Effect of Protease Supplementation in Diets with or Without Copper Sulfate and Formaldehyde on the Standardized Digestibility of Amino Acids in Broiler Chickens
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals, Facilities, and Experimental Design
2.2. Experimental Diets
2.3. Performance Data
2.4. Amino Acid Digestibility
2.5. Tibia Analysis
2.6. Statistical Analysis
3. Results
3.1. Protein and Amino Acid Digestibility
3.2. Productive Performance
3.3. Bone Strength and Quality
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Beski, S.S.M.; Swick, R.A.; Iji, P.A. Specialized protein products in broiler chicken nutrition: A review. Anim. Nutr. 2015, 1, 47–53. [Google Scholar] [CrossRef] [PubMed]
- Adeola, O.; Cowieson, A.J. Board-Invited Review: Opportunities and challenges in using exogenous enzymes to improve nonruminant animal production. J. Anim. Sci. 2011, 89, 3189–3218. [Google Scholar] [CrossRef]
- Leinonen, I.; Williams, A.G. Effects of dietary protease on nitrogen emissions from broiler production: A holistic comparison using Life Cycle Assessment. Anim. Feed Sci. Technol. 2015, 95, 3041–3046. [Google Scholar] [CrossRef] [PubMed]
- McCafferty, K.W.; Morgan, N.K.; Cowieson, A.J.; Choct, M.; Moss, A.F. Varying apparent metabolizable energy concentrations and protease supplementation affected broiler performance and jejunal and ileal nutrient digestibility from 1 to 35 d of age. Poult. Sci. 2022, 101, 101911. [Google Scholar] [CrossRef]
- Xu, X.; Wang, H.L.; Pan, L.; Ma, X.K.; Tian, Q.Y.; Xu, Y.T.; Long, S.L.; Zhang, Z.H.; Piao, S.L. Effects of coated proteases on the performance, nutrient retention, gut morphology and carcass traits of broilers fed corn or sorghum-based diets supplemented with soybean meal. Anim. Feed Sci. Technol. 2017, 223, 119–127. [Google Scholar] [CrossRef]
- Cowieson, A.J.; Abdollahi, M.R.; Zaefarian, F.; Pappenberger, G.; Ravindran, V. The effect of a mono-component exogenous protease and graded concentrations of ascorbic acid on the performance, nutrient digestibility, and intestinal architecture of broiler chickens. Anim. Feed Sci. Technol. 2018, 235, 128–137. [Google Scholar] [CrossRef]
- Cowieson, A.J.; Roos, F.F. Bioefficacy of a mono-component protease in the diets of pigs and poultry: A meta-analysis of effect on ileal amino acid digestibility. J. Appl. Anim. Nutr. 2014, 2, 13–21. [Google Scholar] [CrossRef]
- Cowieson, A.J.; Roos, F.F. Toward optimal value creation through the application of exogenous mono-component protease in the diets of non-ruminants. Anim. Feed Sci. Technol. 2016, 221, 331–340. [Google Scholar] [CrossRef]
- Lee, S.A.; Bedford, M.R.; Walk, C.L. Meta-analysis: Explicit value of mono-component proteases in monogastric diets. Poult. Sci. 2018, 97, 2078–2085. [Google Scholar] [CrossRef]
- EFSA FEEDAP Panel (EFSA Panel on Additives and Products or Substances used in Animal Feed). Scientific Opinion on the safety and efficacy of formaldehyde for all animal species based on a dossier submitted by Regal BV. EFSA J. 2014, 12, 3561. [Google Scholar] [CrossRef]
- Ricke, S.; Richardson, K.; Dittoe, D. Formaldehydes in feed and their potential interaction with the poultry gastrointestinal tract microbial community: A review. Front. Vet. Sci. 2019, 6, 10. [Google Scholar] [CrossRef] [PubMed]
- Williams, H.E.; Cochrane, R.A.; Woodworth, J.C.; DeRouchey, J.M.; Dritz, S.S.; Tokach, M.D.; Jones, C.K.; Fernando, S.C.; Burkey, T.E.; Li, Y.S.; et al. The effects of dietary supplementation of formaldehyde and crystalline amino acids on gut microbial composition of nursery pigs. Sci. Rep. 2018, 8, 8164. [Google Scholar] [CrossRef] [PubMed]
- Arias, V.J.; Koutsos, E.A. Effects of copper source and level in intestinal physiology and growth of broiler chickens. Poult. Sci. 2006, 85, 999–1007. [Google Scholar] [CrossRef] [PubMed]
- Burnell, T.W.; Cromwell, G.L.; Stahly, T.S. Effects of dried whey and copper sulfate on the growth responses to organic acid in diets for weanling pigs. J. Anim. Sci. 1988, 66, 1100–1108. [Google Scholar] [CrossRef] [PubMed]
- Hill, G.M.; Cromwell, G.L.; Crenshaw, T.D.; Dove, C.R.; Ewan, R.C.; Knabe, D.A.; Lewis, A.J.; Libal, G.W.; Mahan, D.C.; Shurson, G.C.; et al. Growth promotion effects and plasma changes from feeding high dietary concentrations of zinc and copper to weanling pigs (regional study). J. Anim. Sci. 2000, 78, 1010–1016. [Google Scholar] [CrossRef]
- Skrivan, M.; Skrivanova, V.; Marounek, M.; Tumova, E.; Wolf, J. Influence of dietary fat source and copper supplementation on broiler performance, fatty acid profile of meat and depot fat, and on cholesterol content in meat. Br. Poult. Sci. 2000, 41, 608–614. [Google Scholar] [CrossRef]
- Rigoldi, F.; Donini, S.; Redaelli, A.; Parisini, E.; Gautieri, A. Review: Engineering of thermostable enzymes for industrial applications. AIP Bioeng. 2018, 2, 011501. [Google Scholar] [CrossRef]
- Bedford, M.R.; Partridge, G.G. Enzymes in Farm Animal Nutrition, 2nd ed.; CABI Publishing: Wallingford, UK, 2010; pp. 1–350. ISBN 978-1-84593-720-1. [Google Scholar] [CrossRef]
- Campbell, J.M.; Crenshaw, J.D.; Polo, J.; Mellick, D.; Bienhoff, M.; Stein, H.H. Impact of formaldehyde-treated pig feed containing spray-dried plasma on weaned pig growth performance. J. Anim. Sci. 2018, 96 (Suppl. 2), 138–139. [Google Scholar] [CrossRef]
- Metz, B.; Kersten, G.; Hoogerhout, P.; Brugghe, H.F.; Timmermans, H.; Jong, A.D.; Meiring, H.D.; Hove, J.T.; Hennink, W.E.; Crommelin, D.J.; et al. Identification of formaldehyde-induced modifications in proteins. J. Biol. Chem. 2004, 279, 6235–6243. [Google Scholar] [CrossRef]
- Santos, T.T.; Gomes, G.A.; Walk, C.L.; Freitas, B.V.; Araujo, L.F. Effect of formaldehyde inclusion on phytase efficiency in broilers. J. Appl. Poult. Res. 2013, 22, 204–210. [Google Scholar] [CrossRef]
- Sheehan, N. Analysis of enzymes, principles, and problems: Developments in enzyme analysis. In Enzymes in Farm Animal Nutrition, 2nd ed.; Bedford, M.R., Partridge, G.G., Eds.; CABI Publishing: Wallingford, UK, 2010; pp. 260–272. [Google Scholar] [CrossRef]
- Banks, K.M.; Thompson, K.L.; Jaynes, P.; Applegate, T.J. The effects of copper on the efficacy of phytase, growth, and phosphorus retention in broiler chicks. Poult. Sci. 2004, 83, 1335–1341. [Google Scholar] [CrossRef]
- Chiou, P.W.S.; Chen, C.L.; Chen, K.L.; Wu, C.P. Effect of high dietary copper on the morphology of the gastrointestinal tract in broiler chickens. Asian-Australas. J. Anim. Sci. 1999, 12, 548–553. [Google Scholar] [CrossRef]
- Hamdi, M.; Solà, D.; Franco, R.; Durosoy, S.; Roméo, A.; Pérez, J.F. Including copper sulfate or dicopper oxide in the diet of broiler chickens affects performance and copper content in the liver. Anim. Feed Sci. Technol. 2018, 237, 89–97. [Google Scholar] [CrossRef]
- Lu, L.; Wang, R.L.; Zhang, Z.J.; Steward, F.A.; Luo, X.; Liu, B. Effect of dietary supplementation with copper sulfate or tribasic copper chloride on the growth performance, liver copper concentrations of broilers, and stabilities of vitamin E and phytase in feeds. Biol. Trace Elem. Res. 2010, 138, 181–189. [Google Scholar] [CrossRef] [PubMed]
- Miles, R.D.; Keefe, S.F.O.; Henry, P.R.; Ammerman, C.B.; Luo, X.G. The effect of dietary supplementation with copper sulfate or tribasic copper chloride on broiler performance, relative copper bioavailability, and dietary prooxidant activity. Poult. Sci. 1998, 77, 416–425. [Google Scholar] [CrossRef] [PubMed]
- Pang, Y.; Applegate, T.J. Effects of copper source and concentration on in vitro phytate phosphorus hydrolysis by phytase. J. Agric. Food Chem. 2006, 54, 1792–1796. [Google Scholar] [CrossRef]
- Compêndio Brasileiro de Alimentação Animal. In Métodos Analíticos; Método nº 2021.045; Sindirações: São Paulo, Brazil, 2023; pp. 56–62.
- AOAC Official Methods of Analysis, 18th ed.; Association of Official Analytical Chemists: Arlington, VA, USA, 2004.
- White, J.A.; Hart, R.J.; Fry, J.C. An evaluation of the Waters Pico-Tag system for the amino-acid analysis of food materials. J. Autom. Chem. 1986, 8, 170–177. [Google Scholar] [CrossRef]
- Ravindran, V.; Adeola, O.; Rodehutscord, M.; Kluth, H.; van der Klis, J.D.; van Eerden, E.; Helmbrecht, A. Determination of ileal digestibility of amino acids in raw materials for broiler chickens—Results of collaborative studies and assay recommendations. Anim. Feed Sci. Technol. 2017, 225, 62–72. [Google Scholar] [CrossRef]
- Latimer, G.W., Jr. (Ed.) AOAC Official Methods of Analysis of AOAC International, 22nd online ed.; AOAC Publ.: New York, NY, USA, 2023; p. 1389. ISBN 978-01-9850-970-7. [Google Scholar]
- Kirchgessner, M.; Beyer, M.G.; Steinhart, H. Activation of pepsin (EC 3.4.4.1) by heavy-metal ions including a contribution to the mode of action of copper sulfate in pig nutrition. Br. J. Nutr. 1976, 36, 15–22. [Google Scholar] [CrossRef]
- Di Giancamillo, A.; Rossi, R.; Martino, P.A.; Aidos, L.; Maghin, F.; Domeneghini, C.; Corino, C. Copper sulfate forms in piglet diets: Microbiota, intestinal morphology, and enteric nervous system glial cells. Anim. Sci. J. 2018, 89, 616–624. [Google Scholar] [CrossRef]
- Danilova, T.A.; Danilina, G.A.; Adzhieva, A.A.; Vostrova, E.I.; Zhukhovitskii, V.G.; Cheknev, S.B. Inhibitory effect of copper and zinc ions on the growth of Streptococcus pyogenes and Escherichia coli biofilms. Bull. Exp. Biol. Med. 2020, 169, 648–652. [Google Scholar] [CrossRef]
- Xia, M.S.; Hu, C.H.; Xu, Z.R. Effects of copper-bearing montmorillonite on growth performance, digestive enzyme activities, and intestinal microflora and morphology of male broilers. Poult. Sci. 2004, 83, 1868–1875. [Google Scholar] [CrossRef] [PubMed]
- Højberg, O.; Canibe, N.; Poulsen, H.D.; Hedemann, M.S.; Jensen, B.B. Influence of dietary zinc oxide and copper sulfate on the gastrointestinal ecosystem in newly weaned piglets. Appl. Environ. Microbiol. 2005, 71, 2267–2277. [Google Scholar] [CrossRef]
- Santos, T.; Teng, P.Y.; Yadav, S.; Castro, F.; Koch, R.; Craig, S.; Chen, C.; Fuller, A.; Pazdro, R.; Sartori, J.; et al. Effects of inorganic Zn and Cu supplementation on gut health in broiler chickens challenged with Eimeria spp. Front. Vet. Sci. 2020, 7, 230. [Google Scholar] [CrossRef]
- Chen, J.; Yan, F.; Kuttappan, V.A.; Wedekind, K.; Vázquez-Añón, M.; Hancock, D. Effects of bis-chelated copper on growth performance and gut health in broiler chickens subject to coccidiosis vaccination or coccidia challenge. Front. Physiol. 2023, 13, 991318. [Google Scholar] [CrossRef] [PubMed]
- Peng, C.C.; Yan, J.Y.; Dong, B.; Zhu, L.; Tian, Y.Y.; Gong, L.M. Effects of graded levels of cupric citrate on growth performance, antioxidant status, serum lipid metabolites and immunity, and tissue residues of trace elements in weaned pigs. Asian-Australas. J. Anim. Sci. 2017, 30, 538–545. [Google Scholar] [CrossRef] [PubMed]
- Cardinal, K.; Moraes, M.; Andretta, I.; Schirmann, G.; Belote, B.; Barrios, M.; Santin, E.; Machado, A.; Ribeiro, L. Growth performance and intestinal health of broilers fed a standard or low-protein diet with the addition of a protease. Rev. Bras. Zootec. 2019, 48, e20180232. [Google Scholar] [CrossRef]
- Perez-Palencia, J.Y.; Samuel, R.S.; Levesque, C.L. Supplementation of protease to low amino acid diets containing superdose levels of phytase for wean-to-finish pigs: Effects on performance, postweaning intestinal health, and carcass characteristics. Transl. Anim. Sci. 2021, 5, txab088. [Google Scholar] [CrossRef] [PubMed]
- Feye, K.M.; Dittoe, D.K.; Jendza, J.A.; Caldas-Cueva, J.P.; Mallmann, B.A.; Booher, B.; Tellez-Isaias, G.; Owens, C.M.; Kidd, M.T.; Ricke, S.C. A comparison of formic acid or monoglycerides to formaldehyde on production efficiency, nutrient absorption, and meat yield and quality of Cobb 700 broilers. Poult. Sci. 2021, 100, 101476. [Google Scholar] [CrossRef]
- Jones, M.K.; Richardson, K.E.; Starkey, C.W.; Dale, N.M.; Davis, A.J. Impact of extended heat treatment on the amino acid digestibility and TMEn content of a formaldehyde-treated diet. J. Appl. Poult. Res. 2018, 27, 550–554. [Google Scholar] [CrossRef]
- Yakhkeshi, S.; Rahimi, S.; Naseri, K.G. The effects of comparison of herbal extracts, antibiotic, probiotic, and organic acid on serum lipids, immune response, GIT microbial population, intestinal morphology, and performance of broilers. J. Med. Plants 2011, 10, 80–92. [Google Scholar]
- Ochoa, L.; Harrell, R.J.; Graham, A.; Bienhoff, M.; Kremer, B.; Loughmiller, J.A.; Greiner, L. Effect of feeding formaldehyde-treated feed to pigs throughout the growing period on amino acid utilization from synthetic lysine or protein sources. J. Anim. Sci. 2017, 95 (Suppl. 2), 142. [Google Scholar] [CrossRef]
- Kouchmeshky, A.; McCaffery, P. Use of fixatives for immunohistochemistry and their application for detection of retinoic acid synthesizing enzymes in the central nervous system. Methods Enzymol. 2020, 637, 119–150. [Google Scholar] [CrossRef]
- Michiels, T.J.M.; Meiring, H.D.; Jiskoot, W.; Kersten, G.F.A.; Metz, B. Formaldehyde treatment of proteins enhances proteolytic degradation by the endo-lysosomal protease cathepsin S. Sci. Rep. 2020, 10, 11535. [Google Scholar] [CrossRef]
- Stefanello, C.; Dalmoro, Y.K.; Rosa, D.P.; Teixeira, L.; Sorbara, J.O.B.; Cowieson, A.J.; Faruk, M.U. Effects of dietary digestible amino acids and a novel exogenous protease on growth performance of broilers. Heliyon 2024, 10, e26098. [Google Scholar] [CrossRef] [PubMed]
- Vieira, S.L.; Freitas, C.R.; Horn, R.M.; Favero, A.; Kindlein, L.; Sorbara, J.O.B.; Umar-Faruk, M. Growth performance and nutrient digestibility of broiler chickens as affected by a novel protease. Front. Anim. Sci. 2022, 3, 1040051. [Google Scholar] [CrossRef]
- Cowieson, A.J.; Smith, A.; Sorbara, J.O.B.; Pappenberger, G.; Olukosi, O.A. Efficacy of a mono-component exogenous protease in the presence of a high concentration of exogenous phytase on growth performance of broiler chickens. J. Appl. Poult. Res. 2019, 28, 638–646. [Google Scholar] [CrossRef]
- Freitas, D.M.; Vieira, S.L.; Angel, C.R.; Favero, A.; Maiorka, A. Performance and nutrient utilization of broilers fed diets supplemented with a novel mono-component protease. J. Appl. Poult. Res. 2011, 20, 322–344. [Google Scholar] [CrossRef]
- Samanta, B.; Biswas, A.; Ghosh, P.R. Effects of dietary copper supplementation on production performance and plasma biochemical parameters in broiler chickens. Br. Poult. Sci. 2011, 52, 573–577. [Google Scholar] [CrossRef]
- Hafeez, A.; Iqbal, S.; Sikandar, A.; Din, S.; Khan, I.; Ashraf, S.; Khan, R.U.; Tufarelli, V.; Laudadio, V. Feeding of phytobiotics and exogenous protease in broilers: Comparative effect on nutrient digestibility, bone strength, and gut morphology. Agriculture 2021, 11, 228. [Google Scholar] [CrossRef]
- Farrokhi, H.; Abdullahpour, R.; Rezaeipour, V. Influence of dietary phytase and protease, individually or in combination, on growth performance, intestinal morphology, microbiota composition, and nutrient utilization in broiler chickens fed sesame meal-based diets. Ital. J. Anim. Sci. 2021, 20, 2122–2130. [Google Scholar] [CrossRef]
- Olukosi, O.A.; Beeson, L.A.; Englyst, K.; Romero, L.F. Effects of exogenous proteases without or with carbohydrases on nutrient digestibility and disappearance of non-starch polysaccharides in broiler chickens. Poult. Sci. 2015, 94, 2662–2669. [Google Scholar] [CrossRef] [PubMed]
- Kies, A.K.; De Jonge, L.H.; Kemme, P.A.; Jongbloed, A.W. Interaction between protein, phytate, and microbial phytase: In vitro studies. J. Agric. Food Chem. 2006, 54, 1753–1758. [Google Scholar] [CrossRef] [PubMed]
Treatments Identification | Description |
---|---|
1 | Basal Diet (BD) + Protease (Prot.) *1 |
2 | BD + Prot. + CuSO4 *2 |
3 | BD + Prot. + Formaldehyde *3 |
4 | BD *1 |
5 | BD + CuSO4 *2 |
6 | BD + Formaldehyde *3 |
7 | Protein-Free Diet |
Ingredients | Quantity (kg) |
---|---|
Corn 7.5% | 564 |
Soybean meal 45% | 370 |
Soybean Oil | 25.00 |
Inert * | 2.00 |
Limestone 40% | 9.40 |
Dicalcium phosphate 27/19.5 | 6.30 |
Salt | 4.80 |
DL- Methionine | 3.10 |
L-Lysine | 1.90 |
L-Threonine | 0.80 |
Choline Chloride 60% | 0.60 |
HiPhorius 40 (1000 FYT) | 0.025 |
Vitamin premix ** | 13.00 |
Mineral premix *** | 0.50 |
Insoluble acid ash (CeliteTM) | 10.00 |
Total | 1.000 |
Nutritional Levels (%) | |
Metabolizable energy (kcal/kg) | 2.976 |
Crude protein % | 21.28 |
Crude Fiber % | 2.93 |
Lysine (A-Dig) | 1.180 |
Methionine (A-Dig) | 0.599 |
Amino acids (A-Dig) | 0.874 |
Threonine (A-Dig) | 0.767 |
Tryptophane (A-Dig) | 0.228 |
Arginine (A-Dig) | 1.316 |
Isoleucine (A-Dig) | 0.801 |
Valine (A-Dig) | 0.885 |
Ether extract | 5.161 |
Calcium | 0.860 |
Total Phosphorus | 0.670 |
Phosphorus Disp. Poultry | 0.430 |
Sodium | 0.200 |
Ingredients | Quantity (kg) |
---|---|
Corn starch | 201 |
Dextrose | 638 |
Soybean oil | 50.0 |
Monocalcium phosphate 22.7/16 | 19.0 |
Limestone 40 | 13.0 |
Corn cob | 50.0 |
Vitamin premix | 1.30 |
Mineral premix | 0.500 |
Choline Chloride | 2.50 |
Insoluble acid ash (CeliteTM) | 10.0 |
Potassium carbonate | 2.60 |
Potassium chloride | 2.90 |
Sodium bicarbonate | 7.50 |
Magnesium oxide | 2.00 |
Total | 1000 |
Treatments | Phytate (%) | EE (%) | CF (%) | MM (%) | Moisture (%) | CP (%) | Phytase (FYT/kg) | Protease (NFP/kg) |
---|---|---|---|---|---|---|---|---|
Basal Diet (BD) + Protease (Prot.) | 0.240 | 6.22 | 2.36 | 5.73 | 11.1 | 22.9 | 483 | 34,500 |
BD + Prot. + CuSO4 | 0.250 | 6.22 | 2.50 | 5.86 | 11.1 | 21.9 | 612 | 31,400 |
BD + Prot. + Formaldehyde | 0.240 | 6.41 | 2.44 | 5.82 | 11.2 | 22.1 | 812 | 40,200 |
BD | 0.250 | 6.28 | 2.33 | 5.57 | 10.3 | 21.7 | 781 | <9000 |
BD + CuSO4 | 0.260 | 6.28 | 2.34 | 5.82 | 10.4 | 22.5 | 806 | <9000 |
BD + Formaldehyde | 0.230 | 6.36 | 2.57 | 5.87 | 11.1 | 22.1 | 527 | <9000 |
Protein-Free Diet | - | - | - | - | - | 0.52 | <100 | <9000 |
Protease | Co-Adjuvant Additive | p-Value | ||||||
---|---|---|---|---|---|---|---|---|
Basal Diet | CuSO4 | Formaldehyde | Average | SEM | Protease | Additive Co-Adjuvant | Interaction | |
-----Crude protein----- | ||||||||
With | 86.3 B * | 90.3 Aa | 85.3 Ba | 87.3 | 0.553 | 0.0344 | <0.0001 | 0.0018 |
Without | 87.7 A | 87.7 Ab | 83.6 Bb | 86.3 | ||||
Average | 87.0 | 89.0 | 84.4 | |||||
-----Lysine----- | ||||||||
With | 93.5 B | 96.1 A | 92.4 Ba | 94.0 | 0.434 | 0.0138 | <0.0001 | 0.0001 |
Without | 94.7 A | 95.1 A | 89.4 Bb | 93.1 | ||||
Average | 94.1 | 95.6 | 90.9 | |||||
----- Methionine ----- | ||||||||
With | 96.8 B | 98.5 Aa | 97.3 Ba | 97.5 | 0.268 | 0.0284 | 0.0001 | 0.0042 |
Without | 97.4 A | 97.4 Ab | 96.3 Bb | 97.0 | ||||
Average | 97.1 | 98.0 | 96.8 | |||||
-----Threonine----- | ||||||||
With | 87.9 B | 92.1 Aa | 88.1 B | 89.4 | 0.678 | 0.0786 | 0.0009 | 0.0067 |
Without | 89.0 | 88.7 b | 87.4 | 88.4 | ||||
Average | 88.5 | 90.4 | 87.7 | |||||
-----Valine----- | ||||||||
With | 89.2 Bb | 93.2 A | 89.1 B | 90.5 | 0.619 | 0.3614 | <0.0001 | 0.0061 |
Without | 91.2 Aa | 91.4 A | 87.4 B | 90.0 | ||||
Average | 90.2 | 92.3 | 88.3 | |||||
-----Isoleucine----- | ||||||||
With | 90.0 B | 93.5 A | 89.4 Ba | 91.0 | 0.584 | 0.2434 | <0.0001 | 0.0097 |
Without | 91.7 A | 92.1 A | 87.5 Bb | 90.4 | ||||
Average | 90.8 | 92.8 | 88.5 | |||||
-----Arginine----- | ||||||||
With | 94.6 B | 96.7 Aa | 93.0 Ca | 94.8 | 0.390 | 0.0003 | <0.0001 | <0.0001 |
Without | 95.6 A | 95.5 Ab | 89.5 Bb | 93.5 | ||||
Average | 95.1 | 96.1 | 91.3 | |||||
-----Phenylalanine----- | ||||||||
With | 91.3 B | 94.5 Aa | 90.5 Ba | 92.1 | 0.475 | 0.0131 | <0.0001 | 0.0022 |
Without | 92.4 A | 92.7 Ab | 88.1 Bb | 91.1 | ||||
Average | 91.9 | 93.6 | 89.3 | |||||
-----Leucine----- | ||||||||
With | 90.6 B | 94.0 Aa | 90.2 Ba | 91.6 | 0.512 | 0.0311 | <0.0001 | 0.0058 |
Without | 91.7 A | 91.9 Ab | 88.3 Bb | 90.7 | ||||
Average | 91.2 | 93.0 | 89.3 | |||||
-----Histidine----- | ||||||||
With | 89.8 B | 91.9 Aa | 89.0 Ba | 90.2 | 0.590 | 0.0015 | <0.0001 | 0.0007 |
Without | 91.0 A | 89.1 Ab | 85.6 Bb | 88.6 | ||||
Average | 90.4 | 90.5 | 87.3 |
Protease | Co-Adjuvant Additive | p-Value Additive | ||||||
---|---|---|---|---|---|---|---|---|
Basal Diet | CuSO4 | Formaldehyde | Average | SEM | Protease | Co-Adjuvant | Interaction | |
----- Alanine ----- | ||||||||
With | 89.7 B * | 93.4 Aa | 89.9 B | 91.0 | 0.590 | 0.3888 | <0.0001 | 0.0206 |
Without | 91.0 | 91.3 b | 89.4 | 90.6 | ||||
Average | 90.4 | 92.4 | 89.6 | |||||
----- Aspartic Acid ----- | ||||||||
With | 89.6 B | 92.3 Aa | 88.3 Ba | 90.1 | 0.499 | 0.0030 | <0.0001 | 0.0031 |
Without | 90.4 A | 90.4 Ab | 85.6 Bb | 88.8 | ||||
Average | 90.0 | 91.4 | 86.9 | |||||
----- Cystine ----- | ||||||||
With | 82.0 | 88.2 | 82.1 | 84.1 b | 1.093 | 0.0031 | <0.0001 | 0.3666 |
Without | 83.0 | 91.6 | 86.2 | 86.9 a | ||||
Average | 82.5 B | 89.9 A | 84.1 B | |||||
----- Glycine----- | ||||||||
With | 87.1 Bb | 91.7 Aa | 86.7 B | 88.5 | 0.676 | 0.1739 | <0.0001 | 0.0037 |
Without | 89.0 Aa | 89.1 Ab | 85.0 B | 87.7 | ||||
Average | 88.0 | 90.4 | 85.9 | |||||
----- Glutamic acid ----- | ||||||||
With | 93.4 B | 95.4 Aa | 91.6 Ca | 93.5 | 0.387 | 0.0016 | <0.0001 | 0.0003 |
Without | 94.1 A | 94.2 Ab | 88.9 Bb | 92.4 | ||||
Average | 93.8 | 94.8 | 90.2 | |||||
----- Proline ----- | ||||||||
With | 89.5 B | 92.4 Aa | 88.2 B | 90.0 | 0.554 | 0.1322 | <0.0001 | 0.0242 |
Without | 90.6 A | 90.7 Ab | 86.7 B | 89.3 | ||||
Average | 90.1 | 91.5 | 87.5 | |||||
----- Serine ----- | ||||||||
With | 89.7 B | 93.2 Aa | 89.1 B | 90.7 | 0.628 | 0.0140 | <0.0001 | 0.0085 |
Without | 90.6 A | 90.0 Ab | 87.5 B | 89.4 | ||||
Average | 90.2 | 91.6 | 88.3 | |||||
----- Tyrosine ----- | ||||||||
With | 90.8 B | 94.2 Aa | 90.6 Ba | 91.9 | 0.639 | 0.0531 | <0.0001 | 0.0446 |
Without | 91.7 A | 92.4 Ab | 88.4 Bb | 90.8 | ||||
Average | 91.3 | 93.3 | 89.5 |
Treatments | Variables | ||||
---|---|---|---|---|---|
Protease | Processing | AFW, kg | AFI, kg/Bird | AWG, kg/Bird | FCR, kg/kg |
WITH | Basal diet | 0.951 | 0.506 | 0.461 | 1.098 |
WITH | CuSO4 | 0.956 | 0.495 | 0.461 | 1.073 |
WITH | Formaldehyde | 0.938 | 0.499 | 0.450 | 1.109 |
WITHOUT | Basal diet | 0.938 | 0.499 | 0.452 | 1.105 |
WITHOUT | CuSO4 | 0.957 | 0.511 | 0.461 | 1.106 |
WITHOUT | Formaldehyde | 0.930 | 0.523 | 0.458 | 1.146 |
CV (%) 1 | 5.20 | 6.97 | 7.53 | 3.42 | |
Main Effects | |||||
Protease | WITH | 0.948 | 0.500 | 0.458 | 1.093 |
WITHOUT | 0.941 | 0.511 | 0.457 | 1.119 | |
Processing | Basal diet | 0.944 | 0.503 | 0.457 | 1.101 ab |
CuSO4 | 0.957 | 0.503 | 0.462 | 1.089 b | |
Formaldehyde | 0.934 | 0.511 | 0.454 | 1.127 a | |
p-value | Coadjuvant additives | 0.3422 | 0.6860 | 0.7897 | 0.0082 |
Protease | 0.6091 | 0.2158 | 0.9851 | 0.0100 | |
Interaction | 0.9060 | 0.3606 | 0.7357 | 0.4134 |
Treatments | Variables | ||
---|---|---|---|
Protease | Processing | Bone Strength (kgf/cm2) | Ash (%) |
WITH | Basal Diet | 32.94 | 35.51 |
WITH | CuSO4 | 36.59 | 35.94 |
WITH | Formaldehyde | 31.02 | 35.25 |
WITHOUT | Basal Diet | 29.75 | 34.55 |
WITHOUT | CuSO4 | 31.72 | 35.49 |
WITHOUT | Formaldehyde | 30.20 | 33.94 |
CV (%) 1 | 17.81 | 4.59 | |
Main effects | |||
Protease | WITH | 33.52 A | 35.57 A |
WITHOUT | 30.55 B | 34.65 B | |
Processing | Basal diet | 31.33 | 35.03 |
CuSO4 | 34.15 | 35.71 | |
Formaldehyde | 30.61 | 34.59 | |
p-value | Coadjuvant additives | 0.1261 | 0.0931 |
Protease | 0.0494 | 0.0318 | |
Interaction | 0.5331 | 0.6939 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
da Nobrega, I.P.T.; Teixeira, L.d.V.; Fascina, V.B.; Bittencourt, L.C. Effect of Protease Supplementation in Diets with or Without Copper Sulfate and Formaldehyde on the Standardized Digestibility of Amino Acids in Broiler Chickens. Animals 2025, 15, 1059. https://doi.org/10.3390/ani15071059
da Nobrega IPT, Teixeira LdV, Fascina VB, Bittencourt LC. Effect of Protease Supplementation in Diets with or Without Copper Sulfate and Formaldehyde on the Standardized Digestibility of Amino Acids in Broiler Chickens. Animals. 2025; 15(7):1059. https://doi.org/10.3390/ani15071059
Chicago/Turabian Styleda Nobrega, Ingryd Palloma Teodósio, Levy do Vale Teixeira, Vitor Barbosa Fascina, and Letícia Cardoso Bittencourt. 2025. "Effect of Protease Supplementation in Diets with or Without Copper Sulfate and Formaldehyde on the Standardized Digestibility of Amino Acids in Broiler Chickens" Animals 15, no. 7: 1059. https://doi.org/10.3390/ani15071059
APA Styleda Nobrega, I. P. T., Teixeira, L. d. V., Fascina, V. B., & Bittencourt, L. C. (2025). Effect of Protease Supplementation in Diets with or Without Copper Sulfate and Formaldehyde on the Standardized Digestibility of Amino Acids in Broiler Chickens. Animals, 15(7), 1059. https://doi.org/10.3390/ani15071059