Supplementation with Potato Protein Concentrate and Saccharomyces boulardii to an Antibiotic-Free Diet Improves Intestinal Health in Weaned Piglets
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals, Housing, Diets, and Management
2.2. Digestive Morphophysiological Characteristics
2.2.1. Euthanization and Sample Collection
2.2.2. Presence of Occludins
2.3. Coliform and Lactobacillus Populations
2.4. Incidence and Severity of Diarrhea
2.5. Statistical Analysis
3. Results
3.1. Piglet Performance
3.2. Intestinal Morphophysiological Characteristics
3.3. Microbiological Analyses and Post-Weaning Diarrhea
4. Discussion
5. Study Limitations and Future Research
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PP | Potato protein concentrate. |
Sb | Saccharomyces boullardii. |
PPC | Diet with PP. |
SB | Diet with Sb. |
C− | Diet without antibiotics, PP or Sb. |
C+ | Diet with antibiotics. |
PPC-SB | Diet with PP and Sb. |
GIT | Gastrointestinal tract. |
NRC | National Research Council. |
ADFI | Daily feed intake. |
ADG | Average daily gain. |
FE | Feed efficiency. |
DI | Diarrhea incidence. |
DS | Diarrhea severity. |
SAS | Statistical software system. |
GLM | General Linear Model. |
DM | Dry matter. |
CP | Crude Protein. |
EM | Energie metabolizable. |
EE | Ether extract. |
NDF | Neutral detergent fiber. |
p | Probability. |
SEM | Standard error of the mean. |
VH | Villus height. |
VW | Villus width. |
CD | Crypt depth. |
CFU | Colony-forming unit. |
References
- Pohl, C.S.; Medland, J.E.; Moeser, A.J. Early-life stress Origins of gastrointestinal disease: Animal models, intestinal pathophysiology, and translational implications. Am. J. Physiol. Gastrointest. Liver Physiol. 2015, 309, G927–G941. [Google Scholar] [PubMed]
- Pluske, J.R. Invited review: Aspects of gastrointestinal tract growth and maturation in the pre-and postweaning period of pigs. J. Anim. Sci. 2016, 94 (Suppl. S3), 399–411. [Google Scholar] [CrossRef]
- Siemińska, I.; Pejsak, Z. Impact of stress on the functioning of the immune system, swine health, and productivity. Med. Weter. 2022, 78, 541–547. [Google Scholar] [CrossRef]
- Tang, X.; Xiong, K.; Fang, R.; Li, M. Weaning stress and intestinal health of piglets: A review. Front. Immunol. 2022, 13, 1042778. [Google Scholar] [CrossRef] [PubMed]
- Rhouma, M.; Fairbrother, J.M.; Beaudry, F.; Letellier, A. Post weaning diarrhea in pigs: Risk factors and non-colistin-based control strategies. Acta Vet. Scand. 2017, 59, 31. [Google Scholar] [CrossRef] [PubMed]
- López-Gálvez, G.; López-Alonso, M.; Pechova, A.; Mayo, B.; Dierick, N.; Gropp, J. Alternatives to antibiotics and trace elements (copper and zinc) to improve gut health and zootechnical parameters in piglets: A review. Anim. Feed Sci. Technol. 2021, 271, 114727. [Google Scholar] [CrossRef]
- Liu, H.Y.; Zhu, C.; Zhu, M.; Yuan, L.; Li, S.; Gu, F.; Hu, P.; Chen, S.; Cai, D. Alternatives to antibiotics in pig production: Looking through the lens of immunophysiology. Stress Biol. 2024, 4, 1. [Google Scholar] [CrossRef]
- de Souza, T.C.R.; Barreyro, A.A.; Rubio, S.R.; González, Y.M.; García, K.E.; Soto, J.G.G.; Mariscal-Landín, G. Growth performance, diarrhoea incidence, and nutrient digestibility in weaned piglets fed an antibiotic-free diet with dehydrated porcine plasma or potato protein concentrate. Ann. Anim. Sci. 2019, 191, 159–172. [Google Scholar] [CrossRef]
- Parra-Alarcón, E.; de Jesús Hijuitl Valeriano, T.; Landín, G.M.; De Souza, T.C.R. Concentrado de proteína de papa: Una posible alternativa al uso de antibióticos en las dietas para lechones destetados. Revisión. Rev. Mex. Cienc. Pecu. 2022, 132, 510–524. [Google Scholar] [CrossRef]
- Beals, K.A. Potatoes, Nutrition and Health. Am. J. Potato Res. 2019, 96, 102–110. [Google Scholar]
- Fu, Y.; Liu, W.N.; Soladoye, O.P. Towards potato protein utilisation: Insights into separation, functionality and bioactivity of patatin. Int. J. Food Sci. Technol. 2020, 55, 2314–2322. [Google Scholar] [CrossRef]
- Galves, C.; Galli, G.; Kurozawa, L. Potato protein: Current review of structure, technological properties, and potential application on spray drying microencapsulation. Crit. Rev. Food Sci. Nutr. 2023, 6323, 6564–6579. [Google Scholar] [CrossRef] [PubMed]
- Bhutto, R.A.; Khanal, S.; Wang, M.; Iqbal, S.; Fan, Y.; Yi, J. Potato protein as an emerging high-quality: Source, extraction, purification, properties functional, nutritional, physicochemical, and processing, applications, and challenges using potato protein. Food Hydrocoll. 2024, 157, 110415. [Google Scholar] [CrossRef]
- Bártová, V.; Bárta, J.; Jarošová, M. Antifungal and antimicrobial proteins and peptides of potato Solanum tuberosum L. tubers and their applications. Appl. Microbiol. Biotechnol. 2019, 103, 5533–5547. [Google Scholar] [CrossRef]
- Sanders, M.E.; Benson, A.K.; Lebeer, S.; Merenstein, D.; Klaenhammer, T.R. Shared mechanisms among probiotic taxa: Implications for general probiotic claims. Curr. Opin. Biotechnol. 2018, 49, 207–216. [Google Scholar] [CrossRef] [PubMed]
- Fijan, S. Probiotics and their antimicrobial effect. Microorganisms 2023, 11, 528. [Google Scholar] [CrossRef]
- Luise, D.; Spinelli, E.; Correa, F.; Nicodemo, A.; Bosi, P.; Trevisi, P. The effect of a single, early-life administration of a probiotic on piglet growth performance and faecal microbiota until weaning. Ital. J. Anim. Sci. 2021, 20, 1373–1385. [Google Scholar] [CrossRef]
- Pang, Y.; Zhang, H.; Wen, H.; Wan, H.; Wu, H.; Chen, Y.; Liu, X. Yeast probiotic and yeast products in enhancing livestock feeds utilization and performance: An overview. J. Fungi 2022, 8, 1191. [Google Scholar] [CrossRef]
- Parada, J.; Magnoli, A.; Isgro, M.C.; Poloni, V.; Fochesato, A.; Martínez, M.P.; Carranza, A.; Cavaglieri, L. In-feed nutritional additive probiotic Saccharomyces boulardii RC009 can substitute for prophylactic antibiotics and improve the production and health of weaning pigs. Vet. World 2023, 165, 1035–1042. [Google Scholar] [CrossRef]
- Alkalbani, N.S.; Osaili, T.M.; Al-Nabulsi, A.A.; Olaimat, A.N.; Liu, S.Q.; Shah, N.P.; Apostolopoulos, V.; Ayyash, M.M. Assessment of yeasts as potential probiotics: A review of gastrointestinal tract conditions and investigation methods. J. Fungi 2022, 8, 365. [Google Scholar] [CrossRef] [PubMed]
- Horowitz, A.; Chanez-Paredes, S.D.; Haest, X.; Turner, J.R. Paracellular permeability and tight junction regulation in gut health and disease. Nat. Rev. Gastroenterol. Hepatol. 2023, 20, 417–432. [Google Scholar] [CrossRef] [PubMed]
- Xiong, X.; Tan, B.; Song, M.; Ji, P.; Kim, K.; Yin, Y.; Liu, Y. Nutritional intervention for the intestinal development and health of weaned pigs. Front. Vet. Sci. 2019, 6, 46. [Google Scholar] [CrossRef]
- Robinson, K.; Deng, Z.; Hou, Y.; Zhang, G. Regulation of the intestinal barrier function by host defense peptides. Front. Vet. Sci. 2015, 2, 57. [Google Scholar] [CrossRef] [PubMed]
- CIOMS. International Guiding Principles for Biomedical Research Involving Animals. In International Guiding Principles for Biomedical Research Involving Animals; World Health Organization, Ed.; Council for International Organization of Medical Sciences: Geneva, Switzerland, 1985. [Google Scholar]
- Diario Oficial de la Federación. 22 August. Available online: http://legismex.mty.itesm.mx/normas/zoo/zoo062.pdf (accessed on 9 August 2024).
- NRC. Nutrient Requirements of Swine, 11th ed.; National Academic Press: Washington, DC, USA, 2012. [Google Scholar]
- Schubert, D.C.; Mößeler, A.; Ahlfänger, B.; Langeheine, M.; Brehm, R.; Visscher, C.; El-Wahab, A.A.; Kamphues, J. Influences of exocrine pancreatic insufficiency on nutrient digestibility, growth parameters as well as anatomical and histological morphology of the intestine in a juvenile pig model. Front. Med. 2022, 9, 973589. [Google Scholar] [CrossRef]
- Kurz, A.; Seifert, J. Factors influencing proteolysis and protein utilization in the intestine of pigs: A review. Animals 2021, 11, 3551. [Google Scholar] [CrossRef] [PubMed]
- Blachier, F.; Andriamihaja, M.; Kong, X.F. Fate of undigested proteins in the pig large intestine: What impact on the colon epithelium? Anim. Nutr. 2022, 9, 110–118. [Google Scholar] [CrossRef]
- Bautista-Marín, S.; Escobar-García, K.; Molina-Aguilar, C.; Mariscal-Landín, G.; Aguilera-Barreyro, A.; Díaz-Muñoz, M.; de Souza, T.R. Antibiotic-free diet supplemented with live yeasts decreases inflammatory markers in the ileum of weaned piglets. S. Afr. J. Anim. Sci. 2020, 503, 353–365. [Google Scholar] [CrossRef]
- Diario Oficial de la Federación. NOM-113-SSA1-Bienes y Servicios. C. 25 August. Available online: http://www.ordenjuridico.gob.mx/Documentos/Federal/wo69536.pdf (accessed on 9 August 2024).
- De Man, J.C.; Rogosa, M.; Sharpe, M.E. A Medium for the Cultivation of Lactobacilli. J. Appl. Bacteriol. 1960, 23, 130–135. [Google Scholar] [CrossRef]
- Pluske, J.R.; Hampson, D.J.; Williams, I.H. Factors influencing the structure and function of the small intestine in the weaned pig: A review. Livest. Prod. Sci. 1997, 511–513, 215–236. [Google Scholar] [CrossRef]
- Gómez-Soto, J.G.; Aguilera, A.B.; Escobar, G.K.; Mariscal-Landín, G.; Reis de Souza, T.C. Efecto del nivel de taninos del sorgo y del día posdestete sobre algunas características morfofisiológicas del aparato digestivo de lechones. Arch. Latinoam. Prod. Anim. 2015, 23, 63–70. [Google Scholar]
- Craig, J.R.; Collins, C.L.; Bunter, K.L.; Cottrell, J.J.; Dunshea, F.R.; Pluske, J.R. Poorer lifetime growth performance of gilt progeny compared with sow progeny is largely due to weight differences at birth and reduced growth in the preweaning period, and is not improved by progeny segregation after weaning. J. Anim. Sci. 2017, 95, 4904–4916. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Wang, L.; Tan, X.; Wang, L.; Xiong, X.; Wang, Q.; Yang, H.; Yin, Y. The developmental changes in intestinal epithelial cell proliferation, differentiation, and shedding in weaning piglets. Anim. Nutr. 2022, 9, 214–222. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Wang, A.; Zeng, X.; Hou, C.; Liu, H.; Qiao, S. Lactobacillus reuteri I5007 modulates tight junction protein expression in IPEC-J2 cells with LPS stimulation and in newborn piglets under normal conditions. BMC Microbiol. 2015, 151, 32. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Zhu, S.; Zhang, J.; Li, H.; Yang, D.; Huang, S.; Wei, Z.; Liang, X.; Wang, Z. Supplementation with yeast culture improves the integrity of intestinal tight junction proteins via NOD1/NF-ΚB P65 pathway in weaned piglets and H2O2-challenged IPEC-J2 cells. J. Funct. Foods 2020, 72, 104058. [Google Scholar] [CrossRef]
- Jayaraman, B.; Nyachoti, C.M. Husbandry practices and gut health outcomes in weaned pigs: A review. Anim. Nutr. 2017, 3, 205–211. [Google Scholar] [CrossRef] [PubMed]
- Citi, S.; Fromm, M.; Furuse, M.; González-Mariscal, L.; Nusrat, A.; Tsukita, S.; Turner, J.R. A short guide to the tight junction. J. Cell Sci. 2024, 137, jcs261776. [Google Scholar] [PubMed]
- Alizadeh, A.; Akbari, P.; Garssen, J.; Fink-Gremmels, J.; Braber, S. Epithelial integrity, junctional complexes, and biomarkers associated with intestinal functions. Tissue Barriers 2022, 10, 1996830. [Google Scholar] [CrossRef] [PubMed]
- Modina, S.C.; Aidos, L.; Rossi, R.; Pocar, P.; Corino, C.; Di Giancamillo, A. Stages of gut development as a useful tool to prevent gut alterations in piglets. Animals 2021, 11, 1412. [Google Scholar] [CrossRef]
- Rodrigues, L.A.; Koo, B.; Nyachoti, M.; Columbus, D.A. Formulating diets for improved health status of pigs: Current knowledge and perspectives. Animals 2022, 12, 2877. [Google Scholar] [CrossRef] [PubMed]
- Sampath, V.; Heon Baek, D.; Shanmugam, S.; Kim, I.H. Dietary inclusion of blood plasma with yeast Saccharomyces cerevisiae supplementation enhanced the growth performance, nutrient digestibility, Lactobacillus count, and reduced gas emissions in weaning pigs. Animals 2021, 113, 759. [Google Scholar] [CrossRef]
- Parada, J.; Magnoli, A.; Poloni, V.; Corti Isgro, M.; Rosales Cavaglieri, L.; Luna, M.J.; Carranza, A.; Cavaglieri, L. Pediococcus pentosaceus RC007 and Saccharomyces boulardii RC009 as antibiotic alternatives for gut health in post-weaning pigs. J. Appl. Microbiol. 2024, 135, lxae282. [Google Scholar] [CrossRef] [PubMed]
- Gresse, R.; Chaucheyras Durand, F.; Dunière, L.; Blanquet-Diot, S.; Forano, E. Microbiota composition and functional profiling throughout the gastrointestinal tract of commercial weaning piglets. Microorganisms 2019, 7, 343. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Bao, C.; Wang, J.; Zang, J.; Cao, Y. Administration of Saccharomyces boulardii mafic-1701 improves feed conversion ratio, promotes antioxidant capacity, alleviates intestinal inflammation and modulates gut microbiota in weaned piglets. J. Anim. Sci. Biotechnol. 2020, 11, 112. [Google Scholar] [CrossRef] [PubMed]
- Hussain, M.; Qayum, A.; Xiuxiu, Z.; Liu, L.; Hussain, K.; Yue, P.; Yue, S.; Koko, M.Y.F.; Hussain, A.; Li, X. Potato protein: An emerging source of high quality and allergy free protein, and its possible future based products. Food Res. Int. 2021, 148, 110583. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.; He, Y.; Zhang, W.; He, J. Potato proteins for technical applications: Nutrition, isolation, modification and functional properties—A review. Innov. Food Sci. Emerg. Technol. 2024, 91, 103533. [Google Scholar]
- Tang, J.; Zhao, M.; Yang, W.; Chen, H.; Dong, Y.; He, Q.; Miao, X.; Zhang, J. Effect of composite probiotics on antioxidant capacity, gut barrier functions, and fecal microbiome of weaned piglets and sows. Animals 2024, 14, 1359. [Google Scholar] [CrossRef] [PubMed]
- Plöger, S.; Stumpff, F.; Penner, G.B.; Schulzke, J.D.; Gäbel, G.; Martens, H.; Shen, Z.; Gϼnzel, D.; Aschenbach, J.R. Microbial butyrate and its role for barrier function in the gastrointestinal tract. Ann. N. Y. Acad. Sci. 2012, 1258, 52–59. [Google Scholar] [PubMed]
Ingredients (%) | Experimental Diets | ||||
---|---|---|---|---|---|
C− | C+ | SB | PPC | PPC-SB | |
Maize | 44.7 | 44.56 | 44.68 | 43.78 | 43.77 |
Soybean Meal | 12 | 12 | 12 | 12 | 12 |
Soybean Isolate | 8.32 | 8.34 | 8.33 | 3.74 | 3.74 |
Potato Protein Concentrate | 6 | 6 | |||
Antibiotic 1 | 0.05 | ||||
Yeast 2 | 0.01 | 0.01 | |||
Menhaden Fish Meal | 5 | 5 | 5 | 5 | 5 |
Sweet Whey Milk | 24.69 | 24.69 | 24.69 | 24.69 | 24.69 |
Maize oil | 2.45 | 2.52 | 2.45 | 2.23 | 2.23 |
L-Lysine HCl | 0.4 | 0.4 | 0.4 | 0.27 | 0.27 |
L-Threonine | 0.12 | 0.12 | 0.12 | 0.02 | 0.02 |
DL-Methionine | 0.19 | 0.19 | 0.19 | 0.14 | 0.14 |
L-Tryptophan | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 |
L-Valine | 0.02 | 0.02 | 0.02 | ||
Salt | 0.4 | 0.4 | 0.4 | 0.4 | 0.4 |
Calcium Carbonate | 0.6 | 0.6 | 0.6 | 0.54 | 0.54 |
Dicalcium Phosphate | 0.61 | 0.61 | 0.61 | 0.69 | 0.69 |
Titanium Dioxide | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 |
Vitamins Premix 3 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 |
Minerals Premix 4 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 |
Chemical Composition | |||||
DM (%) 5 | 90.2 | 90.4 | 90.2 | 90.9 | 90.2 |
CP (%) 5 | 19.9 | 20.3 | 20.5 | 20.0 | 19.9 |
EE (%) 5 | 5.35 | 5.41 | 5.18 | 5.35 | 5.18 |
ME (Mcal/kg) 6 | 3.400 | 3.400 | 3.400 | 3.400 | 3.400 |
NDF 5 | 6.14 | 6.12 | 6.28 | 6.14 | 6.28 |
Items | Experimental Diets | p | SEM | ||||
---|---|---|---|---|---|---|---|
C− | C+ | SB | PPC | PPC-SB | |||
ADFI (g/day) | |||||||
Week 1 | 105 | 96 | 98 | 103 | 105 | 0.179 | 3.1 |
Week 2 | 255 | 258 | 256 | 265 | 271 | 0.277 | 5.3 |
ADG (g/day) | |||||||
Week 1 | −28 | −21 | −30 | −13 | −15 | 0.428 | 4.4 |
Week 2 | 210 | 230 | 215 | 219 | 224 | 0.829 | 5.4 |
FE | |||||||
Week 1 | −0.270 | 0.249 | −0.345 | −0.194 | −0.191 | 0.684 | 0.052 |
Week 2 | 0.821 | 0.914 | 0.835 | 0.830 | 0.833 | 0.702 | 0.015 |
Items | Experimental Diets | p | SEM | ||||
---|---|---|---|---|---|---|---|
C− | C+ | SB | PPC | PPC-SB | |||
Body weight (kg) | 8.100 | 8.527 | 7.715 | 8.238 | 7.933 | NS | 0.177 |
Relative body weight (g × BW−1) | |||||||
Pancreas | 2.2 | 2.1 | 1.9 | 2.3 | 2.1 | 0.329 | 0.065 |
Liver | 29 | 32 | 30 | 33 | 28 | 0.326 | 0.818 |
Stomach | 8.8 | 8.1 | 7.0 | 7.9 | 7.9 | 0.581 | 0.312 |
Small Intestine | 61 | 57 | 58 | 65 | 60 | 0.279 | 1.285 |
Large Intestine | 17.7 | 19.8 | 18.1 | 18.2 | 19.8 | 0.863 | 0.794 |
pH of Contents | |||||||
Stomach | 2.8 | 3.7 | 4.1 | 3.5 | 3.7 | 0.216 | 0.163 |
Jejunum | 5.4 | 5.5 | 5.6 | 5.5 | 5.7 | 0.510 | 0.064 |
Ileum | 5.9 | 6.0 | 6.1 | 5.8 | 5.9 | 0.823 | 0.081 |
Ceacum | 5.4 | 5.4 | 5.4 | 5.4 | 5.5 | 0.973 | 0.061 |
Colon | 5.5 | 5.5 | 5.5 | 5.4 | 5.6 | 0.802 | 0.047 |
Items | Experimental Diets | p | SEM | ||||
---|---|---|---|---|---|---|---|
C− | C+ | SB | PPC | PPC-SB | |||
Duodenum | |||||||
VH (μm) | 344 | 369 | 363 | 331 | 375 | 0.218 | 6.8 |
VW (μm) | 115 bc | 130 ab | 138 a | 108 c | 138 a | 0.009 | 2.7 |
CD (μm) | 197 | 223 | 213 | 227 | 240 | 0.717 | 8.3 |
Jejunum | |||||||
VH (μm) | 378 b | 439 a | 337 b | 343 b | 435 a | 0.003 | 8.0 |
VW (μm) | 112 | 123 | 111 | 94 | 109 | 0.642 | 4.9 |
CD (μm) | 236 | 247 | 202 | 244 | 234 | 0.212 | 6.7 |
Ileum | |||||||
VH (μm) | 298 | 331 | 332 | 366 | 361 | 0.303 | 9.9 |
VW (μm) | 108 | 111 | 107 | 117 | 116 | 0.782 | 3.1 |
CD (μm) | 208 | 187 | 194 | 203 | 214 | 0.437 | 5.3 |
Colon CD (μm) | 320 | 312 | 305 | 299 | 337 | 0.374 | 6.3 |
Items | Experimental Diets | p | SEM | ||||
---|---|---|---|---|---|---|---|
C− | C+ | SB | PPC | PPC-SB | |||
Coliforms (CFUs/g) | 7.4 a | 5.7 b | 7.5 a | 7.2 ab | 8.1 a | 0.040 | 0.23 |
Lactobacillus (CFUs/g) | 3.5 b | 4.1 b | 5.9 a | 3.8 b | 5.7 a | 0.001 | 0.19 |
DI | |||||||
Week 1 (days) | 4.6 | 4.1 | 4.3 | 4.9 | 4.8 | 0.386 | 0.14 |
Week 2 (days) | 1.8 | 1.7 | 1.6 | 1.7 | 1.8 | 0.894 | 0.05 |
DS | |||||||
Week 1 | 6.3 | 6.5 | 6.6 | 6.5 | 6.4 | 0.927 | 0.12 |
Week 2 | 1.7 | 1.9 | 1.9 | 1.9 | 1.7 | 0.539 | 0.06 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reis de Souza, T.C.; Landín, G.M.; Celis, U.M.; Valeriano, T.H.; Gómez-Soto, J.G.; Briones, C.N. Supplementation with Potato Protein Concentrate and Saccharomyces boulardii to an Antibiotic-Free Diet Improves Intestinal Health in Weaned Piglets. Animals 2025, 15, 985. https://doi.org/10.3390/ani15070985
Reis de Souza TC, Landín GM, Celis UM, Valeriano TH, Gómez-Soto JG, Briones CN. Supplementation with Potato Protein Concentrate and Saccharomyces boulardii to an Antibiotic-Free Diet Improves Intestinal Health in Weaned Piglets. Animals. 2025; 15(7):985. https://doi.org/10.3390/ani15070985
Chicago/Turabian StyleReis de Souza, Tércia Cesária, Gerardo Mariscal Landín, Ulisses Moreno Celis, Teresita Hijuitl Valeriano, José Guadalupe Gómez-Soto, and Christian Narváez Briones. 2025. "Supplementation with Potato Protein Concentrate and Saccharomyces boulardii to an Antibiotic-Free Diet Improves Intestinal Health in Weaned Piglets" Animals 15, no. 7: 985. https://doi.org/10.3390/ani15070985
APA StyleReis de Souza, T. C., Landín, G. M., Celis, U. M., Valeriano, T. H., Gómez-Soto, J. G., & Briones, C. N. (2025). Supplementation with Potato Protein Concentrate and Saccharomyces boulardii to an Antibiotic-Free Diet Improves Intestinal Health in Weaned Piglets. Animals, 15(7), 985. https://doi.org/10.3390/ani15070985