Transcriptomic Analysis Reveals the Mechanisms of Cadmium Transport and Detoxification in Portuguese Oysters (Crassostrea angulata)
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Laboratory Cd Exposure
2.2. Cd Content Determination and Sample Selection
2.3. RNA Extraction and Transcriptome Sequencing
2.4. Screening of Cd Transport and Detoxification-Related Genes and GWAS Joint Analysis
2.5. Alternative Splicing Analysis
2.6. Real-Time Quantitative PCR Analysis
3. Results
3.1. Cd Content Determination
3.2. Sequencing Data Quality
3.3. Number of Differentially Expressed Genes
3.4. KEGG Enrichment Analysis of Differentially Expressed Genes
3.5. Screening of Cd Accumulation-Related Genes and GWAS Joint Analysis
3.6. qPCR Validation
3.7. Alternative Splicing
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alharbi, T.; Alfaifi, H.; El-Sorogy, A. Metal pollution in Al-Khobar seawater, Arabian Gulf, Saudi Arabia. Mar. Pollut. Bull. 2017, 119, 407–415. [Google Scholar] [CrossRef]
- Kim, Y.-R.; Kang, D.-W.; Lee, S.; Choi, K.-Y.; Kim, H.-E.; Jung, J.-M.; Chung, C.-S.; Jang, Y.-S.; Kim, C.-J. Distribution and assessment of heavy metal concentrations in the East Sea-Byeong ocean dumping site, Korea. Mar. Pollut. Bull. 2021, 172, 112815. [Google Scholar] [CrossRef]
- Zheng, H.; Ren, Q.; Zheng, K.; Qin, Z.; Wang, Y.; Wang, Y. Spatial distribution and risk assessment of metal(loid)s in marine sediments in the Arctic Ocean and Bering Sea. Mar. Pollut. Bull. 2022, 179, 113729. [Google Scholar] [CrossRef] [PubMed]
- Shi, Z.; Wan, Y.; Peng, M.; Zhang, J.; Gao, Z.; Wang, X.; Zhu, F. Vitamin E: An assistant for black soldier fly to reduce cadmium accumulation and toxicity. Environ. Int. 2024, 185, 108547. [Google Scholar] [CrossRef]
- Ma, X.; Hou, M.; Liu, C.; Li, J.; Ba, Q.; Wang, H. Cadmium accelerates bacterial oleic acid production to promote fat accumulation in Caenorhabditis elegans. J. Hazard. Mater. 2022, 421, 126723. [Google Scholar] [CrossRef] [PubMed]
- Haider, F.U.; Liqun, C.; Coulter, J.A.; Cheema, S.A.; Wu, J.; Zhang, R.; Wenjun, M.; Farooq, M. Cadmium toxicity in plants: Impacts and remediation strategies. Ecotoxicol. Environ. Saf. 2021, 211, 111887. [Google Scholar] [CrossRef] [PubMed]
- Thakral, V.; Sudhakaran, S.; Jadhav, H.; Mahakalkar, B.; Sehra, A.; Dhar, H.; Kumar, S.; Sonah, H.; Sharma, T.R.; Deshmukh, R. Unveiling silicon-mediated cadmium tolerance mechanisms in mungbean (Vigna radiata (L.) wilczek): Integrative insights from gene expression, antioxidant responses, and metabolomics. J. Hazard. Mater. 2024, 474, 134671. [Google Scholar] [CrossRef]
- Souza-Arroyo, V.; Fabián, J.J.; Bucio-Ortiz, L.; Miranda-Labra, R.U.; Gomez-Quiroz, L.E.; Gutiérrez-Ruiz, M.C. The mechanism of the cadmium-induced toxicity and cellular response in the liver. Toxicology 2022, 480, 153339. [Google Scholar] [CrossRef]
- Qadir, S.; Jamshieed, S.; Rasool, S.; Ashraf, M.; Akram, N.A.; Ahmad, P. Modulation of plant growth and metabolism in cadmium-enriched environments. Rev. Environ. Contam. Toxicol. 2014, 229, 51–88. [Google Scholar] [CrossRef]
- Ma, Y.; Su, Q.; Yue, C.; Zou, H.; Zhu, J.; Zhao, H.; Song, R.; Liu, Z. The effect of oxidative stress-induced autophagy by cadmium exposure in kidney, liver, and bone damage, and neurotoxicity. Int. J. Mol. Sci. 2022, 23, 13491. [Google Scholar] [CrossRef]
- Jarup, L. Cadmium overload and toxicity. Nephrol. Dial. Transplant. 2002, 17, 35–39. [Google Scholar] [CrossRef] [PubMed]
- De Angelis, C.; Galdiero, M.; Pivonello, C.; Salzano, C.; Gianfrilli, D.; Piscitelli, P.; Lenzi, A.; Colao, A.; Pivonello, R. The environment and male reproduction: The effect of cadmium exposure on reproductive function and its implication in fertility. Reprod. Toxicol. 2017, 73, 105–127. [Google Scholar] [CrossRef] [PubMed]
- Peana, M.; Pelucelli, A.; Chasapis, C.T.; Perlepes, S.P.; Bekiari, V.; Medici, S.; Zoroddu, M.A. Biological effects of human exposure to environmental cadmium. Biomolecules 2022, 13, 36. [Google Scholar] [CrossRef]
- Filippini, T.; Torres, D.; Lopes, C.; Carvalho, C.; Moreira, P.; Naska, A.; Kasdagli, M.-I.; Malavolti, M.; Orsini, N.; Vinceti, M. Cadmium exposure and risk of breast cancer: A dose-response meta-analysis of cohort studies. Environ. Int. 2020, 142, 105879. [Google Scholar] [CrossRef]
- Il’Yasova, D.; Schwartz, G.G. Cadmium and renal cancer. Toxicol. Appl. Pharmacol. 2005, 207, 179–186. [Google Scholar] [CrossRef]
- Poteat, M.D.; Garland, T.; Fisher, N.S.; Wang, W.-X.; Buchwalter, D.B. Evolutionary patterns in trace metal (Cd and Zn) efflux capacity in aquatic organisms. Environ. Sci. Technol. 2013, 47, 7989–7995. [Google Scholar] [CrossRef]
- Meng, J.; Wang, W.; Li, L.; Yin, Q.; Zhang, G. Cadmium effects on DNA and protein metabolism in oyster (Crassostrea gigas) revealed by proteomic analyses. Sci. Rep. 2017, 7, 11716. [Google Scholar] [CrossRef]
- Wu, Z.; Wang, Y.; Li, X.; Liu, T.; Sun, Y.; Li, H.; Lu, J.; Sun, F. Dynamics studiesg on accumulation and elimination of cadmium by two economic shelfishes. Period. Ocean. Univ. China (Nat. Sci. Ed.) 2013, 43, 56–61. [Google Scholar]
- Frazier, J.M.; George, S.G. Cadmium kinetics in oysters—A comparative study of Crassostrea gigas and Ostrea edulis. Mar. Biol. 1983, 76, 55–61. [Google Scholar] [CrossRef]
- Lim, P.E.; Lee, C.K.; Din, Z. The kinetics of bioaccumulation of zinc, copper, lead and cadmium by oysters (Crassostrea iredalei and C. belcheri) under tropical field conditions. Sci. Total Environ. 1998, 216, 147–157. [Google Scholar] [CrossRef]
- Xie, J. Combined Toxic Effects of Heavy Metals (Cd2+, Pb2+) and Organic Pollutant BaP, BDE-47) on the Oyster Crassostrea gigas. Ph.D. Thesis, University of Chinese Academy of Sciences, Beijing, China, 2017. [Google Scholar]
- Pan, Z.; Gong, T.; Liang, P. Heavy metal exposure and cardiovascular disease. Circ. Res. 2024, 134, 1160–1178. [Google Scholar] [CrossRef] [PubMed]
- Hong, H.; Xu, Y.; Xu, J.; Zhang, J.; Xi, Y.; Pi, H.; Yang, L.; Yu, Z.; Wu, Q.; Meng, Z.; et al. Cadmium exposure impairs pancreatic β-cell function and exaggerates diabetes by disrupting lipid metabolism. Environ. Int. 2021, 149, 106406. [Google Scholar] [CrossRef] [PubMed]
- Copes, R.; Clark, N.A.; Rideout, K.; Palaty, J.; Teschke, K. Uptake of cadmium from Pacific oysters (Crassostrea gigas) in British Columbia oyster growers. Environ. Res. 2008, 107, 160–169. [Google Scholar] [CrossRef]
- Amiard, J.-C.; Amiard-Triquet, C.; Charbonnier, L.; Mesnil, A.; Rainbow, P.S.; Wang, W.-X. Bioaccessibility of essential and non-essential metals in commercial shellfish from Western Europe and Asia. Food Chem. Toxicol. 2008, 46, 2010–2022. [Google Scholar] [CrossRef] [PubMed]
- He, M.; Wang, W. Bioaccessibility of 12 trace elements in marine molluscs. Food Chem. Toxicol. 2013, 55, 627–636. [Google Scholar] [CrossRef]
- Camara, M.D.; Griffith, S.M.; Evans, S. Can Selective Breeding Reduce the Heavy Metals Content of Pacific Oysters (Crassostrea Gigas), and Are There Trade-Offs with Growth or Survival? J. Shellfish Res. 2005, 24, 979–986. [Google Scholar]
- Zhang, C.; Yang, Q.; Zhang, X.; Yu, T.; Wu, Y.; Fang, Y.; Xue, D. Genome-wide identification of the HMA gene family and expression analysis under Cd stress in barley. Plants 2021, 10, 1849. [Google Scholar] [CrossRef]
- Hu, W.; Zhu, Q.-L.; Zheng, J.-L.; Wen, Z.-Y. Cadmium induced oxidative stress, endoplasmic reticulum (ER) stress and apoptosis with compensative responses towards the up-regulation of ribosome, protein processing in the ER, and protein export pathways in the liver of zebrafish. Aquat. Toxicol. 2022, 242, 106023. [Google Scholar] [CrossRef]
- Dong, L.; Sun, Y.; Chu, M.; Xie, Y.; Wang, P.; Li, B.; Li, Z.; Xu, X.; Feng, Y.; Sun, G.; et al. Exploration of Response Mechanisms in the Gills of Pacific Oyster (Crassostrea gigas) to Cadmium Exposure through Integrative Metabolomic and Transcriptomic Analyses. Animals 2024, 14, 2318. [Google Scholar] [CrossRef]
- Zhao, D.; Hu, G.; Chen, R.; Xiao, G.; Teng, S. Molecular cloning, characterization, and tissue distribution of c-myc from blood clam Tegillarca granosa and its role in cadmium-induced stress response. Gene 2022, 834, 146611. [Google Scholar] [CrossRef]
- Wang, Z.Y. Study on Glycogen Metabolism Related Genes and Their Functions in Crassostrea ariakensis Based on Multiomics Data Mining. Master’s Thesis, Shanghai Ocean University, Shanghai, China, 2023. [Google Scholar]
- Chen, P.; Yang, J.; Zhao, Y.; Qu, H.T. Analysis of fatty liver phenotype in juvenile largemouth bronze gudgeon (Goreius guichenoti) based on transcriptome sequencing. China Feed. J. 2024, 121–128. [Google Scholar] [CrossRef]
- Cross, I.; Merlo, M.A.; Rodríguez, M.E.; Portela-Bens, S.; Rebordinos, L. Adaptation to abiotic stress in the oyster Crassostrea angulata relays on genetic polymorphisms. Fish Shellfish Immunol. 2014, 41, 618–624. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.M. Accumulation and Elimination of Cadmium and Lead in the Oyster Crassostrea rivularis. Master’s Thesis, Guangdong Ocean University, Zhanjiang, China, 2013. [Google Scholar]
- Maanan, M. Heavy metal concentrations in marine molluscs from the Moroccan coastal region. Environ. Pollut. 2008, 153, 176–183. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Gong, S.; Li, H.; Ke, C.; Shi, B. Genome-wide association study and candidate gene analysis of cadmium accumulation in Fujian oysters (Crasosstrea angulata). Aquaculture 2023, 572, 739546. [Google Scholar] [CrossRef]
- Shi, B.; Huang, Z.; Xiang, X.; Huang, M.; Wang, W.-X.; Ke, C. Transcriptome analysis of the key role of GAT2 gene in the hyper-accumulation of copper in the oyster Crassostrea angulata. Sci. Rep. 2015, 5, 17751. [Google Scholar] [CrossRef]
- Zhang, C.; Jin, Y.; Yu, Y.; Xiang, J.; Li, F. Cadmium-induced oxidative stress, metabolic dysfunction and metal bioaccumulation in adult palaemonid shrimp Palaemon macrodactylus (Rathbun, 1902). Ecotoxicol. Environ. Saf. 2021, 208, 111591. [Google Scholar] [CrossRef]
- Liu, H.; Tian, X.; Jiang, L.; Han, D.; Hu, S.; Cui, Y.; Jiang, F.; Liu, Y.; Xu, Y.; Li, H. Sources, bioaccumulation, and toxicity mechanisms of cadmium in Chlamys farreri. J. Hazard. Mater. 2023, 453, 131395. [Google Scholar] [CrossRef]
- Cassar-Malek, I.; Pomiès, L.; de la Foye, A.; Tournayre, J.; Boby, C.; Hocquette, J.-F. Transcriptome profiling reveals stress-responsive gene networks in cattle muscles. PeerJ 2022, 10, e13150. [Google Scholar] [CrossRef]
- Munksgaard, N.C.; Burchert, S.; Kaestli, M.; Nowland, S.J.; O’Connor, W.; Gibb, K.S. Cadmium uptake and zinc-cadmium antagonism in Australian tropical rock oysters: Potential solutions for oyster aquaculture enterprises. Mar. Pollut. Bull. 2017, 123, 47–56. [Google Scholar] [CrossRef]
- Taspinar, M.S.; Agar, G.; Alpsoy, L.; Yildirim, N.; Bozari, S.; Sevsay, S. The protective role of zinc and calcium in Vicia faba seedlings subjected to cadmium stress. Toxicol. Ind. Health 2011, 27, 73–80. [Google Scholar] [CrossRef]
- Chen, Q.; Lu, X.; Guo, X.; Pan, Y.; Yu, B.; Tang, Z.; Guo, Q. Differential responses to Cd stress induced by exogenous application of Cu, Zn or Ca in the medicinal plant Catharanthus roseus. Ecotoxicol. Environ. Saf. 2018, 157, 266–275. [Google Scholar] [CrossRef] [PubMed]
- Li, M.Z.; Hu, D.W.; Liu, X.Q.; Zhang, R.; Liu, H.; Tang, Z.; Zhao, F.J.; Huang, X.Y. The OsZIP2 transporter is involved in root-to-shoot translocation and intervascular transfer of cadmium in rice. Plant Cell Environ. 2024, 47, 3865–3881. [Google Scholar] [CrossRef]
- Li, H.; Liang, Z.; Wu, L.; Ke, Y.; Que, H.; Shi, B. The role of ZIP1 and ZIP3 in cadmium accumulation in Fujian oyster (Crassostrea angulata). Front. Mar. Sci. 2024, 11, 1412127. [Google Scholar] [CrossRef]
- Fu, Y.; Zhatova, H.; Li, Y.; Liu, Q.; Trotsenko, V.; Li, C. Physiological and Transcriptomic Comparison of Two Sunflower (Helianthus annuus L.) Cultivars with High/Low Cadmium Accumulation. Front Plant Sci. 2022, 13, 854386. [Google Scholar] [CrossRef] [PubMed]
- Han, T.-L.; Tang, T.-W.; Zhang, P.-H.; Liu, M.; Zhao, J.; Peng, J.-S.; Meng, S. Cloning and Functional Characterization of SpZIP2. Genes 2022, 13, 2395. [Google Scholar] [CrossRef]
- Matier, B.J. Cloning and Expression of Organic Cation Transporters (ORCT and ORCT2) From the Fruit Fly Drosophila Melanogaster Meigen. Ph.D. Thesis, University of British Columbia, Vancouver, BC, Canada, 2011. [Google Scholar] [CrossRef]
- Samodelov, S.L.; Kullak-Ublick, G.A.; Gai, Z.; Visentin, M. Organic cation transporters in human physiology, pharmacology, and toxicology. Int. J. Mol. Sci. 2020, 21, 7890. [Google Scholar] [CrossRef]
- Sala-Rabanal, M.; Li, D.C.; Dake, G.R.; Kurata, H.T.; Inyushin, M.; Skatchkov, S.N.; Nichols, C.G. Polyamine transport by the polyspecific organic cation transporters OCT1, OCT2, and OCT3. Mol. Pharm. 2013, 10, 1450–1458. [Google Scholar] [CrossRef]
- Yang, H.; Tang, J.; Guo, D.; Zhao, Q.; Wen, J.; Zhang, Y.; Obianom, O.N.; Zhou, S.; Zhang, W.; Shu, Y. Cadmium exposure enhances organic cation transporter 2 trafficking to the kidney membrane and exacerbates cisplatin nephrotoxicity. Kidney Int. 2019, 97, 765–777. [Google Scholar] [CrossRef]
- Thévenod, F.; Ciarimboli, G.; Leistner, M.; Wolff, N.A.; Lee, W.-K.; Schatz, I.; Keller, T.; Al-Monajjed, R.; Gorboulev, V.; Koepsell, H. Substrate- and Cell Contact-Dependent Inhibitor Affinity of Human Organic Cation Transporter 2: Studies with Two Classical Organic Cation Substrates and the Novel Substrate Cd2+. Mol. Pharm. 2013, 10, 3045–3056. [Google Scholar] [CrossRef]
- Kampfenkel, K.; Kushnir, S.; Babiychuk, E.; Inzé, D.; Van Montagu, M. Molecular characterization of a putative Arabidopsis thaliana copper transporter and its yeast homologue. J. Biol. Chem. 1995, 270, 28479–28486. [Google Scholar] [CrossRef]
- Yuan, M.; Li, X.; Xiao, J.; Wang, S. Molecular and functional analyses of COPT/Ctr-type copper transporter-like gene family in rice. BioMed Cent. Plant Biol. 2011, 11, 69. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.D.; Meng, J.G.; Zhao, K.X.; Chen, X.; Yang, Z.M. Annotation and characterization of Cd-responsive metal transporter genes in rapeseed (Brassica napus). BioMetals 2017, 31, 107–121. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Yang, S.; Ma, J.; Huang, Y.; Wang, Y.; Zeng, J.; Li, J.; Li, S.; Long, D.; Xiao, X.; et al. Manganese and copper additions differently reduced cadmium uptake and accumulation in dwarf Polish wheat (Triticum polonicum L.). J. Hazard. Mater. 2023, 448, 130998. [Google Scholar] [CrossRef]
- Bauer, B.E.; Wolfger, H.; Kuchler, K. Inventory and function of yeast ABC proteins: About sex, stress, pleiotropic drug and heavy metal resistance. Biochim. Biophys. Acta 1999, 1461, 217–236. [Google Scholar] [CrossRef]
- He, G.; Tian, W.; Qin, L.; Meng, L.; Wu, D.; Huang, Y.; Li, D.; Zhao, D.; He, T. Identification of novel heavy metal detoxification proteins in Solanum tuberosum: Insights to improve food security protection from metal ion stress. Sci. Total Environ. 2021, 779, 146197. [Google Scholar] [CrossRef]
- Shi, B.; Xiang, X.; Ke, Y.; Zhou, L.; Ke, C. ABCB1 gene expression pattern and function of copper detoxification in Fujian oyster, Crassostrea angulata. Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 2015, 190, 8–15. [Google Scholar] [CrossRef]
- Liu, W.; Feng, X.; Cao, F.; Wu, D.; Zhang, G.; Vincze, E.; Wang, Y.; Chen, Z.-H.; Wu, F. An ATP binding cassette transporter HVABCB25 confers aluminum detoxification in wild barley. J. Hazard. Mater. 2020, 401, 123371. [Google Scholar]
- Sousa, C.A.; Hanselaer, S.; Soares, E.V. ABCC subfamily vacuolar transporters are involved in Pb (lead) detoxification in Saccharomyces cerevisiae. Appl. Biochem. Biotechnol. 2014, 175, 65–74. [Google Scholar] [CrossRef]
- Tang, B.; Williams, P.L.; Xue, K.S.; Wang, J.-S.; Tang, L. Detoxification mechanisms of nickel sulfate in nematode Caenorhabditis elegans. Chemosphere 2020, 260, 127627. [Google Scholar] [CrossRef]
- Perea, A.; Manzano, J.I.; Castanys, S.; Gamarro, F. The LABCG2 transporter from the protozoan parasite Leishmania is involved in antimony resistance. Antimicrob. Agents Chemother. 2016, 60, 3489–3496. [Google Scholar] [CrossRef]
- Fu, S.; Lu, Y.; Zhang, X.; Yang, G.; Chao, D.; Wang, Z.; Shi, M.; Chen, J.; Chao, D.-Y.; Li, R.; et al. The ABC transporter ABCG36 is required for cadmium tolerance in rice. J. Exp. Botany 2019, 70, 5909–5918. [Google Scholar] [CrossRef]
- Yang, G.; Fu, S.; Huang, J.; Li, L.; Long, Y.; Wei, Q.; Wang, Z.; Chen, Z.; Xia, J. The tonoplast-localized transporter OsABCC9 is involved in cadmium tolerance and accumulation in rice. Plant Sci. 2021, 307, 110894. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Li, M.; Xiao, G.; Teng, S. Expression of ABCA3 transporter gene in Tegillarca granosa and its association with cadmium accumulation. Gene 2022, 845, 146865. [Google Scholar] [CrossRef]
- Wang, H.; Han, Q.; Chen, Y.; Hu, G.; Xing, H. Novel insights into Cytochrome p450 enzyme and Solute carrier families in cadmium-induced liver injury of pigs. Ecotoxicol. Environ. Saf. 2021, 211, 111910. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; He, Y.; Yan, X.; Qu, C.; Li, J.; Zhao, S.; Wang, X.; Guo, B.; Liu, H.; Qi, P. Two novel CYP3A isoforms in marine mussel Mytilus coruscus: Identification and response to cadmium and benzo[a]pyrene. Aquat. Toxicol. 2019, 214, 105239. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Gan, J.; Ke, C.; Liu, X.; Zhao, J.; You, L.; Yu, J.; Wu, H. Identification and expression profile of a new Cytochrome p450 isoform (CYP414A1) in the hepatopancreas of Venerupis (Ruditapes) philippinarum exposed to benzo[a]pyrene, cadmium and copper. Environ. Toxicol. Pharmacol. 2011, 33, 85–91. [Google Scholar] [CrossRef]
- Rahmatizadeh, R.; Jamei, R.; Arvin, M.J. Silicon nanoparticles (SiNPs) mediate GABA, SOD and ASA-GSH cycle to improve cd stress tolerance in Solanum lycopersicum. Sci. Rep. 2024, 14, 21948. [Google Scholar] [CrossRef]
- Nemmiche, S. Oxidative Signaling Response to Cadmium Exposure. Toxicol Sci. 2017, 156, 4–10. [Google Scholar] [CrossRef]
- Gao, J.; Zhang, C.; Qin, X.; Hao, J.; Zhang, J.; Su, W. Cadmium accumulation characteristics and physiological response of scallop Mizuhopecten yessoensis. J. Guangdong Ocean. Univ. 2019, 39, 31–37. [Google Scholar]
- Wang, L.; Pan, L.; Liu, N.; Liu, D.; Xu, C.; Miao, J. Biomarkers and bioaccumulation of clam Ruditapes philippinarum in response to combined cadmium and benzo[α]pyrene exposure. Food Chem. Toxicol. 2011, 49, 3407–3417. [Google Scholar] [CrossRef]
- De Boissel, P.G.J.; Fournier, M.; Rodriguez-Lecompte, J.C.; McKenna, P.; Kibenge, F.; Siah, A. Functional and molecular responses of the blue mussel Mytilus edulis’ hemocytes exposed to cadmium—An in vitro model and transcriptomic approach. Fish Shellfish. Immunol. 2017, 67, 575–585. [Google Scholar] [CrossRef] [PubMed]
Time | Mantle (M) | Visceral Mass (V) |
---|---|---|
Day 0 | L0M_vs_H0M | L0V_vs_H0V |
Day 15 | L15M_vs_H15M | L15V_vs_H15V |
Day 0 to 15 | L0M_vs_L15M | L0V_vs_L15V |
H0M_vs_H15M | H0V_vs_H15V | |
Low-Cd-accumulating comparison groups | L0M_vs_H0M L0M_vs_L15M | L0V_vs_H0V L0V_vs_L15V |
High-Cd-accumulating comparison groups | H0M_vs_H15M L15M_vs_H15M | H0V_vs_H15V L15V_vs_H15V |
Primer | Sequence (5′ to 3′) |
---|---|
ef1α-F | ACCACCCTGGTGAGATCAAG |
ef1α-R | ACGACGATCGCATTTCTCTT |
orct2-F | CCACAAACAGCTCCTATTTCGT |
orct2-R | TCAGTGACATATGAGCGGTC |
zip1-F | ATGCGCGTCATCTCCAACTT |
zip1-R | AAAGAGGAGGAGGACGCTTG |
pxdnl-F | TGAAGGTTCGAGGGTCAACG |
pxdnl-R | TCGCGGAACTCCAGCATATC |
abca3-F | AATGAGGTGGAGAGGCCTTG |
abca3-R | CACTGGTTGGCCATCAAATCC |
edil3-F | TGCTTGCTTTCCATGTGCATC |
edil3-R | AACTGGACCTAGTCAGCGGT |
fibcd1-F | CCGCGTAGGACTGATGGTTT |
fibcd1-R | TGGAGCCCAGTTTCACACAA |
cstb-F | CCAATAAGGTGTGGTGGGCT |
cstb-R | TGTTCCAGCCACAATCTGAGT |
rbl-F | CAATGTATGGGCGGGAGGAT |
rbl-R | TCCAAATACAGAGTTCCGTGCT |
brorin-F | CAGGTTGCCAGCAGTCATTA |
brorin-R | CAGTGCGGCTTGTTAACTCA |
nbeal2-F | CGATGCCTTGCGAGTTTGAAT |
nbeal2-R | AGAATCCATTGCGGCGAGAA |
cyp4f22-F | GAACGACCTTGGGAGATTGGA |
cyp4f22-R | CACAGCTTCCGGCTGGTAT |
sod3-F | GAAGCGACATACAGAGCGGA |
sod3-R | AGTCTGACCCGGAATCTCCT |
Group | Value | M (μg/g) | V (μg/g) |
---|---|---|---|
Day 0 | Max | 7.97 | 21.87 |
Min | 2.92 | 5.71 | |
Mean ± SD. | 4.68 ± 1.04 | 12.97 ± 3.5 | |
Day 15 | Max | 58.84 | 43.92 |
Min | 8.65 | 13 | |
Mean ± SD. | 21.02 ± 11.5 | 23.43 ± 7.03 | |
BAF | 8.17 | 5.23 |
Transcriptome Sample Grouping | Mean ± SD. | Transcriptome Comparison Group | Fold Change |
---|---|---|---|
L0V | 7.13 ± 1.58 | L0V_vs_H0V | 2.98 |
H0V | 21.22 ± 0.83 | L15V_vs_H15V | 2.54 |
L15V | 13.49 ± 0.77 | L0V_vs_L15V | 1.89 |
H15V | 34.29 ± 1.57 | H0V_vs_H15V | 1.62 |
L0M | 3.48 ± 0.03 | L0M_vs_H0M | 2.10 |
H0M | 7.32 ± 0.86 | L15M_vs_H15M | 5.05 |
L15M | 9.54 ± 0.2 | L0M_vs_L15M | 2.74 |
H15M | 48.16 ± 10 | H0M_vs_H15M | 6.48 |
Gene | Deception | Group | |
---|---|---|---|
Cation (cadmium) transport | copt5.1 | copper transporter 5.1-like isoform ×1 | L0M_vs_H0M (down) L0M_vs_L15M (down) |
abca3 | atp-binding cassette sub-family a member 3 | L0M_vs_H0M (up) | |
harbi1 | putative nuclease harbi1 [Crassostrea virginica] | L15M_vs_H15M (up) L0M_vs_L15M (down) L0V_vs_L15V (down) GMAS | |
zip1 | zinc transporter zip1 | L15M_vs_H15M (down) GMAS | |
orct2 | organic cation transporter-like protein | L0V_vs_H0V (down) L0V_vs_L15V (down) GMAS | |
trpm3 | transient receptor potential cation channel subfamily m member 3 | L0V_vs_H0V (up) | |
cac | voltage-dependent r-type calcium channel subunit alpha-1e | H0V_vs_H15V (down) | |
lac24 | laccase-24 | L0M_vs_H0M (down) L0M_vs_L15M (down) GMAS | |
chrna10 | neuronal acetylcholine receptor subunit alpha-10 | H0V_vs_H15V (up) | |
Detoxify | hspa12b | heat shock 70 kda protein 12a isoform x1 | L0M_vs_H0M (down) |
hspa12a | heat shock 70 kda protein 12a-like | L0M_vs_H0M (down) L15M_vs_H15M (up) L0M_vs_L15M (up) H0V_vs_H15V (down) | |
sod3 | extracellular superoxide dismutase [cu-zn] | L15M_vs_H15M (up) L15V_vs_H15V (up) | |
pxdnl | peroxidase-like protein | L0M_vs_L15M (up) | |
cyp4f22 | cytochrome p450 4f22 | L0V_vs_H0V (up) L0V_vs_L15V (up) | |
cyp20a1 | cytochrome p450 20a1 | L15V_vs_H15V (down) | |
cyp10 | cytochrome p450 10 | H0V_vs_H15V (up) | |
chac1 | glutathione-specific gamma-glutamylcyclotransferase 1 | L0M_vs_L15M (up) GMAS | |
Others | spr | sex peptide receptor | L0M_vs_H0M (up) H0M_vs_H15M (down) GMAS |
adar | double-stranded RNA-specific adenosine deaminase | L0M_vs_H0M (down) GMAS | |
ankrd50 | ankyrin repeat domain-containing protein 50 | L0M_vs_H0M (down) GMAS | |
ccno | cyclin-o | L0V_vs_L15V (up) GMAS | |
chrna6 | neuronal acetylcholine receptor subunit alpha-6 | H0V_vs_H15V (up) GMAS | |
edil3 | egf-like repeat and discoidin i-like domain-containing protein 3 | L0V_vs_H0V (down) L15V_vs_H15V (down) GMAS | |
hmcn1 | hemicentin-1 | L0V_vs_L15V (down) GMAS | |
nachralpha2 | acetylcholine receptor subunit alpha-like | L0V_vs_L15V (up) GMAS |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qin, K.; Wu, L.; Fu, S.; Que, H.; Shi, B. Transcriptomic Analysis Reveals the Mechanisms of Cadmium Transport and Detoxification in Portuguese Oysters (Crassostrea angulata). Animals 2025, 15, 1041. https://doi.org/10.3390/ani15071041
Qin K, Wu L, Fu S, Que H, Shi B. Transcriptomic Analysis Reveals the Mechanisms of Cadmium Transport and Detoxification in Portuguese Oysters (Crassostrea angulata). Animals. 2025; 15(7):1041. https://doi.org/10.3390/ani15071041
Chicago/Turabian StyleQin, Kairui, Longping Wu, Shixing Fu, Huayong Que, and Bo Shi. 2025. "Transcriptomic Analysis Reveals the Mechanisms of Cadmium Transport and Detoxification in Portuguese Oysters (Crassostrea angulata)" Animals 15, no. 7: 1041. https://doi.org/10.3390/ani15071041
APA StyleQin, K., Wu, L., Fu, S., Que, H., & Shi, B. (2025). Transcriptomic Analysis Reveals the Mechanisms of Cadmium Transport and Detoxification in Portuguese Oysters (Crassostrea angulata). Animals, 15(7), 1041. https://doi.org/10.3390/ani15071041