Insights into Molecular Profiles, Resistance Patterns, and Virulence Traits of Staphylococci from Companion Dogs in Angola
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Staphylococci Isolation
2.3. DNA Isolation
2.4. PCR Fingerprinting
2.5. Isolate Identification
2.6. Isolates’ Antimicrobial Resistance Profile
2.7. Isolates’ Virulence Profile
2.8. Statistical Analysis
3. Results
3.1. Isolate Fingerprinting
3.2. Isolate Identification
3.3. Characterization of the Isolates’ Antimicrobial Resistance Profile
3.4. Characterization of the Isolates’ Virulence Profile
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Prinzi, A.M.; Moore, N.M. Change of Plans: Overview of Bacterial Taxonomy, Recent Changes of Medical Importance, and Potential Areas of Impact. Open Forum Infect. Dis. 2023, 10, ofad269. [Google Scholar] [CrossRef]
- Founou, R.C.; Founou, L.L.; Allam, M.; Ismail, A.; Essack, S.Y. Whole Genome Sequencing of Extended Spectrum β-Lactamase (ESBL)-Producing Klebsiella pneumoniae Isolated from Hospitalized Patients in KwaZulu-Natal, South Africa. Sci. Rep. 2019, 9, 6266. [Google Scholar] [CrossRef] [PubMed]
- Da Costa, R.C.; Serrano, I.; Chambel, L.; Oliveira, M. The Importance of “One Health Approach” to the AMR Study and Surveillance in Angola and Other African Countries. One Health 2024, 18, 100691. [Google Scholar] [CrossRef] [PubMed]
- Nocera, F.P.; Pizzano, F.; Masullo, A.; Cortese, L.; De Martino, L. Antimicrobial Resistant Staphylococcus Species Colonization in Dogs, Their Owners, and Veterinary Staff of the Veterinary Teaching Hospital of Naples, Italy. Pathogens 2023, 12, 1016. [Google Scholar] [CrossRef]
- Garrine, M.; Costa, S.S.; Messa, A.; Massora, S.; Vubil, D.; Ácacio, S.; Nhampossa, T.; Bassat, Q.; Mandomando, I.; Couto, I. Antimicrobial Resistance and Clonality of Staphylococcus aureus Causing Bacteraemia in Children Admitted to the Manhiça District Hospital, Mozambique, over Two Decades. Front. Microbiol. 2023, 14, 1208131. [Google Scholar] [CrossRef] [PubMed]
- Conceição, T.; Coelho, C.; Santos Silva, I.; De Lencastre, H.; Aires-de-Sousa, M. Methicillin-Resistant Staphylococcus aureus in the Community in Luanda, Angola: Blurred Boundaries with the Hospital Setting. Microb. Drug Resist. 2016, 22, 22–27. [Google Scholar] [CrossRef]
- Conceição, T.; Coelho, C.; Santos Silva, I.; De Lencastre, H.; Aires-de-Sousa, M. Staphylococcus aureus in Former Portuguese Colonies from Africa and the Far East: Missing Data to Help Fill the World Map. Clin. Microbiol. Infect. 2015, 21, e1–e842. [Google Scholar] [CrossRef]
- Loeffler, A.; Linek, M.; Moodley, A.; Guardabassi, L.; Sung, J.M.L.; Winkler, M.; Weiss, R.; Lloyd, D.H. First Report of Multiresistant, mecA-positive Staphylococcus intermedius in Europe: 12 Cases from a Veterinary Dermatology Referral Clinic in Germany. Vet. Dermatol. 2007, 18, 412–421. [Google Scholar] [CrossRef]
- Morris, D.O.; Boston, R.C.; O’Shea, K.; Rankin, S.C. The Prevalence of Carriage of Meticillin-resistant Staphylococci by Veterinary Dermatology Practice Staff and Their Respective Pets. Vet. Dermatol. 2010, 21, 400–407. [Google Scholar] [CrossRef]
- Ma, G.C.; Worthing, K.A.; Ward, M.P.; Norris, J.M. Commensal Staphylococci Including Methicillin-Resistant Staphylococcus aureus from Dogs and Cats in Remote New South Wales, Australia. Microb. Ecol. 2020, 79, 164–174. [Google Scholar] [CrossRef]
- WHO. WHO Bacterial Priority Pathogens List 2024 Bacterial Pathogens of Public Health Importance, to Guide Research, Development, and Strategies to Prevent and Control Antimicrobial Resistance; World Health Organization: Geneva, Switzerland, 2024. [Google Scholar]
- Matos, A.; Cunha, E.; Baptista, L.; Tavares, L.; Oliveira, M. ESBL-Positive Enterobacteriaceae from Dogs of Santiago and Boa Vista Islands, Cape Verde: A Public Health Concern. Antibiotics 2023, 12, 447. [Google Scholar] [CrossRef] [PubMed]
- Švec, P.; Nováková, D.; Žáčková, L.; Kukletová, M.; Sedláček, I. Evaluation of (GTG)5-PCR for Rapid Identification of Streptococcus mutans. Antonie Van Leeuwenhoek 2008, 94, 573–579. [Google Scholar] [CrossRef] [PubMed]
- Semedo-Lemsaddek, T.; Nóbrega, C.S.; Ribeiro, T.; Pedroso, N.M.; Sales-Luís, T.; Lemsaddek, A.; Tenreiro, R.; Tavares, L.; Vilela, C.L.; Oliveira, M. Virulence Traits and Antibiotic Resistance among Enterococci Isolated from Eurasian Otter (Lutra lutra). Vet. Microbiol. 2013, 163, 378–382. [Google Scholar] [CrossRef] [PubMed]
- CLSI. Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated from Animals: Approved Standard; CLSI: Wayne, PA, USA, 2008. [Google Scholar]
- CLSI. Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated from Animals; CLSI: Wayne, PA, USA, 2018. [Google Scholar]
- CLSI. Performance Standards for Antimicrobial Susceptibility Testing. M100: Performance Standards for Antimicrobial Susceptibility Testing; CLSI: Wayne, PA, USA, 2020. [Google Scholar]
- Magiorakos, A.P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-Resistant, Extensively Drug-Resistant and Pandrug-Resistant Bacteria: An International Expert Proposal for Interim Standard Definitions for Acquired Resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef]
- Fernandes, M.; Grilo, M.L.; Carneiro, C.; Cunha, E.; Tavares, L.; Patino-Martinez, J.; Oliveira, M. Antibiotic Resistance and Virulence Profiles of Gram-Negative Bacteria Isolated from Loggerhead Sea Turtles (Caretta caretta) of the Island of Maio, Cape Verde. Antibiotics 2021, 10, 771. [Google Scholar] [CrossRef]
- Heinze, G.; Dunkler, D. Five Myths about Variable Selection. Transpl. Int. 2017, 30, 6–10. [Google Scholar] [CrossRef]
- Asante, J.; Amoako, D.G.; Abia, A.L.K.; Somboro, A.M.; Govinden, U.; Bester, L.A.; Essack, S.Y. Review of Clinically and Epidemiologically Relevant Coagulase-Negative Staphylococci in Africa. Microb. Drug Resist. 2020, 26, 951–970. [Google Scholar] [CrossRef]
- Ocloo, R.; Nyasinga, J.; Munshi, Z.; Hamdy, A.; Marciniak, T.; Soundararajan, M.; Newton-Foot, M.; Ziebuhr, W.; Shittu, A.; Revathi, G.; et al. Epidemiology and Antimicrobial Resistance of Staphylococci Other than Staphylococcus aureus from Domestic Animals and Livestock in Africa: A Systematic Review. Front. Vet. Sci. 2022, 9, 1059054. [Google Scholar] [CrossRef]
- Chah, K.F.; Gómez-Sanz, E.; Nwanta, J.A.; Asadu, B.; Agbo, I.C.; Lozano, C.; Zarazaga, M.; Torres, C. Methicillin-Resistant Coagulase-Negative Staphylococci from Healthy Dogs in Nsukka, Nigeria. Braz. J. Microbiol. 2014, 45, 215–220. [Google Scholar] [CrossRef]
- Siugzdaite, J.; Gabinaitiene, A. Methicillin-Resistant Coagulase-Negative Staphylococci in Healthy Dogs. Veterinární Medicína 2017, 62, 479–487. [Google Scholar] [CrossRef]
- Couto, I.; Wu, S.W.; Tomasz, A.; De Lencastre, H. Development of Methicillin Resistance in Clinical Isolates of Staphylococcus sciuri by Transcriptional Activation of the mecA Homologue Native to the Species. J. Bacteriol. 2003, 185, 645–653. [Google Scholar] [CrossRef] [PubMed]
- Stepanović, S.; Dimitrijević, V.; Vuković, D.; Dakić, I.; Savić, B.; Švabic-Vlahović, M. Staphylococcus sciuri as a Part of Skin, Nasal and Oral Flora in Healthy Dogs. Vet. Microbiol. 2001, 82, 177–185. [Google Scholar] [CrossRef]
- Dordet-Frisoni, E.; Dorchies, G.; De Araujo, C.; Talon, R.; Leroy, S. Genomic Diversity in Staphylococcus xylosus. Appl. Environ. Microbiol. 2007, 73, 7199–7209. [Google Scholar] [CrossRef]
- Kloos, W.E.; Zimmerman, R.J.; Smith, R.F. Preliminary Studies on the Characterization and Distribution of Staphylococcus and Micrococcus Species on Animal Skin. Appl. Environ. Microbiol. 1976, 31, 53–59. [Google Scholar] [CrossRef] [PubMed]
- Siqueira, J.F.; Lima, K.C. Staphylococcus epidermidis And Staphylococcus xylosus. In A Secondary Root Canal Infection With Persistent Symptoms: A Case Report. Aust. Endod. J. 2002, 28, 61–63. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, V.M.; Williams, N.J.; Pinchbeck, G.; Corless, C.E.; Shaw, S.; McEwan, N.; Dawson, S.; Nuttall, T. Antimicrobial Resistance and Characterisation of Staphylococci Isolated from Healthy Labrador Retrievers in the United Kingdom. BMC Vet. Res. 2014, 10, 17. [Google Scholar] [CrossRef]
- Bagcigil, F.A.; Moodley, A.; Baptiste, K.E.; Jensen, V.F.; Guardabassi, L. Occurrence, Species Distribution, Antimicrobial Resistance and Clonality of Methicillin- and Erythromycin-Resistant Staphylococci in the Nasal Cavity of Domestic Animals. Vet. Microbiol. 2007, 121, 307–315. [Google Scholar] [CrossRef]
- Weese, J.S. Methicillin-Resistant Staphylococcus aureus in Animals. ILAR J. 2010, 51, 233–244. [Google Scholar] [CrossRef]
- Lilenbaum, W.; Veras, M.; Blum, E.; Souza, G.N. Antimicrobial Susceptibility of Staphylococci Isolated from Otitis Externa in Dogs: Staphylococci from Dogs. Lett. Appl. Microbiol. 2000, 31, 42–45. [Google Scholar] [CrossRef]
- Wedley, A.L.; Dawson, S.; Maddox, T.W.; Coyne, K.P.; Pinchbeck, G.L.; Clegg, P.; Jamrozy, D.; Fielder, M.D.; Donovan, D.; Nuttall, T.; et al. Carriage of Staphylococcus Species in the Veterinary Visiting Dog Population in Mainland UK: Molecular Characterisation of Resistance and Virulence. Vet. Microbiol. 2014, 170, 81–88. [Google Scholar] [CrossRef]
- Qekwana, D.N.; Oguttu, J.W.; Sithole, F.; Odoi, A. Burden and Predictors of Staphylococcus aureus and S. pseudintermedius Infections among Dogs Presented at an Academic Veterinary Hospital in South Africa (2007–2012). PeerJ 2017, 5, e3198. [Google Scholar] [CrossRef] [PubMed]
- WHO. The WHO AWaRe (Access, Watch, Reserve) Antibiotic Book; World Health Organization: Geneva, Switzerland, 2022; Available online: https://www.who.int/publications/i/item/9789240062382 (accessed on 14 November 2024).
- EMA. Categorisation of Antibiotics for Use in Animals for Prudent and Responsible Use. Available online: https://www.ema.europa.eu/en/documents/report/infographic-categorisation-antibiotics-use-animals-prudent-and-responsible-use_en.pdf (accessed on 20 June 2024).
- Palma, E.; Tilocca, B.; Roncada, P. Antimicrobial Resistance in Veterinary Medicine: An Overview. Int. J. Mol. Sci. 2020, 21, 1914. [Google Scholar] [CrossRef]
- Elnageh, H.R.; Hiblu, M.A.; Abbassi, M.S.; Abouzeed, Y.M.; Ahmed, M.O. Prevalence and Antimicrobial Resistance of Staphylococcus Species Isolated from Cats and Dogs. Open Vet. J. 2021, 10, 452–456. [Google Scholar] [CrossRef]
- Adiguzel, M.C.; Schaefer, K.; Rodriguez, T.; Ortiz, J.; Sahin, O. Prevalence, Mechanism, Genetic Diversity, and Cross-Resistance Patterns of Methicillin-Resistant Staphylococcus Isolated from Companion Animal Clinical Samples Submitted to a Veterinary Diagnostic Laboratory in the Midwestern United States. Antibiotics 2022, 11, 609. [Google Scholar] [CrossRef] [PubMed]
- Souza, G.Á.A.D.; Almeida, A.C.D.; Xavier, M.A.D.S.; Silva, L.M.V.D.; Sousa, C.N.; Sanglard, D.A.; Xavier, A.R.E.D.O. Characterization and Molecular Epidemiology of Staphylococcus aureus Strains Resistant to Beta-Lactams Isolated from the Milk of Cows Diagnosed with Subclinical Mastitis. Vet. World 2019, 12, 1931–1939. [Google Scholar] [CrossRef] [PubMed]
- Tunyong, W.; Arsheewa, W.; Santajit, S.; Kong-ngoen, T.; Pumirat, P.; Sookrung, N.; Chaicumpa, W.; Indrawattana, N. Antibiotic Resistance Genes Among Carbapenem-Resistant Enterobacterales (CRE) Isolates of Prapokklao Hospital, Chanthaburi Province, Thailand. Infect. Drug Resist. 2021, 14, 3485–3494. [Google Scholar] [CrossRef]
- Fish, D.N. Meropenem in the Treatment of Complicated Skin and Soft Tissue Infections. Ther. Clin. Risk Manag. 2006, 2, 401–415. [Google Scholar] [CrossRef]
- Gandolfi-Decristophoris, P.; Regula, G.; Petrini, O.; Zinsstag, J.; Schelling, E. Prevalence and Risk Factors for Carriage of Multi-Drug Resistant Staphylococci in Healthy Cats and Dogs. J. Vet. Sci. 2013, 14, 449. [Google Scholar] [CrossRef]
- França, A.; Gaio, V.; Lopes, N.; Melo, L.D.R. Virulence Factors in Coagulase-Negative Staphylococci. Pathogens 2021, 10, 170. [Google Scholar] [CrossRef]
- Martinez, E.P.; Cepeda, M.; Jovanoska, M.; Bramer, W.M.; Schoufour, J.; Glisic, M.; Verbon, A.; Franco, O.H. Seasonality of Antimicrobial Resistance Rates in Respiratory Bacteria: A Systematic Review and Meta-Analysis. PLoS ONE 2019, 14, e0221133. [Google Scholar] [CrossRef]
- Preda, M.; Mihai, M.M.; Popa, L.I.; Dițu, L.-M.; Holban, A.M.; Manolescu, L.S.C.; Popa, G.-L.; Muntean, A.-A.; Gheorghe, I.; Chifiriuc, C.M.; et al. Phenotypic and Genotypic Virulence Features of Staphylococcal Strains Isolated from Difficult-to-Treat Skin and Soft Tissue Infections. PLoS ONE 2021, 16, e0246478. [Google Scholar] [CrossRef]
- Senobar Tahaei, S.A.; Stájer, A.; Barrak, I.; Ostorházi, E.; Szabó, D.; Gajdács, M. Correlation Between Biofilm-Formation and the Antibiotic Resistant Phenotype in Staphylococcus aureus Isolates: A Laboratory-Based Study in Hungary and a Review of the Literature. Infect. Drug Resist. 2021, 14, 1155–1168. [Google Scholar] [CrossRef] [PubMed]
- Bertelloni, F.; Cagnoli, G.; Ebani, V.V. Virulence and Antimicrobial Resistance in Canine Staphylococcus spp. Isolates. Microorganisms 2021, 9, 515. [Google Scholar] [CrossRef] [PubMed]
- Türkyilmaz, S.; Kaya, O. Determination of Some Virulence Factors in Staphylococcus spp. Isolated from Various Clinical Samples. Turk. J. Vet. Anim. Sci. 2006, 30, 127–132. [Google Scholar]
- Fares, A. Factors influencing the seasonal patterns of infectious diseases. Int. J. Prev. Med. 2013, 4, 128–132. [Google Scholar]
- Argemi, X.; Hansmann, Y.; Prola, K.; and Prévost, G. Coagulase-Negative Staphylococci Pathogenomics. Int. J. Mol. Sci. 2019, 20, 1215. [Google Scholar] [CrossRef]
Antimicrobial Class | Antimicrobial Compound | Concentration (μg) | Number of Isolates (n = x (%)) | |
---|---|---|---|---|
Susceptible (S) | Resistant (R) | |||
Beta-Lactams | Amoxicillin-Clavulanate (AMC) | 30 | 47 (84) | 9 (16) |
Ampicillin (AMP) | 10 | 13 (23) | 43 (77) | |
Cefoxitin (FOX) | 30 | 38 (68) | 18 (32) | |
Meropenem (MEM) | 10 | 41 (73) | 15 (27) | |
Tetracyclines | Doxycycline (DO) | 30 | 43 (77) | 13 (23) |
Fluoroquinolones | Enrofloxacin (ENR) | 5 | 44 (79) | 12 (21) |
Aminoglycosides | Gentamicin (CN) | 10 | 51 (91) | 5 (9) |
Oxazolidinones | Linezolid (LZD) | 30 | 56 (100) | 0 (0) |
Folate Antagonists | Trimethoprim/Sulfamethoxazole (SXT) | 25 | 55 (98) | 1 (2) |
Glycopeptides | Vancomycin (VA) | 30 | 56 (100) | 0 (0) |
Species | Total N° of Isolates | N° of MDR Isolates | MAR Index Range | Mean MAR Index | N° of Methicillin Resistant Isolates |
---|---|---|---|---|---|
M. sciuri | 21 | 5 | 0–0.5 | 0.17 | 4 |
S. xylosus | 17 | 6 | 0.1–0.8 | 0.27 | 7 |
S. equorum | 7 | 0 | 0–0.1 | 0.04 | 1 |
M. vitulinus | 4 | 2 | 0–0.4 | 0.25 | 2 |
Staphylococcus spp. | 3 | 1 | 0.1–0.3 | 0.17 | 1 |
M. lentus | 3 | 2 | 0.1–0.6 | 0.33 | 2 |
S. aureus | 1 | 1 | 0.7 | 0.7 | 1 |
Total | 56 | 17 | 0–0.8 | 0.2 | 18 |
Antimicrobial | Variable | OR | 95% CI | p Value |
---|---|---|---|---|
Amoxicillin-clavulanate | Vaccination (without vaccines vs. with at least one dose) | 0.061 | 0.006–0.569 | 0.0142 |
Cefoxitin | Sampling season (dry vs. wet) | 5.772 | 1.254–26.581 | 0.0244 |
Presence of disease (sick vs. healthy) | 13.970 | 2.644–73.805 | 0.0019 | |
Age (months) | 1.095 | 1.018–1.177 | 0.0144 | |
Enrofloxacin | Sex (female vs. male) | 5.014 | 1.148–21.900 | 0.0321 |
Meropenem | Sex (female vs. male) | 9.350 | 1.541–56.733 | 0.0151 |
Presence of disease (sick vs. healthy) | 19.129 | 2.539–144.096 | 0.0042 | |
Vaccination (without vaccines vs. with at least one dose) | 0.142 | 0.023–0.866 | 0.0343 |
Variable | OR | 95% CI | p Value | ||
---|---|---|---|---|---|
Hemolysins | Sex | 4.200 | 1.106–15.949 | 0.0350 | |
Lecithinase | Season (dry vs. wet) | 0.113 | 0.016–0.777 | 0.0266 | |
Bacterial species | S. equorum vs. M. sciuri | 0.014 | 0.001–0.205 | 0.0017 | |
M. sciuri vs. M. vitulinus | 37.905 | 1.819–789.923 | 0.0190 | ||
M. sciuri vs. S. xylosus | 32.381 | 4.432–236.598 | 0.0006 | ||
Gelatinase | S. equorum vs. M. sciuri | 0.009 | <0.001–0.183 | 0.0022 | |
M. sciuri vs. M. vitulinus | 96.785 | 3.791–>999.999 | 0.0057 | ||
M. sciuri vs. S. xylosus | 80.415 | 7.163–902.790 | 0.0004 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
da Costa, R.C.; Cunha, F.G.; Abreu, R.; Pereira, G.; Geraldes, C.; Cunha, E.; Chambel, L.; Oliveira, M. Insights into Molecular Profiles, Resistance Patterns, and Virulence Traits of Staphylococci from Companion Dogs in Angola. Animals 2025, 15, 1043. https://doi.org/10.3390/ani15071043
da Costa RC, Cunha FG, Abreu R, Pereira G, Geraldes C, Cunha E, Chambel L, Oliveira M. Insights into Molecular Profiles, Resistance Patterns, and Virulence Traits of Staphylococci from Companion Dogs in Angola. Animals. 2025; 15(7):1043. https://doi.org/10.3390/ani15071043
Chicago/Turabian Styleda Costa, Romay Coragem, Francisca Guerra Cunha, Raquel Abreu, Gonçalo Pereira, Catarina Geraldes, Eva Cunha, Lélia Chambel, and Manuela Oliveira. 2025. "Insights into Molecular Profiles, Resistance Patterns, and Virulence Traits of Staphylococci from Companion Dogs in Angola" Animals 15, no. 7: 1043. https://doi.org/10.3390/ani15071043
APA Styleda Costa, R. C., Cunha, F. G., Abreu, R., Pereira, G., Geraldes, C., Cunha, E., Chambel, L., & Oliveira, M. (2025). Insights into Molecular Profiles, Resistance Patterns, and Virulence Traits of Staphylococci from Companion Dogs in Angola. Animals, 15(7), 1043. https://doi.org/10.3390/ani15071043