.D. Thesis, Sichuan Agricultural University, Sichuan, China, 2005. [Google Scholar]
- Wang, L.; Zhou, D.; Wang, G. Effect of ambient temperature on metabolic caloric production in Habai growing pigs. Anim. Ecol. 2002, 2, 47–48. [Google Scholar]
- Yu, X. Effects of Ambient Temperature on Growth Performance, Nutrient Digestion and Energy Metabolism in Growing Pigs. Master’s Thesis, Jilin Agricultural University, Jilin, China, 2018. [Google Scholar]
- Collin, A.; van Milgen, J.; Dubois, S.; Noblet, J. Effect of High Temperature on Feeding Behaviour and Heat Production in Group-Housed Young Pigs. Br. J. Nutr. 2001, 86, 63–70. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Xu, Z.; Wang, L.; Ling, D.; Nong, Q.; Xie, J.; Zhu, X.; Shan, T. Cold Exposure Induces Depot-Specific Alterations in Fatty Acid Composition and Transcriptional Profile in Adipose Tissues of Pigs. Front. Endocrinol. 2022, 13, 827523. [Google Scholar] [CrossRef] [PubMed]
- Malagelada, J.-R.; Azpiroz, F. Determinants of Gastric Emptying and Transit in the Small Intestine. In Comprehensive Physiology; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2011; pp. 909–937. ISBN 978-0-470-65071-4. [Google Scholar]
- Liu, F. Study on the Influence and Mechanism of Dietary Energy Structure on Nitrogen Utilization of Piglets. Ph.D. Thesis, Jilin Agricultural University, Jilin, China, 2015. [Google Scholar]
- Rinaldo, D.; Le Dividich, J. Assessment of Optimal Temperature for Performance and Chemical Body Composition of Growing Pigs. Livest. Prod. Sci. 1991, 29, 61–75. [Google Scholar] [CrossRef]
- Han, R.; Jiang, H.; Che, D.; Bao, N.; Xiang, D.; Liu, F.; Yang, H.; Ban, Z.; Qin, G. Effects of Environmental Temperature and Dietary Fat Content on The Performance and Heat Production and Substrate Oxidation in Growing Pigs. Protein Pept. Lett. 2017, 24, 425–431. [Google Scholar] [CrossRef] [PubMed]
- Zhou, K.; Jiang, D.; Yan, X.; Qin, G.; Che, D.; Han, R.; Jiang, H. Effects of Dietary Energy Profiles on Energy Metabolic Partition and Excreta in Songliao Black Pigs Under Different Ambient Temperature. Animals 2024, 14, 3061. [Google Scholar] [CrossRef]
- Zhang, S.; Gao, H.; Yuan, X.; Wang, J.; Zang, J. Integrative Analysis of Energy Partition Patterns and Plasma Metabolomics Profiles of Modern Growing Pigs Raised at Different Ambient Temperatures. Animals 2020, 10, 1953. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, L. NRC (2012) Dietary Amino Acid Requirements for Growing Pigs. Anim. Husb. Abroad Pigs Poult. 2014, 34, 2. [Google Scholar]
- GB/T 6432-2018; Determination of Crude Protein in Feeds—Kjeldahl Method. National Standard of the People’s Republic of China: Beijing, China, 2018.
- GB/T 6433-2006; Determination of Crude Fat in Feeds. National Standard of the People’s Republic of China: Beijing, China, 2006.
- GB/T 6434-2022; Determination of Crude Fiber Content in Feeds. National Standard of the People’s Republic of China: Beijing, China, 2022.
- GB/T 212-2008; Proximate Analysis of Coal. National Standard of the People’s Republic of China: Beijing, China, 2008.
- Brouwer, E. Report of the sub-committee on constants and factors. In Proceedings of the 3rd Symposium on Energy Metabolism of Farm Animals; Blaxter, K.L., Ed.; Academic Press: London, UK, 1965; pp. 441–443. [Google Scholar]
- Gerrits, W.J.J.; Bosch, M.W.; van den Borne, J.J.G.C. Quantifying Resistant Starch Using Novel, In Vivo Methodology and the Energetic Utilization of Fermented Starch in Pigs. J. Nutr. 2012, 142, 238–244. [Google Scholar] [CrossRef]
- de Nanclares, M.P.; Marcussen, C.; Tauson, A.-H.; Hansen, J.Ø.; Kjos, N.P.; Mydland, L.T.; Knudsen, K.E.B.; Øverland, M. Increasing Levels of Rapeseed Expeller Meal in Diets for Pigs: Effects on Protein and Energy Metabolism. Animal 2019, 13, 273–282. [Google Scholar] [CrossRef]
- Chwalibog, A.; Jakobsen, K.; Henckel, S.; Thorbek, G. Estimation of Quantitative Oxidation and Fat Retention from Carbohy drate, Protein and Fat in Growing Pigs. J. Anim. Physiol. Anim. Nutr. 1992, 68, 123–135. [Google Scholar] [CrossRef]
- NY/T 825-2004; Technical Regulation for Testing of Carcass Traits in Lean-Type Pig. The Ministry of Agriculture of the People’s Republic of China: Beijing, China, 2004.
- Gun, S. Pig Production Experiment Practice Guidance; China Agriculture Press: Beijing, China, 2017. [Google Scholar]
- Orcutt, M.W.; Forrest, J.C.; Judge, M.D.; Schinckel, A.P.; Kuei, C.H. Practical Means for Estimating Pork Carcass Composition. J. Anim. Sci. 1990, 68, 3987–3997. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, Z.; Wu, J.; Xu, C.; Ruan, D.; Qiu, Y.; Zhou, S.; Ding, R.; Quan, J.; Yang, M.; Zheng, E.; et al. The Genetic Architecture of Meat Quality Traits in a Crossbred Commercial Pig Population. Foods 2022, 11, 3143. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Zhang, W.; Xiao, L.; Sun, Q.; Wu, F.; Liu, G.; Wang, Y.; Pan, Y.; Wang, Q.; Zhang, J. Multi-Omics Reveals the Effect of Crossbreeding on Some Precursors of Flavor and Nutritional Quality of Pork. Foods 2023, 12, 3237. [Google Scholar] [CrossRef]
- White, R.R.; Miller, P.S.; Hanigan, M.D. Evaluating Equations Estimating Change in Swine Feed Intake during Heat and Cold Stress. J. Anim. Sci. 2015, 93, 5395–5410. [Google Scholar] [CrossRef]
- Toghiani, S.; Hay, E.H.; Roberts, A.; Rekaya, R. Impact of Cold Stress on Birth and Weaning Weight in a Composite Beef Cattle Breed. Livest. Sci. 2020, 236, 104053. [Google Scholar] [CrossRef]
- Wei, H.; Zhang, R.; Su, Y.; Bi, Y.; Li, X.; Zhang, X.; Li, J.; Bao, J. Effects of Acute Cold Stress After Long-Term Cold Stimulation on Antioxidant Status, Heat Shock Proteins, Inflammation and Immune Cytokines in Broiler Heart. Front. Physiol. 2018, 9, 1589. [Google Scholar] [CrossRef]
- James Stubbs, R.; Horgan, G.; Robinson, E.; Hopkins, M.; Dakin, C.; Finlayson, G. Diet Composition and Energy Intake in Humans. Philos. Trans. R. Soc. B Biol. Sci. 2023, 378, 20220449. [Google Scholar] [CrossRef]
- Wang, D.; Dal Jang, Y.; Rentfrow, G.K.; Azain, M.J.; Lindemann, M.D. Effects of Dietary Vitamin E and Fat Supplementation in Growing-Finishing Swine Fed to a Heavy Slaughter Weight of 150 Kg: I. Growth Performance, Lean Growth, Organ Size, Carcass Characteristics, Primal Cuts, and Pork Quality. J. Anim. Sci. 2022, 100, skac081. [Google Scholar] [CrossRef]
- Kil, D.Y.; Ji, F.; Stewart, L.L.; Hinson, R.B.; Beaulieu, A.D.; Allee, G.L.; Patience, J.F.; Pettigrew, J.E.; Stein, H.H. Effects of Dietary Soybean Oil on Pig Growth Performance, Retention of Protein, Lipids, and Energy, and the Net Energy of Corn in Diets Fed to Growing or Finishing Pigs1. J. Anim. Sci. 2013, 91, 3283–3290. [Google Scholar] [CrossRef]
- Ramos-Canché, M.E.; Aguilar-Urquizo, E.; Chay-Canul, A.J.; Piñeiro-Vázquez, Á.T.; Velázquez-Madrazo, P.A.; Magaña Magaña, M.A.; Toledo-López, V.; Sanginés-García, J.R. Dietary Levels of Energy and Protein on Productive Performance and Carcass Traits of Growing Female Mexican Hairless Pigs. Anim. Feed Sci. Technol. 2020, 259, 114269. [Google Scholar] [CrossRef]
- Goumon, S.; Brown, J.A.; Faucitano, L.; Bergeron, R.; Widowski, T.M.; Crowe, T.; Connor, M.L.; Gonyou, H.W. Effects of Transport Duration on Maintenance Behavior, Heart Rate and Gastrointestinal Tract Temperature of Market-Weight Pigs in 2 Seasons. J. Anim. Sci. 2013, 91, 4925–4935. [Google Scholar] [CrossRef] [PubMed]
- Powles, J.; Wiseman, J.; Cole, D.J.A.; Hardy, B. Effect of Chemical Structure of Fats upon Their Apparent Digestible Energy Value When given to Young Pigs. Anim. Sci. 1994, 58, 411–417. [Google Scholar] [CrossRef]
- Palerme, J.S.; Silverstone, A.; Riedesel, E.A.; Simone, K.M.; Pomrantz, J.S. A Pilot Study on the Effect of Fat Loading on the Gastrointestinal Tract of Healthy Dogs. J. Small Anim. Pract. 2020, 61, 732–737. [Google Scholar] [CrossRef] [PubMed]
- Valaja, J.; Siljander-Rasi, H. Dietary Fat Supplementation Affects Apparent Ileal Digestibility of Amino Acids and Digesta Passage Rate of Rapeseed Meal-Based Diet. In Digestive Physiology of Pigs, Proceedings of the 8th Symposium, Swedish University of Agricultural Sciences, Uppsala, Sweden, 20–22 June 2000; CABI Publishing: Wallingford, UK, 2001; pp. 175–177. [Google Scholar] [CrossRef]
- Moradi, S.; Moradi, A.; Elmi, V.A.; Abdollahi, M.R. Influence of Grain Type and Fat Source on Performance, Nutrient Utiliza tion, and Gut Properties in Broilers Fed Pelleted Diets. Poult. Sci. 2024, 103, 104093. [Google Scholar] [CrossRef]
- Kil, D.Y.; Sauber, T.E.; Jones, D.B.; Stein, H.H. Effect of the Form of Dietary Fat and the Concentration of Dietary Neutral Detergent Fiber on Ileal and Total Tract Endogenous Losses and Apparent and True Digestibility of Fat by Growing Pigs. J. Anim. Sci. 2010, 88, 2959–2967. [Google Scholar] [CrossRef]
- Pinheiro, R.R.S.; Watanabe, P.H.; Araújo, L.R.S.; de Mendonça, I.B.; Sales, J.J.d.M.; Santos, M.E.C.; Pascoal, L.A.F.; Guerra, R.R.; Almeida, J.M.d.S.; Freitas, E.R. Structured lipids from fish viscera and coconut oils improve weight gain and intestinal morphology of piglets at nursery phase. Trop. Anim. Health Prod. 2024, 56, 403. [Google Scholar] [CrossRef]
- Benz, J.M.; Tokach, M.D.; Dritz, S.S.; Nelssen, J.L.; DeRouchey, J.M.; Sulabo, R.C.; Goodband, R.D. Effects of Choice White Grease and Soybean Oil on Growth Performance, Carcass Characteristics, and Carcass Fat Quality of Growing-Finishing Pigs. J. Anim. Sci. 2011, 89, 404–413. [Google Scholar] [CrossRef]
- Wang, W.; Wang, Z.; Ming, D.; Huang, C.; Song, X.; Zhe, L.; Wang, Z.; Hu, L.; Zeng, X.; Wang, F. Effect of maternal dietary starch-to-fat ratio and daily energy intake during late pregnancy on the performance and lipid metabolism of primiparous sows and newborn piglets. J. Anim. Sci. 2022, 100, skac033. [Google Scholar] [CrossRef]
- Faure, J.; Lefaucheur, L.; Bonhomme, N.; Ecolan, P.; Meteau, K.; Coustard, S.M.; Kouba, M.; Gilbert, H.; Lebret, B. Consequences of Divergent Selection for Residual Feed Intake in Pigs on Muscle Energy Metabolism and Meat Quality. Meat Sci. 2013, 93, 37–45. [Google Scholar] [CrossRef]
- Dirkzwager, A.; Veldman, B.; Bikker, P. A Nutritional Approach for the Prevention of Post Weaning Syndrome in Piglets. Anim. Res. 2005, 54, 231–236. [Google Scholar] [CrossRef]
- Schoos, A.; De Spiegelaere, W.; Cools, A.; Pardon, B.; Van Audenhove, E.; Bernaerdt, E.; Janssens, G.P.J.; Maes, D. Evaluation of the Agreement between Brix Refractometry and Serum Immunoglobulin Concentration in Neonatal Piglets. Animal 2021, 15, 100041. [Google Scholar] [CrossRef]
- Gradel, A.K.J.; Kildegaard, J.; Ludvigsen, T.P.; Porsgaard, T.; Schou-Pedersen, A.M.V.; Fels, J.J.; Lykkesfeldt, J.; Refsgaard, H.H.F. The Counterregulatory Response to Hypoglycaemia in the Pig. Basic Clin. Pharmacol. Toxicol. 2020, 127, 278–286. [Google Scholar] [CrossRef]
- Kojima, M.; Degawa, M. Causes of sex differences in serum cholesterol and triglyceride levels in meishan pigs. Biol. Pharm. Bull. 2024, 47, 606–610. [Google Scholar] [CrossRef] [PubMed]
- Andjelić, B.; Djoković, R.; Cincović, M.; Bogosavljević-Bošković, S.; Petrović, M.; Mladenović, J.; Čukić, A. Relationships between Milk and Blood Biochemical Parameters and Metabolic Status in Dairy Cows during Lactation. Metabolites 2022, 12, 733. [Google Scholar] [CrossRef] [PubMed]
- Gaffield, K.N.; Boler, D.D.; Dilger, R.N.; Dilger, A.C.; Harsh, B.N. Effects of Feeding High Oleic Soybean Oil to Growing-Finishing Pigs on Growth Performance and Carcass Characteristics. J. Anim. Sci. 2022, 100, skac071. [Google Scholar] [CrossRef]
- Linneen, S.K.; DeRouchey, J.M.; Dritz, S.S.; Goodband, R.D.; Tokach, M.D.; Nelssen, J.L. Effects of Dried Distillers Grains with Solubles on Growing and Finishing Pig Performance in a Commercial Environment. J. Anim. Sci. 2008, 86, 1579–1587. [Google Scholar] [CrossRef]
- Benz, J.M.; Tokach, M.D.; Dritz, S.S.; Nelssen, J.L.; DeRouchey, J.M.; Sulabo, R.C.; Goodband, R.D. Effects of Increasing Choice White Grease in Corn- and Sorghum-Based Diets on Growth Performance, Carcass Characteristics, and Fat Quality Characteristics of Finishing Pigs. J. Anim. Sci. 2011, 89, 773–782. [Google Scholar] [CrossRef]
- Xu, Z.; Chen, W.; Wang, L.; Zhou, Y.; Nong, Q.; Valencak, T.G.; Wang, Y.; Xie, J.; Shan, T. Cold Exposure Affects Lipid Metab olism, Fatty Acids Composition and Transcription in Pig Skeletal Muscle. Front. Physiol. 2021, 12, 748801. [Google Scholar] [CrossRef]
- Qin, H.; Deng, G. Effect of Kapok seed oil on growth performance, carcass traits, meat quality and economic advantages of fattening pigs. China Feed. 2022, 4, 17–20. [Google Scholar] [CrossRef]
- Lee, S.D.; Kim, H.Y.; Song, Y.M.; Jung, H.J.; Ji, S.Y.; Jang, H.D.; Ryu, J.W.; Park, J.C.; Moon, H.K.; Kim, I.C. The Effect of Eu commia Ulmoides Leaf Supplementation on the Growth Performance, Blood and Meat Quality Parameters in Growing and Finishing Pigs. Anim. Sci. J. 2009, 80, 41–45. [Google Scholar] [CrossRef] [PubMed]
Items | 30 to 60 kg Weight Stage | 60 to 110 kg Weight Stage | ||
---|---|---|---|---|
CON | TES (8%) | CON | TES (8%) | |
Corn | 46.97% | 37.59% | 58.46% | 47.47% |
Corn starch | 18.50% | 19.90% | 15.00% | 17.97% |
Soybean meal | 23.24% | 24.44% | 13.32% | 13.89% |
Wheat bran | 7.35% | 8.86% | 6.10% | 9.99% |
Alfalfa meal | 0.10% | 0.10% | 3.56% | 1.89% |
Soybean oil | 0.70% | 6.00% | 1.00% | 6.00% |
CaHPO4 | 0.80% | 0.80% | 0.49% | 0.46% |
Limestone | 0.83% | 0.82% | 0.85% | 0.93% |
NaCl | 0.25% | 0.25% | 0.20% | 0.20% |
Lysine | 0.39% | 0.37% | 0.31% | 0.31% |
Methionine | 0.14% | 0.15% | 0.06% | 0.08% |
Threonine | 0.14% | 0.14% | 0.10% | 0.11% |
Tryptophane | 0.02% | 0.02% | 0.01% | 0.02% |
Valine | 0.07% | 0.06% | 0.04% | 0.18% |
Premix (1) | 0.50% | 0.50% | 0.50% | 0.50% |
Total | 100% | 100.00% | 100.00% | 100.00% |
Nutrient levels (2) | ||||
Digestible energy (MJ/kg) | 14.20 | 15.34 | 14.02 | 15.14 |
Crude protein (%) | 16.90 | 16.60 | 13.62 | 13.86 |
Digestible crude protein (%) | 13.19 | 13.19 | 10.06 | 10.06 |
Ether extract (%) | 3.15 | 8.09 | 3.69 | 8.33 |
Crude fiber (%) | 5.59 | 4.45 | 3.73 | 3.38 |
Ash (%) | 5.09 | 3.66 | 3.80 | 3.52 |
Tryptophane (%) | 0.17 | 0.17 | 0.12 | 0.12 |
Methionine + cysteine (%) | 0.55 | 0.55 | 0.40 | 0.40 |
Threonine (%) | 0.60 | 0.60 | 0.45 | 0.45 |
Calcium (%) | 0.63 | 0.63 | 0.56 | 0.56 |
Effective phosphorus (%) | 0.27 | 0.27 | 0.19 | 0.19 |
Items | CON | TES | p-Value |
---|---|---|---|
30 to 60 kg weight stage | |||
IBW (kg) | 31.77 ± 2.86 | 30.73 ± 4.21 | 0.316 |
FBW (kg) | 57.57 ± 4.60 | 58.25 ± 4.87 | 0.764 |
ADFI (kg/d) | 1.83 ± 0.01 a | 1.74 ± 0.01 b | <0.001 |
ADG (kg/d) | 0.60 ± 0.06 | 0.64 ± 0.05 | 0.357 |
FCR | 3.05 ± 0.37 | 2.72 ± 0.29 | 0.083 |
60 to 110 kg weight stage | |||
IBW (kg) | 57.57 ± 4.60 | 58.25 ± 4.87 | 0.758 |
FBW (kg) | 105.17 ± 5.08 b | 110.67 ± 5.29 a | 0.042 |
ADFI (kg/d) | 3.18 ± 0.03 a | 3.03 ± 0.01 b | <0.001 |
ADG (kg/d) | 0.85 ± 0.07 | 0.94 ± 0.11 | 0.249 |
FCR | 3.74 ± 0.22 a | 3.22 ± 0.34 b | 0.046 |
Items | CON | TES | p-Value |
---|---|---|---|
Digestibility coefficients (%) | |||
EE | 70.61 ± 0.59 b | 80.82 ± 1.43 a | <0.001 |
CP | 82.57 ± 1.27 | 83.36 ± 0.56 | 0.744 |
Energy | 80.07 ± 2.07 b | 82.22 ± 2.04 a | 0.008 |
Nitrogen balance (g/d) | |||
Nitrogen intake | 64.06 ± 2.33 | 60.94 ± 1.88 | 0.293 |
FN | 11.17 ± 0.37 a | 10.14 ± 0.16 b | <0.001 |
UN | 17.24 ± 0.14 a | 14.80 ± 0.74 b | 0.026 |
Nitrogen deposition | 35.65 ± 0.62 | 36.00 ± 2.43 | 0.652 |
Nitrogen digestibility rate (%) | 82.57 ± 1.27 | 83.36 ± 0.56 | 0.741 |
Nitrogen deposition rate (%) | 55.65 ± 1.71 b | 59.07 ± 4.72 a | 0.017 |
Items | CON | TES | p-Value |
---|---|---|---|
CO2 production (L/d) | 1066.89 ± 16.53 | 1021.69 ± 15.54 | 0.311 |
O2 consumption (L/d) | 1088.66 ± 14.63 | 1075.46 ± 17.74 | 0.692 |
RQ | 0.98 ± 0.02 | 0.95 ± 0.04 | 0.102 |
OXCHO (MJ/d) | 21.74 ± 2.04 | 18.22 ± 2.79 | 0.054 |
OXFAT (MJ/d) | 0.14 ± 0.01 b | 2.52 ± 0.10 a | 0.004 |
OXPRO (MJ/d) | 1.98 ± 0.01 | 1.70 ± 0.14 | 0.774 |
Energy balance (MJ/d) | |||
GE | 52.36 ± 2.57 | 52.74 ± 2.89 | 0.213 |
FE | 10.44 ± 0.30 a | 9.38 ± 0.62 b | <0.001 |
UE | 1.19 ± 0.08 | 1.01 ± 0.02 | 0.102 |
HP | 22.87 ± 1.05 | 22.44 ± 2.24 | 0.725 |
Protein sedimentation energy | 4.10 ± 0.13 | 4.14 ± 0.09 | 0.854 |
Fat sedimentation energy | 13.76 ± 0.13 b | 15.77 ± 0.09 a | 0.049 |
Sedimentation energy | 17.86 ± 1.13 b | 19.91 ± 2.09 a | <0.001 |
Sedimentation energy rate (%) | 34.11 ± 1.28 b | 37.75 ± 2.07 a | 0.007 |
Items | CON | TES | p-Value |
---|---|---|---|
BUN (mmol/L) | 3.90 ± 0.11 | 3.87 ± 0.51 | 0.264 |
TP (g/L) | 72.97 ± 2.75 | 73.79 ± 4.11 | 0.723 |
GLU (mmol/L) | 5.02 ± 0.73 | 5.12 ± 0.54 | 0.362 |
TG (mmol/L) | 0.43 ± 0.06 b | 0.57 ± 0.05 a | <0.001 |
HDL (mmol/L) | 0.90 ± 0.12 b | 0.98 ± 0.12 a | 0.036 |
LDL (mmol/L) | 3.11 ± 0.14 | 3.10 ± 0.19 | 0.801 |
AST (U/L) | 27.00 ± 2.21 | 28.30 ± 3.33 | 0.294 |
ALT (U/L) | 26.23 ± 2.74 | 27.03 ± 2.52 | 0.513 |
Items | CON | TES | p-Value |
---|---|---|---|
Carcass weight (kg) | 75.00 ± 5.06 b | 79.55 ± 5.28 a | 0.026 |
Pre-slaughter live weight (kg) | 105.17 ± 5.08 b | 110.67 ± 5.29 a | 0.044 |
Dressing percentage (%) | 71.31 ± 3.40 | 71.64 ± 1.41 | 0.671 |
Backfat thickness (mm) | 13.27 ± 1.91 b | 14.20 ± 0.94 a | 0.013 |
Eye muscle area (cm2) | 42.93 ± 3.12 b | 46.29 ± 2.20 a | 0.032 |
Lean meat content (kg) | 54.52 ± 3.64 | 56.95 ± 2.07 | 0.687 |
Body fat content (kg) | 7.29 ± 1.02 b | 11.07 ± 1.04 a | <0.001 |
Lean meat percentage (%) | 51.84 ± 0.76 | 51.46 ± 0.91 | 0.169 |
Body fat percentage (%) | 6.93 ± 0.34 b | 10.00 ± 0.67 a | 0.047 |
Items | CON | TES | p-Value |
---|---|---|---|
Weight gain/DCP (g/g) | 25.94 ± 0.06 | 29.67 ± 0.28 | 0.564 |
Weight gain/DE (g/MJ) | 20.31 ± 0.08 | 21.51 ± 0.29 | 0.616 |
Carcass weight/DCP (g/g) | 26.51 ± 0.40 | 29.51 ± 0.41 | 0.063 |
Carcass weight/DE (g/MJ) | 20.82 ± 0.14 | 21.41 ± 0.91 | 0.702 |
Lean meat content/DCP (g/g) | 19.32 ± 0.53 b | 21.13 ± 0.34 a | 0.047 |
Lean meat content/DE (g/MJ) | 15.14 ± 0.91 | 15.35 ± 0.94 | 0.691 |
Body fat content/DCP (g/g) | 2.66 ± 0.02 b | 4.17 ± 0.09 a | 0.028 |
Body fat content/DE (g/MJ) | 2.08 ± 0.04 | 2.99 ± 0.07 | 0.380 |
Items | CON | TES | p-Value |
---|---|---|---|
pH 24 h | 5.57 ± 0.12 | 5.59 ± 0.07 | 0.326 |
Drip loss over 48 h (%) | 4.98 ± 0.14 | 4.85 ± 0.28 | 0.924 |
Cooking loss (%) | 27.55 ± 1.48 | 26.90 ± 2.42 | 0.643 |
Shear force (N) | 39.07 ± 2.57 a | 36.51 ± 3.78 b | 0.027 |
Marbling score | 3.48 ± 0.34 | 3.53 ± 0.40 | 0.672 |
Objective meat color | |||
L* 45 min | 44.49 ± 2.34 b | 46.97 ± 3.85 a | 0.018 |
a* 45 min | 5.41 ± 0.47 b | 6.08 ± 1.02 a | 0.049 |
b* 45 min | 11.83 ± 0.57 | 10.96 ± 0.16 | 0.351 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Qi, Z.; Qin, G.; Jiang, H.; Han, R.; Che, D. Research on the Optimization of Dietary Energy Supply in Growing and Fattening Pigs Under a Low-Temperature Environment. Animals 2025, 15, 1117. https://doi.org/10.3390/ani15081117
Zhang Y, Qi Z, Qin G, Jiang H, Han R, Che D. Research on the Optimization of Dietary Energy Supply in Growing and Fattening Pigs Under a Low-Temperature Environment. Animals. 2025; 15(8):1117. https://doi.org/10.3390/ani15081117
Chicago/Turabian StyleZhang, Yu, Zhaoyang Qi, Guixin Qin, Hailong Jiang, Rui Han, and Dongsheng Che. 2025. "Research on the Optimization of Dietary Energy Supply in Growing and Fattening Pigs Under a Low-Temperature Environment" Animals 15, no. 8: 1117. https://doi.org/10.3390/ani15081117
APA StyleZhang, Y., Qi, Z., Qin, G., Jiang, H., Han, R., & Che, D. (2025). Research on the Optimization of Dietary Energy Supply in Growing and Fattening Pigs Under a Low-Temperature Environment. Animals, 15(8), 1117. https://doi.org/10.3390/ani15081117