Reduced Dietary Protein and Essential Amino Acids Impair Growth Performance and Increase Lysine Sensitivity in Broiler Chickens
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Housing
2.2. Experimental Diets
2.3. Experimental Design
2.4. Statistical Analysis
3. Results
3.1. Feed Intake and Growth Performance
3.2. Taste Preferences for Amino Acids
3.3. Sensory-Motivated Intake for Amino Acids
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kidd, M.T.; Choct, M. Assessment of nutritional strategies to reduce dietary crude protein in commercial broilers. In Proceedings of the 28th Annual Australian Poultry Science Symposium, Sydney, Australia, 13–15 February 2017; Volume 28, pp. 175–178. [Google Scholar]
- Kriseldi, R.; Tillman, P.B.; Jiang, Z.; Dozier, W.A., 3rd. Effects of feeding reduced crude protein diets on growth performance, nitrogen excretion, and plasma uric acid concentration of broiler chicks during the starter period. Poult. Sci. 2018, 97, 1614–1626. [Google Scholar] [CrossRef] [PubMed]
- Van Harn, J.; Dijkslag, M.A.; Van Krimpen, M. Effect of low protein diets supplemented with free amino acids on growth performance, slaughter yield, litter quality, and footpad lesions of male broilers. Poult. Sci. 2019, 98, 4868–4877. [Google Scholar] [CrossRef] [PubMed]
- Chrystal, P.V.; Greenhalgh, S.; Selle, P.H.; Liu, S.Y. Facilitating the acceptance of tangibly reduced-crude protein diets for chicken-meat production. Anim. Nutr. 2020, 6, 247–257. [Google Scholar] [CrossRef]
- Drew, M.D.; Syed, N.A.; Goldade, B.G.; Laarveld, B.; Van Kessel, A.G. Effects of dietary protein source and level on intestinal populations of Clostridium perfringens in broiler chickens. Poult. Sci. 2004, 83, 414–420. [Google Scholar] [CrossRef] [PubMed]
- Wilkie, D.C.; Van Kessel, A.G.; White, L.J.; Laarveld, B.; Drew, M.D. Dietary amino acids affect intestinal Clostridium perfringens populations in broiler chickens. Can. J. Anim. Sci. 2005, 85, 185–193. [Google Scholar] [CrossRef]
- Garland, P.W. The challenges confronting chicken meat producers in Great Britain in relation to low protein diets. In Proceedings of the Proceedings, Australian Poultry Science Symposium, Sydney, Australia, 4–7 February 2018; Volume 29, pp. 1–7. [Google Scholar]
- Lemme, A.; Hiller, P.; Klahsen, M.; Taube, V.; Stegemann, J.; Simon, I. Reduction of dietary protein in broiler diets not only reduces n-emissions but is also accompanied by several further benefits. J. Appl. Poult. Res. 2019, 28, 867–880. [Google Scholar]
- Greenhalgh, S.; Mcinerney, B.V.; Mcquade, L.R.; Chrystal, P.V.; Khoddami, A.; Zhuang, M.A.; Liu, S.Y.; Selle, P.H. Capping dietary starch: Protein ratios in moderately reduced crude protein, wheat-based diets showed promise but further reductions generated inferior growth performance in broiler chickens from 7 to 35 days’ post-hatch. Anim. Nutr. 2020, 6, 168–178. [Google Scholar] [CrossRef]
- Kitchell, R.; Strom, L.; Zotterman, Y. Electrophysiological studies of thermal and taste reception in chickens and pigeons. Acta Physiol. Scand. 1959, 46, 133–151. [Google Scholar] [CrossRef]
- Wilson, A.; Downs, C. Food preferences of Knysna and purple-crested turacos fed varying concentrations of equicaloric and equimolar artificial fruit. J. Exp. Biol. 2011, 21, 613–618. [Google Scholar] [CrossRef] [PubMed]
- Bartoshuk, L.M.; Duffy, V.B.; Hayes, J.E.; Moskowitz, H.R.; Snyder, D.J. Psychophysics of sweet and fat perception in obesity: Problems, solutions and new perspectives. Philos. Trans. R. Soc. B Biol. Sci. 2006, 361, 1137–1148. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Stewart, J.E.; Seimon, R.V.; Otto, B.; Keast, R.S.; Clifton, P.M.; Feinle-Bisset, C. Marked differences in gustatory and gastrointestinal sensitivity to oleic acid between lean and obese men. Am. J. Clin. Nutr. 2011, 93, 703–711. [Google Scholar] [CrossRef] [PubMed]
- Low, Y.Q.; Lacy, K.; Keast, R. The role of sweet taste in satiation and satiety. Nutrients 2014, 6, 3431–3450. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Roura, E.; Foster, S. Nutrient-sensing biology in mammals and birds. Annu. Rev. Anim. Biosci. 2018, 6, 197–225. [Google Scholar] [CrossRef]
- Roura, E.; Koopmans, S.-J.; Lalles, J.-P.; Le Huerou-Luron, I.; De Jager, N.; Chuurman, T.; Val-Laillet, D. Critical review evaluating the pig as a model for human nutritional physiology. Nutr. Res. Rev. 2016, 29, 60–90. [Google Scholar] [CrossRef]
- Niknafs, S.; Roura, E. Nutrient sensing, taste, and feed intake in avian species. Nutr. Res. Rev. 2018, 31, 256–266. [Google Scholar] [CrossRef]
- Cordero, P.; Díaz-Avilés, F.; Torres, P.; Guzmán, M.; Niknafs, S.; Roura, E.; Guzmán-Pino, S.A. The Expression of Amino Acid and Fatty Acid Receptors Show an Age-Dependent Pattern Involving Oral Cavity, Jejunum and Lower Gut Sensing in Broiler Chickens. Animals 2023, 13, 3120. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Roura, E.; Baldwin, M.W.; Klasing, K.C. The avian taste system: Potential implications in poultry nutrition. Anim. Feed. Sci. Technol. 2013, 180, 1–9. [Google Scholar] [CrossRef]
- Liu, H.X.; Rajapaksha, P.; Wang, Z.; Kramer, N.E.; Marshall, B.J. An Update on the Sense of Taste in Chickens: A Better Developed System than Previously Appreciated. Int. J. Food. Sci. Nutr. 2018, 8, 686. [Google Scholar] [CrossRef]
- Cho, S.; Kim, J.; Roura, E. A new double choice model developed in laying hens reveals high performance for L-alanine. In Proceedings of the Proceedings, Australian Poultry Science Symposium, Sydney, Australia, 14–17 February 2016; p. 95. [Google Scholar]
- Cheled-Shoval, S.; Reicher, N.; Niv, M.; Uni, Z. Detecting Thresholds for Bitter, Umami, and Sweet Tastants in Broiler Chicken using a 2-choice Test Method. Poult. Sci. 2017, 96, 2206–2218. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, A.; Navarro, M.; Roura, E. Effectiveness of a double choice test to assess dietary taste preferences in broiler chickens. In Proceedings of the Proceedings, Australian Poultry Science Symposium, Sydney, Australia, 13–15 February 2017; p. 243. [Google Scholar]
- Cordero, P.; Herrera-Alcaíno, S.; Philp, V.; Muñoz, G.; Luna, D.; Guzmán-Pino, S.A. Taste Preferences in Broilers: Effect of Age, Delivery Matrix, and Number of Chickens per Pen on Selection and Consumption Behaviour. Animals 2024, 14, 1507. [Google Scholar] [CrossRef]
- Forbes, J. Palatability: Principles, methodology and practice for farm animals. CAB Rev. Perspect. Agric. Vet. Sci. Nutr. Nat. Resour. 2010, 5, 1–15. [Google Scholar]
- Aviagen. Ross 308 Broiler: Management Pocket Guide. 2022. Available online: https://aviagen.com/assets/Tech_Center/BB_Foreign_Language_Docs/Spanish_TechDocs/Ross-BroilerHandbook2018-ES.pdf (accessed on 18 April 2023).
- AOAC. Official methods of analysis of AOAC International, 16th ed.; AOAC: Gaithersburg, MD, USA, 1996. [Google Scholar]
- Rostagno, H.S.; Albino, L.F.T.; Calderano, A.A.; Hannas, M.I.; Sakomura, N.K.; Perazzo, F.G.; Rocha, G.C.; Saraiva, A.; Teixeira de Abreu, M.L.; Genova, J.L.; et al. Brazilian Tables for Poultry and Swine: Feed Composition and Nutritional Requirements, 5th ed.; Dueñez, W.Y.S., Translator; [Manual]; Federal University of Viçosa, Department of Animal Science: Armidale, Australia, 2024. [Google Scholar]
- Guzmán-Pino, S.; Lazcano, C.; De Luca, V.; Figueroa, J.; Valenzuela, C.; Roura, E. Dietary Inclusion of Monosodium Glutamate in Gestating and Lactating Sows Modifies the Preference Thresholds and Sensory-Motivated Intake for Umami and Sweet Solutions in Post-Weaned Pigs. Animals 2019, 9, 336. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Figueroa, J.; Valenzuela, C.; Guzmán-Pino, S. Sucrose Inclusion in Gestating and Lactating Diets of Sows Modifies the Feeding Behavior of Post-Weaning Pigs for Sweet Solutions. Vet. Sci. 2022, 9, 233. [Google Scholar] [CrossRef]
- Yoshida, Y.; Kawabata, Y.; Kawabata, F.; Nishimura, S.; Tabata, S. Expression of multiple umami taste receptors in oral and gastrointestinal tissues, and umami taste synergism in chickens. Biochem. Biophys. Res. Commun. 2015, 466, 346–349. [Google Scholar]
- Yoshida, Y.; Kawabata, F.; Kawabata, Y.; Nishimura, S.; Tabata, S. Short-term perception of and conditioned taste aversion to umami taste, and oral expression patterns of umami taste receptors in chickens. Physiol. Behav. 2018, 191, 29–36. [Google Scholar] [CrossRef]
- Betancourt López, L.; Cacua León, L.; Alarcón Parra, A. Effect of tryptophan supplementation in quails (Coturnix coturnix Japónesa). Rev. Med. Vet. 2005, 83–87. [Google Scholar] [CrossRef]
- Van Harn, J.; Dijkslag, M.A.; Van Krimpen, M. Effect of low dietary protein levels on performance, litter quality and footpad lesions in broilers. In Proceedings of the 21st European Symposium on Poultry Nutrition, Salou/Vila-Seca, Spain, 8–11 May 2017; p. 185. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Nawaz, H.; Mushtaq, T.; Yaqoob, M. Effect of varying levels of energy and protein on live performance and carcass characteristics. J. Poult. Sci. 2006, 43, 388–393. [Google Scholar] [CrossRef]
- Kamely, M.; He, W.; Wakaruk, J.; Whelan, R.; Naranjo, V.; Barreda, D.R. Impact of Reduced Dietary Crude Protein in the Starter Phase on Immune Development and Response of Broilers Throughout the Growth Period. Front. Vet. Sci. 2020, 7, 436. [Google Scholar] [CrossRef]
- Moss, A.F.; Chrystal, P.V. (Eds.) Precision Poultry Nutrition and Feed Formulation; Academic Press: Cambridge, MA, USA, 2019; pp. 421–438. [Google Scholar]
- Dando, R. Endogenous peripheral neuromodulators of the mammalian taste bud. J. Neurophysiol. 2010, 104, 1835–1837. [Google Scholar] [CrossRef] [PubMed]
- Castro, C.; Roura, E. The Gustatory Apparatus: Key Component in Poultry Nutrition. NutriNews, (Ed. November 2023), pp. 86–96. Available online: https://issuu.com/grupoagrinews/docs/00_nutrinews-noviembre23-v3?fr=sNjFlMzY4NzU5NTk (accessed on 15 May 2024).
- López-Espinoza, A.; Galindo, A.; Martínez, A.G.; Díaz, F.; Aguilera, V.; De la Torre-Ibarra, C.; Cárdenas, A. Feeding Regulation in the Presence of Changes in Nutritional Content of Food in Rats; Centro de Investigaciones en Comportamiento Alimentario y Nutrición (CUSUR), Universidad de Guadalajara: Guadalajara, Mexico, 2008. [Google Scholar]
- Fernández Vázquez Mellado, R. Perinatal Malnutrition and Appetitive Behavior in Young, Malnourished Rats. Bachelor’s Thesis, Universidad Autónoma de Querétaro, Querétaro, Mexico, 2013. [Google Scholar]
- Guzmán-Pino, S.A.; Solà-Oriol, D.; Figueroa, J.; Pérez, J.F. Influence of the protein status of piglets on their ability to select and prefer protein sources. Physiol. Behav. 2014, 129, 43–49. [Google Scholar] [CrossRef] [PubMed]
- Barroeta, A.; Calsamiglia, S.; Cepero, R.; Lopez-Bote, C.; Hernández, J.M. Optimum Vitamin Nutrition of Animals for the Production of Quality Food: Advances in the Vitamin Nutrition of Broilers and Turkeys; Editorial Pulso: Reus, España, 2002; 208p. [Google Scholar]
- Richard, D. Cognitive and autonomic determinants of energy homeostasis in obesity. Nat. Rev. Endocrinol. 2015, 11, 489–501. [Google Scholar] [CrossRef]
- Raka, F.; Farr, S.; Kelly, J.; Stoianov, A.; Adeli, K. Metabolic control via nutrient-sensing mechanisms: Role of taste receptors and the gut-brain neuroendocrine axis. Am. J. Physiol. Endocrinol. Metabol. 2019, 317, E559–E572. [Google Scholar] [CrossRef]
Treatment | T1 | T2 | T3 | T4 | ||||
---|---|---|---|---|---|---|---|---|
Item | Starter | Grower | Starter | Grower | Starter | Grower | Starter | Grower |
Ingredients (g/kg) | ||||||||
Corn | 462.2 | 470.6 | 568.7 | 470.6 | 598.4 | 470.6 | 554.5 | 665.1 |
Soybean meal 50% | 165.9 | 39.7 | 118.3 | - | 95.1 | - | 167.3 | 65.6 |
Meat meal 60% | 170.1 | 167.7 | 149.9 | 126.5 | 170.7 | 125.2 | 107.1 | 99.5 |
Ground wheat | - | 93 | - | 171.8 | - | 180.5 | - | - |
NaHCO3 | - | - | - | 1.6 | - | 1.7 | 1.9 | 0.3 |
CaCO3 | 9.7 | 7.8 | 1.03 | 7.8 | 9.9 | 7.8 | 9.8 | 7.9 |
NaCl | - | - | - | 0.1 | 0.1 | 0.1 | 0.6 | 0.7 |
CaHPO4 | 20.2 | 14.1 | 22.1 | 14.2 | 22.9 | 14.3 | 21.4 | 16.3 |
Lipofeed 30 AL 1 | 166.4 | 202.7 | 121.4 | 199.7 | 97.7 | 195.9 | 136.5 | 14.46 |
Lys | 1.44 | 1.19 | 1.44 | 1.19 | 0.72 | 0.59 | - | - |
Met | 0.53 | 0.48 | 0.53 | 0.48 | 0.26 | 0.24 | - | - |
Thr | 0.97 | 0.81 | 0.97 | 0.81 | 0.48 | 0.40 | - | - |
Trp | 0.23 | 0.19 | 0.23 | 0.19 | 0.11 | 0.09 | - | - |
Copitox MB 2 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 |
Multivitamins-mineral-phytase 3 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 |
Analyzed nutrient composition (%) | ||||||||
Dry matter | 88.1 | 88.6 | 87.1 | 88.4 | 87.5 | 87.8 | 87.2 | 86.2 |
Crude protein | 24.6 | 21.7 | 20.3 | 17.4 | 20.4 | 16.7 | 20.6 | 15.8 |
Crude fiber | 3.8 | 4.7 | 2.9 | 5.6 | 3.5 | 5.1 | 3.8 | 3.4 |
Ether extract | 8.7 | 10.6 | 7.3 | 10.1 | 8.0 | 9.4 | 7.8 | 7.0 |
Nitrogen-free extract | 42.2 | 43.2 | 48.4 | 47.1 | 46.8 | 49.1 | 46.6 | 54.3 |
Ash | 8.8 | 8.4 | 8.2 | 8.2 | 8.8 | 7.5 | 8.4 | 5.7 |
Estimated amino acid content (g/kg) 4 | ||||||||
Lys | 6.42 | 4.50 | 5.45 | 3.42 | 4.69 | 2.80 | 4.06 | 2.47 |
Met | 1.88 | 1.53 | 1.64 | 1.27 | 1.36 | 1.02 | 1.10 | 0.66 |
Thr | 4.06 | 2.86 | 3.42 | 2.25 | 2.90 | 1.71 | 2.50 | 1.53 |
Trp | 0.85 | 0.67 | 0.92 | 0.37 | 0.48 | 0.27 | 1.50 | 0.24 |
Item | T1 | T2 | T3 | T4 | SEM | p-Value |
---|---|---|---|---|---|---|
Days 1 to 7 | ||||||
Initial BW 2 | 52.5 | 54.3 | 53.8 | 54.6 | 1.45 | 0.480 |
ADFI 3 | 28.6 | 26.2 | 29.3 | 15.2 | 6.34 | 0.208 |
ADG 4 | 8.57 a | 7.62 a | 7.05 ab | 5.33 b | 0.793 | 0.044 |
FCR 5 | 3.34 | 3.47 | 4.19 | 3.25 | 0.854 | 0.324 |
Final BW | 121 a | 115 a | 110 a | 97.2 b | 4.62 | 0.041 |
Days 8 to 14 | ||||||
ADFI | 31.8 | 31.4 | 32.7 | 30.7 | 4.56 | 0.661 |
ADG | 26.9 a | 23.1 a | 21.7 a | 15.3 b | 1.910 | 0.014 |
FCR | 1.18 b | 1.36 b | 1.52 ab | 2.06 a | 0.2015 | 0.010 |
Final BW | 309 a | 277 ab | 262 b | 204 c | 12.69 | <0.0001 |
Days 15 to 21 | ||||||
ADFI | 70.8 | 69.7 | 71.1 | 73 | 4.261 | 0.443 |
ADG | 55.5 a | 49.2 ab | 43.2 b | 30 c | 3.755 | 0.017 |
FCR | 1.29 b | 1.44 b | 1.68 b | 2.54 a | 0.1847 | 0.0004 |
Final BW | 698 a | 621 b | 565 b | 415 c | 26.48 | <0.0001 |
Days 22 to 28 | ||||||
ADFI | 86.7 ab | 67.7 b | 82 ab | 101 a | 11.536 | 0.048 |
ADG | 63.53 a | 45.8 b | 46.8 b | 46.9 b | 5.545 | 0.033 |
FCR | 1.39 b | 1.59 ab | 1.79 ab | 2.46 a | 0.450 | 0.024 |
Final BW | 1142 a | 941 b | 892 b | 743 c | 39.69 | <0.0001 |
Days 29 to 35 | ||||||
ADFI | 150 a | 115 b | 128 ab | 116 b | 8.695 | 0.003 |
ADG | 92.6 a | 55.1 b | 55.5 b | 51.3 b | 5.705 | <0.0001 |
FCR | 1.65 b | 2.14 b | 2.37 a | 2.36 a | 0.249 | 0.049 |
Final BW | 1790 a | 1327 b | 1280 b | 1102 c | 55.06 | <0.0001 |
Days 35 to 39 | ||||||
ADFI | 156 a | 126 b | 143 ab | 149 ab | 9.220 | 0.030 |
ADG | 30.8 a | 37 a | 32 a | 19 b | 3.574 | 0.019 |
FCR | 5.19 b | 3.62 b | 4.78 b | 7.96 a | 0.7066 | 0.003 |
Final BW | 1891 a | 1482 b | 1388 b | 1100 c | 78.39 | <0.0001 |
Days 1 to 39 | ||||||
Initial BW | 52.5 | 54.3 | 53.8 | 54.6 | 1.45 | 0.480 |
ADFI | 81.3 a | 67.5 b | 75.1 a | 74 ab | 2.629 | 0.043 |
ADG | 46.4 a | 35.5 b | 33.9 b | 28.1 c | 1.475 | <0.0001 |
FCR | 1.76 c | 1.90 bc | 2.24 b | 2.69 a | 0.1277 | 0.007 |
Final BW | 1891 a | 1482 b | 1388 b | 1100 c | 78.39 | <0.0001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cordero, P.; Ramírez-Toloza, G.; Dufflocq, P.; Herrera-Alcaíno, S.; Guzmán-Pino, S.A. Reduced Dietary Protein and Essential Amino Acids Impair Growth Performance and Increase Lysine Sensitivity in Broiler Chickens. Animals 2025, 15, 1027. https://doi.org/10.3390/ani15071027
Cordero P, Ramírez-Toloza G, Dufflocq P, Herrera-Alcaíno S, Guzmán-Pino SA. Reduced Dietary Protein and Essential Amino Acids Impair Growth Performance and Increase Lysine Sensitivity in Broiler Chickens. Animals. 2025; 15(7):1027. https://doi.org/10.3390/ani15071027
Chicago/Turabian StyleCordero, Paloma, Galia Ramírez-Toloza, Pablo Dufflocq, Sofía Herrera-Alcaíno, and Sergio A. Guzmán-Pino. 2025. "Reduced Dietary Protein and Essential Amino Acids Impair Growth Performance and Increase Lysine Sensitivity in Broiler Chickens" Animals 15, no. 7: 1027. https://doi.org/10.3390/ani15071027
APA StyleCordero, P., Ramírez-Toloza, G., Dufflocq, P., Herrera-Alcaíno, S., & Guzmán-Pino, S. A. (2025). Reduced Dietary Protein and Essential Amino Acids Impair Growth Performance and Increase Lysine Sensitivity in Broiler Chickens. Animals, 15(7), 1027. https://doi.org/10.3390/ani15071027