Methods of Observing the Signs of Approaching Calving in Cows—A Review
Simple Summary
Abstract
1. Introduction
2. The Use of Artificial Intelligence (AI) in Cattle Breeding
3. Invasive Methods for Observing the Signs of Impending Calving
Name of Device | Measured Parameter | Beef or Dairy Cows | Sensitivity | Specificity | Literature Source |
---|---|---|---|---|---|
Minilog 8 | Vaginal temperature | Dairy cows | 62–71% | 81–87% | [27] |
Data-logging apparatus (Data-logger L820, Unipulse Inc., Nishinasuno, Japan) with a thermocouple sensor | Vaginal temperature | Beef cows | - | - | [46] |
Intra-vaginal device | Second stage of calving | Dairy cows | - | - | [14] |
CITE PROBE Semi-QuantTM Progesterone | Blood progesterone levels | Dairy cows | 86.7% | 90.8% | [42] |
Inorganic Phosphorus, Ref. A11A00098; ABX Diagnostics, Dietikon, Switzerland | Prepartum mammary secretion | Dairy cows | - | - | [2] |
Reticulo-rumen bolus (Phase IV Engineering, Boulder, CO, USA) | Reticulo-rumen temperature | Dairy cows | 58–73% | 63–77% | [47] |
Ruminal boluses (SmartStock, LLC, Pawnee, OK, USA) | Ruminal temperature | Beef cows | - | - | [49] |
4. Non-Invasive Methods for Observing the Signs of Impending Calving
Technology | Location on Cow | Parameters Measured | Sensitivity | Specificity | Validation | Patent |
---|---|---|---|---|---|---|
SCR HR LD Tags (SCR Engineers, Ltd., Netanya, Israel) | Left side of neck | Rumination and level of activity | 70.0% | 70.0% | [79] | Inventor: Avshalom Bar-Shalom US7350481B2 |
The IceQube (IceRobotics Ltd., South Queensferry, UK) | Left rear leg | Number of steps, time spent lying, time spent standing, lying periods, total motion | 37.5–75.0% | 87.9–91.2% | [19,64,80] | |
The RumiWatch system (ITIN + HOCH GmbH, Fütterungstechnik CH-4410, Liestal, Switzerland) | Noseband sensor and 3D accelerometer on the hind limbs | Locomotion behavior and number of lying periods | Multiparous: 88.9% Primiparous: 85.0% | Multiparous: 93.3% Primiparous: 74.0% | [81] | Swiss Patent CH 700 494 B1 |
Agis SensOor sensors (Agis Automatisering B.V., Harmelen, The Netherlands) | Ear | Rumination, feeding, activity, and temperature | Evaluation in daily basis: 9.1–36.4% Evaluation on hourly basis: 21.2–51.5% | Evaluation in daily basis: 98.9–99.3% Evaluation on hourly basis: 99.1–99.4% | [72] | |
HOBO Data Logger | Left rear leg (below hock) | Lying behavior | [63,64] | |||
Moocall©, Moocall Ltd., Dublin, Ireland | Tail | Tail movement | [60] | |||
Tail-attached sensor | Tail | Skin temperature | 84.3% | [82,83] | ||
Tail mounted sensor | Tail | Raising or lowering of the tail | [78] | Inventor: Austin N., Vukajlovic M. WO2017211473A1 | ||
FreeStyle Libre Sensor (Abbott Japan LLC, Chiba, Japan) and LibrePro Sensor (Abbott Japan LLC) | Back side of the tail | Tissue glucose concentration | 71.9–77.8% | 74.9–83.4% | [75] | |
Tail movement sensor device (Moocall; Bluebell, Dublin, Ireland) | Tail | Tail movement | 72.0% | 72.0% | [76] | |
IceTag data loggers (IceRobotics, Ltd. Edinburgh, Scotland, UK) | Hind leg | Lying time, number of lying periods, duration of lying periods, steps | [77] |
5. Review of the Possibilities of Using AI in Detecting Parturition in Cows
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Titler, M.; Maquivar, M.; Bas, S.; Rajala-Schultz, P.; Gordon, E.; McCullough, K.; Federico, P.; Schuenemann, G. Prediction of parturition in Holstein dairy cattle using electronic data loggers. J. Dairy Sci. 2015, 98, 5304–5312. [Google Scholar] [CrossRef] [PubMed]
- Bleul, U.; Spirig, S.; Hässig, M.; Kähn, W. Electrolytes in Bovine Prepartum Mammary Secretions and Their Usefulness for Predicting Parturition. J. Dairy Sci. 2006, 89, 3059–3065. [Google Scholar] [CrossRef] [PubMed]
- Inchaisri, C.; Hogeveen, H.; Vos, P.; van der Weijden, G.; Jorritsma, R. Effect of milk yield characteristics, breed, and parity on success of the first insemination in Dutch dairy cows. J. Dairy Sci. 2010, 93, 5179–5187. [Google Scholar] [CrossRef]
- Berglund, B.; Steinbock, L.; Elvander, M. Causes of Stillbirth and Time of Death in Swedish Holstein Calves Examined Post Mortem. Acta Scand. 2003, 44, 111–120. [Google Scholar] [CrossRef]
- Nejash, A.; Wahid, M.A. Risk Factors and Economic Impact of Dystocia in Dairy Cows: A Systematic Review. J. Reprod. Infertil. 2016, 7, 63–74. [Google Scholar]
- Crociati, M.; Sylla, L.; De Vincenzi, A.; Stradaioli, G.; Monaci, M. How to Predict Parturition in Cattle? A Literature Review of Automatic Devices and Technologies for Remote Monitoring and Calving Prediction. Animals 2022, 12, 405. [Google Scholar] [CrossRef]
- Alves dos Santos, C.; Landim, N.M.D.; de Araújo, H.X.; Paim, T.P. Automated Systems for Estrous and Calving Detection in Dairy Cattle. AgriEngineering 2022, 4, 475–482. [Google Scholar] [CrossRef]
- Rutten, C.; Kamphuis, C.; Hogeveen, H.; Huijps, K.; Nielen, M.; Steeneveld, W. Sensor data on cow activity, rumination, and ear temperature improve prediction of the start of calving in dairy cows. Comput. Electron. Agric. 2017, 132, 108–118. [Google Scholar] [CrossRef]
- Khin, M.P.; Tin, P.; Horii, Y.; Zin, T.T. Predictive modeling of cattle calving time emphasizing abnormal and normal cases by using posture analysis. Sci. Rep. 2024, 14, 31871. [Google Scholar]
- Mainau, E.; Manteca, X. Pain and discomfort caused by parturition in cows and sows. Appl. Anim. Behav. Sci. 2011, 135, 241–251. [Google Scholar] [CrossRef]
- della Rocca, G.; Brondani, J.T.; de Oliveira, F.A.; Crociati, M.; Sylla, L.; Ngonput, A.E.; Di Salvo, A.; Luna, S.P.L. Validation of the Italian version of the UNESP–Botucatu unidimensional composite pain scale for the assessment of postoperative pain in cattle. Vet. Anaesth. Analg. 2017, 44, 1253–1261. [Google Scholar] [CrossRef] [PubMed]
- Lombard, J.; Garry, F.; Tomlinson, S.; Garber, L. Impacts of Dystocia on Health and Survival of Dairy Calves. J. Dairy Sci. 2007, 90, 1751–1760. [Google Scholar] [CrossRef]
- Tenhagen, B.; Helmbold, A.; Heuwieser, W. Effect of Various Degrees of Dystocia in Dairy Cattle on Calf Viability, Milk Production, Fertility and Culling. J. Vet. Med. A Physiol. Pathol. Clin. Med. 2007, 54, 98–102. [Google Scholar] [CrossRef]
- Palombi, C.; Paolucci, M.; Stradaioli, G.; Corubolo, M.; Pascolo, P.B.; Monaci, M. Evaluation of remote monitoring of parturition in dairy cattle as a new tool for calving management. BMC Veter. Res. 2013, 9, 191. [Google Scholar] [CrossRef]
- Castro, N.; Capote, J.; Bruckmaier, R.M.; Arguello, A. Management effects on colostrogenesis in small ruminants: A review. J. Appl. Anim. Res. 2011, 39, 85–93. [Google Scholar] [CrossRef]
- Hue, D.T.; Skirving, R.; Chen, T.; Williams, J.L.; Bottema, C.D.; Petrovski, K. Colostrum source and passive immunity transfer in dairy bull calves. J. Dairy Sci. 2021, 104, 8164–8176. [Google Scholar] [CrossRef]
- Meyer, C.; Berger, P.; Koehler, K.; Thompson, J.; Sattler, C. Phenotypic Trends in Incidence of Stillbirth for Holsteins in the United States. J. Dairy Sci. 2001, 84, 512–523. [Google Scholar] [CrossRef]
- Wehrend, A.; Hofmann, E.; Failing, K.; Bostedt, H. Behaviour during the first stage of labour in cattle: Influence of parity and dystocia. Appl. Anim. Behav. Sci. 2006, 100, 164–170. [Google Scholar] [CrossRef]
- Borchers, M.R.; Chang, Y.M.; Proudfoot, K.L.; Wadsworth, B.A.; Stone, A.E.; Bewley, J.M. Machine-learning-based calving prediction from activity, lying, and ruminating behaviors in dairy cattle. J. Dairy Sci. 2017, 100, 5664–5674. [Google Scholar] [CrossRef]
- Simões, J.; Stilwell, G. Calving Management and Newborn Calf Care. An interactive Textbook for Cattle Medicine and Obstetrics; Springer International Publishing: Berling/Heidelberg, Germany, 2021. [Google Scholar]
- Lammoglia, M.A.; Bellows, R.A.; Short, R.E.; Bellows, S.E.; Bighorn, E.G.; Stevenson, J.S.; Randel, R.D. Body temperature and endocrine interactions before and after calving in beef cows. J. Anim. Sci. 1997, 75, 2526–2534. [Google Scholar]
- Miwa, M.; Matsuyama, S.; Nakamura, S.; Noda, K.; Sakatani, M. Prepartum change in ventral tail base surface temperature in beef cattle: Comparison with vaginal temperature and behavior indices, and effect of ambient temperature. J. Reprod. Dev. 2019, 65, 515–525. [Google Scholar] [CrossRef] [PubMed]
- Hunter, J.T.; Fairclough, R.J.; Peterson, A.J.; Welch, R.A.S. Foetal and maternal hormonal changes preceding normal bovine parturition. Eur. J. Endocrinol. 1977, 84, 653–662. [Google Scholar] [CrossRef]
- Miedema, H.M.; Cockram, M.S.; Dwyer, C.M.; Macrae, A.I. Behavioural predictors of the start of normal and dystocic calving in dairy cows and heifers. Appl. Anim. Behav. Sci. 2011, 132, 14–19. [Google Scholar] [CrossRef]
- Kovács, L.; Kézér, F.; Ruff, F.; Szenci, O. Rumination time and reticuloruminal temperature as possible predictors of dystocia in dairy cows. J. Dairy Sci. 2017, 100, 1568–1579. [Google Scholar] [CrossRef]
- Zamaziy, A.A.; Kambur, M.D.; Butov, O. Physiological and biochemical changes in the body of cows during pregnancy, natal and postnatal process. Theor. Appl. Vet. Med. 2018, 6, 79–84. [Google Scholar]
- Burfeind, O.; Suthar, V.S.; Voigtsberger, R.; Bonk, S.; Heuwieser, W. Validity of prepartum changes in vaginal and rectal temperature to predict calving in dairy cows. J. Dairy Sci. 2011, 94, 5053–5061. [Google Scholar] [CrossRef]
- Matamala, F.; Strappini, A.; Sepúlveda-Varas, P. Dairy cow behaviour around calving: Its relationship with management practices and environmental conditions. Austral. J. Veter. Sci. 2021, 53, 9–22. [Google Scholar] [CrossRef]
- Huzzey, J.M.; von Keyserlingk, M.A.G.; Weary, D.M. Changes in feeding, drinking, and standing behavior in dairy cows during the transition period. J. Dairy Sci. 2005, 88, 2454–2461. [Google Scholar] [PubMed]
- Speroni, M.; Malacarne, M.; Righi, F.; Franceschi, P.; Summer, A. Increasing of Posture Changes as Indicator of Imminent Calving in Dairy Cows. Agriculture 2018, 8, 182. [Google Scholar] [CrossRef]
- Nabenishi, H.; Negishi, N.; Yamazaki, A. Predicting the start of calving in Japanese Black cattle using camera image analysis. J. Reprod. Dev. 2021, 67, 53–58. [Google Scholar] [CrossRef]
- Neave, H.; Lomb, J.; von Keyserlingk, M.; Behnam-Shabahang, A.; Weary, D. Parity differences in the behavior of transition dairy cows. J. Dairy Sci. 2017, 100, 548–561. [Google Scholar] [CrossRef] [PubMed]
- Büchel, S.; Sundrum, A. Short communication: Decrease in rumination time as an indicator of the onset of calving. J. Dairy Sci. 2014, 97, 3120–3127. [Google Scholar] [CrossRef] [PubMed]
- Lange, K.; Fischer-Tenhagen, C.; Heuwieser, W. Predicting stage 2 of calving in Holstein-Friesian heifers. J. Dairy Sci. 2017, 100, 4847–4856. [Google Scholar] [CrossRef] [PubMed]
- Mee, J.F. Managing the dairy cow at calving time. Vet. Clin. Food Anim. Pract. 2004, 20, 521–546. [Google Scholar] [CrossRef] [PubMed]
- Bridle, J.E. Review of animal identification—From simple manual techniques to automatic transponding systems. Landbauforsch Volk 1973, 18, 127–148. [Google Scholar]
- Spahr, S.L.; Jones, L.R.; Dill, D.E. Expert systems—Their use in dairy herd managment. J. Dairy Sci. 1988, 71, 879–885. [Google Scholar] [CrossRef]
- Smith, T.R. The Potential Application of Expert Systems in Dairy Extension Education. J. Dairy Sci. 1989, 72, 2760–2766. [Google Scholar] [CrossRef]
- Grossman, M.R. Animal identification and traceability under the US National animal identification system. J. Food Law Policy 2006, 2, 231. [Google Scholar]
- Morrone, S.; Dimauro, C.; Gambella, F.; Cappai, M.G. Industry 4.0 and Precision Livestock Farming (PLF): An up to Date Overview across Animal Productions. Sensors 2022, 22, 4319. [Google Scholar] [CrossRef] [PubMed]
- Nayeri, S.; Sargolzaei, M.; Tulpan, D. A review of traditional and machine learning methods applied to animal breeding. Anim. Health Res. Rev. 2019, 20, 31–46. [Google Scholar] [CrossRef]
- Matsas, D.J.; Nebel, R.L.; Pelzer, K.D. Evaluation of progesteron test for predicting the day of parturition in cattle. Theriogenology 1992, 37, 859–868. [Google Scholar] [PubMed]
- Dilaver, H.; Dilaver, K.F. Robotics Systems and Artificial Intelligence Applications in Livestock Farming. J. Anim. Sci. Econ. 2024, 3, 63–72. [Google Scholar]
- Vickers, L.; Burfeind, O.; von Keyserlingk, M.; Veira, D.; Weary, D.; Heuwieser, W. Technical note: Comparison of rectal and vaginal temperatures in lactating dairy cows. J. Dairy Sci. 2010, 93, 5246–5251. [Google Scholar] [CrossRef] [PubMed]
- Kendall, J.R.; Webster, J.R. Season and physiological status affects the circadian body temperature rhythm of dairy cows. Livest. Sci. 2009, 125, 155–160. [Google Scholar] [CrossRef]
- Suthar, V.; Burfeind, O.; Patel, J.; Dhami, A.; Heuwieser, W. Body temperature around induced estrus in dairy cows. J. Dairy Sci. 2011, 94, 2368–2373. [Google Scholar] [CrossRef]
- Aoki, M.; Kimura, K.; Suzuki, O. Predicting time of parturition from changing vaginal temperature measured by data-logging apparatus in beef cows with twin fetuses. Anim. Reprod. Sci. 2005, 86, 1–12. [Google Scholar] [CrossRef]
- Costa, J.B.G., Jr.; Ahola, J.K.; Weller, Z.D.; Peel, R.K.; Whittier, J.C.; Barcellos, J.O.J. Reticulo-rumen temperature as a predictor of calving time in primiparous and parous Holstein females. J. Dairy Sci. 2016, 99, 4839–4850. [Google Scholar] [CrossRef]
- Cooper-Prado, M.J.; Long, N.M.; Wright, E.C.; Goad, C.L.; Wettemann, R.P. Relationship of ruminal temperature with parturition and estrus of beef cows. J. Anim. Sci. 2011, 89, 1020–1027. [Google Scholar] [CrossRef]
- Wu, L.S.; Guo, I.C.; Lin, J.H. Pregnancy Diagnosis in sows by using an on-farm blood progesterone test. Anim. Reprod. Physiol. 1997, 10, 603–608. [Google Scholar] [CrossRef]
- Singer, L.A.; Kumar, M.; Gavin, W.; Ayres, S.L. Predicting the onset of parturition in the goat by determining progesterone levels by enzyme immunoassay. Small Rumin. Res. 2004, 52, 203–209. [Google Scholar] [CrossRef]
- Nadalin, A.; Denis-Robichaud, J.; Madureira, A.; Burnett, T.; Bauer, J.; Vasconcelos, J.; Pohler, K.; Crespilho, A.; Cerri, R. Technical note: Validation of an in-house bovine serum enzyme immunoassay for progesterone measurement. J. Dairy Sci. 2021, 104, 2455–2462. [Google Scholar] [CrossRef] [PubMed]
- Streyl, D.; Sauter-Louis, C.; Braunert, A.; Lange, D.; Weber, F.; Zerbe, H. Establishment of a standard operating procedure for predicting the time of calving in cattle. J. Veter. Sci. 2011, 12, 177–185. [Google Scholar] [CrossRef]
- Matsas, D.J. Use of an on-farm progesterone test in the clinical management of parturient disorders in three cows. J. Am. Veter. Med. Assoc. 1993, 15, 610–612. [Google Scholar] [CrossRef]
- Jensen, M.B. Behaviour around the time of calving in dairy cows. Appl. Anim. Behav. Sci. 2012, 139, 195–202. [Google Scholar] [CrossRef]
- Barrier, A.; Haskell, M.; Birch, S.; Bagnall, A.; Bell, D.; Dickinson, J.; Macrae, A.; Dwyer, C. The impact of dystocia on dairy calf health, welfare, performance and survival. Veter. J. 2013, 195, 86–90. [Google Scholar] [CrossRef]
- Miedema, H.M.; Cockram, M.S.; Dwyer, C.M.; Macrae, A.I. Changes in the behaviour of dairy cows during the 24 h before normal calving compared with behaviour during late pregnancy. Appl. Anim. Behav. Sci. 2011, 131, 8–14. [Google Scholar] [CrossRef]
- Barrier, A.; Ruelle, E.; Haskell, M.; Dwyer, C. Effect of a difficult calving on the vigour of the calf, the onset of maternal behaviour, and some behavioural indicators of pain in the dam. Prev. Veter. Med. 2012, 103, 248–256. [Google Scholar] [CrossRef]
- Cangar, Ö.; Leroy, T.; Guarino, M.; Vranken, E.; Fallon, R.; Lenehan, J.; Mee, J.; Berckmans, D. Automatic real-time monitoring of locomotion and posture behaviour of pregnant cows prior to calving using online image analysis. Comput. Electron. Agric. 2008, 64, 53–60. [Google Scholar] [CrossRef]
- Giaretta, E.; Marliani, G.; Postiglione, G.; Magazzù, G.; Pantò, F.; Mari, G.; Formigoni, A.; Accorsi, P.A.; Mordenti, A. Calving time identfied by the automatic detection of tail movements and rumination time, and observation of cow behavioural changes. Animal 2021, 15, 100071. [Google Scholar]
- Emam, H.M.; Shepley, E.; Mahmoud, M.M.; Ruch, M.; Elmaghawry, S.; Abdelrazik, W.; Abdelaal, M.A.; Crooker, B.A.; Caixeta, S.L. The Association beetwen Prepartum Rumination Time, Activity and Dry Matter Intake and Subclinical Hypomagnesemia in the First 3 Days Postpartum in Holstein Dairy Cows. Animals 2023, 13, 1621. [Google Scholar] [PubMed]
- Forsberg, A.M.; Ljungberg, T.; Pettersson, G.; Svennersten-Sjaunja, K. A Brief note about cow lying behaviour. Do cows choose left and right lying side equally? Appl. Anim. Behav. Sci. 2008, 114, 32–36. [Google Scholar] [CrossRef]
- Ledgerwood, D.N.; Winckler, C.; Tucker, C.B. Evaluation of data loggers, sampling intervals, and editing techniques for measuring the lying behavior of dairy cattle. J. Dairy Sci. 2010, 93, 5129–5139. [Google Scholar] [CrossRef]
- Mattachini, G.; Riva, E.; Bisaglia, C.; Pompe, J.C.A.M.; Provolo, G. Methodology for quantifying the behavioral activity of dairy cows in freestall barns. J. Anim. Sci. 2013, 91, 4899–4907. [Google Scholar] [CrossRef]
- Clark, C.; Lyons, N.; Millapan, L.; Talukder, S.; Cronin, G.; Kerrisk, K.; Garcia, S. Rumination and activity levels as predictors of calving for dairy cows. Animal 2015, 9, 691–695. [Google Scholar] [CrossRef]
- Guliński, P.; Salmończyk, E.; Młynek, K. Okołożywieniowe zachowanie bydła mlecznego. Wiadomości Zootech. 2014, 2, 57–69. [Google Scholar]
- Grodkowski, G.; Gołębiewski, M.; Slósarz, J.; Sakowski, T.; Puppel, K. Comparison between the Behavior of Low-Yield Holstein-Friesian and Brown Swiss Cows under Barn and Pasture Feeding Conditions. Animals 2023, 13, 1697. [Google Scholar] [CrossRef]
- Mahmoud, M.; Yin, T.; Brügemann, K.; König, S. Phenotypic, genetic, and single nucleotide polymorphism marker associations between calf diseases and subsequent performance and disease occurrences of first-lactation German Holstein cows. J. Dairy Sci. 2017, 100, 2017–2031. [Google Scholar] [CrossRef]
- Fadul, M.; Bogdahn, C.; Alsaaod, M.; Hüsler, J.; Starke, A.; Steiner, A.; Hirsbrunner, G. Prediction of calving time in dairy cattle. Anim. Reprod. Sci. 2017, 187, 37–46. [Google Scholar] [CrossRef]
- Bar, D.; Solomon, R. Rumination Collars: What Can They Tell Us? Agric. Food Sci. 2010, 2, 214–216. [Google Scholar]
- Soriani, N.; Trevisi, E.; Calamari, L. Relationships between rumination time, metabolic, conditions, and health status in dairy cows during the transition period. J. Anim. Sci. 2012, 90, 4544–4554. [Google Scholar] [CrossRef]
- Bikker, J.; van Laar, H.; Rump, P.; Doorenbos, J.; van Meurs, K.; Griffioen, G.; Dijkstra, J. Technical note: Evaluation of an ear-attached movement sensor to record cow feeding behavior and activity. J. Dairy Sci. 2014, 97, 2974–2979. [Google Scholar] [CrossRef]
- Ouellet, V.; Vasseur, E.; Heuwieser, W.; Burfeind, O.; Maldague, X.; Charbonneau, É. Evaluation of calving indicators measured by automated monitoring devices to predict the onset of calving in Holstein dairy cows. J. Dairy Sci. 2016, 99, 1539–1548. [Google Scholar] [CrossRef]
- Higaki, S.; Koyama, K.; Sasaki, Y.; Abe, K.; Honkawa, K.; Horii, Y.; Minamino, T.; Mikurino, Y.; Okada, H.; Miwakeichi, F.; et al. Technical note: Calving prediction in dairy cattle based on continuous measurements of ventral tail base skin temperature using supervised machine learning. J. Dairy Sci. 2020, 103, 8535–8540. [Google Scholar] [CrossRef]
- Wakatsuki, T.; Nakamura, T.; Ishii, A.; Konishi, K.; Okubo, M.; Souma, K.; Hirayama, H. Calving prediction with continous meas-urements of subcutaneous tissue glucose concentration in pregnant cows. Theriogenology 2023, 202, 119–124. [Google Scholar]
- Sedó, S.U.; Renaud, D.; Morrison, J.; Pearl, D.; Mee, J.; Winder, C. Using an automated tail movement sensor device to predict calving time in dairy cows. JDS Commun. 2024, 5, 317–321. [Google Scholar] [CrossRef]
- Rice, C.A.; Eberhart, N.L.; Krawczel, P.D. Prepartum lying behavior of Holstein dairy cows housed on pasture through partu-rition. J. Dairy Sci. 2017, 100, 1568–1579. [Google Scholar]
- Pfeiffer, J.; Spykman, O.; Gandorfer, M. Sensor and Video: Two Complementary Approaches for Evaluation of Dairy Cow Behavior after Calving Sensor Attachment. Animals 2021, 11, 1917. [Google Scholar] [CrossRef]
- Schirmann, K.; von Keyserling, M.A.; Weary, D.M.; Veira, D.M.; Heuwieser, W. Technical note: Validation of system for moni-toring rumination in dairy cows. J. Dairy Sci. 2009, 92, 6052–6055. [Google Scholar] [CrossRef]
- McGowan, J.E.; Burke, C.R.; Jago, J.G. Validation of a technology for objectively measuring behaviour in dairy cows and its application for oestrous detection. Proc. N. Z. Soc. Anim. Prod. 2007, 67, 136–142. [Google Scholar]
- Nydegger, F.; Bollhalder, H. Vorrichtung zum Erfassen der Kauaktivität. SwissPatent CH 700 494 B1, 24 September 2009. [Google Scholar]
- Miura, R.; Yoshioka, K.; Miyamoto, T.; Nogami, H.; Okada, H.; Itoh, T. Estrous detection by monitoring ventral tail base surface temperature using a wearable wireless sensor in cattle. Anim. Reprod. Sci. 2017, 180, 50–57. [Google Scholar] [CrossRef]
- Koyama, K.; Koyama, T.; Sugimoto, M.; Kusakari, N.; Miura, R.; Yoshioka, K.; Hirako, M. Prediction of calving time in Holstein dairy cows by monitoring the ventral tail base surface temperature. Veter. J. 2018, 240, 1–5. [Google Scholar] [CrossRef]
- Sumi, K.; Zin, T.T.; Kobayashi, I.; Horii, Y. Framework of Cow Calving Monitoring System Using a Single Depth Camera. In Proceedings of the International Conference on Image and Vision Computing New Zealand 2018, Auckland, New Zealand, 19–21 November 2018. [Google Scholar]
- McDonagh, J.; Tzimiropoulos, G.; Slinger, K.R.; Huggett, Z.J.; Down, P.M.; Bell, M.J. Detecting Dairy Cow Behavior Using Vision Technology. Agriculture 2021, 11, 675. [Google Scholar] [CrossRef]
- Nasirahmadi, A.; Sturm, B.; Olsson, A.-C.; Jeppsson, K.-H.; Müller, S.; Edwards, S.; Hensel, O. Automatic scoring of lateral and sternal lying posture in grouped pigs using image processing and Support Vector Machine. Comput. Electron. Agric. 2019, 156, 475–481. [Google Scholar] [CrossRef]
- Weary, D.M.; Huzzey, J.M.; von Keyserlingk, M.A.G. BOARD-INVITED REVIEW: Using behavior to predict and identify ill health in animals. J. Anim. Sci. 2009, 87, 770–777. [Google Scholar] [CrossRef]
- Zehner, N.; Niederhauser, J.J.; Schick, M.; Umstatter, C. Development and validation of a predictive model for calving time based on sensor measurements of ingestive behavior in dairy cows. Comput. Electron. Agric. 2019, 161, 62–71. [Google Scholar] [CrossRef]
- Hogeveen, H.; Kamphuis, C.; Steeneveld, W.; Mollenhorst, H. Sensors and Clinical Mastitis—The Quest for the Perfect Alert. Sensors 2010, 10, 7991–8009. [Google Scholar] [CrossRef]
- Dominiak, K.N.; Kirstensen, A.R. Prioritizing alarms from sensor-based detection models in livestock production—A review on model performance and alarm reducing methods. Comput. Electron. Agric. 2017, 133, 46–67. [Google Scholar] [CrossRef]
- Keceli, A.S.; Catal, C.; Kaya, A.; Tekinerdogan, B. Development of a recurrent neural networks-based calving prediction model using activity and behavioral data. Comput. Electron. Agric. 2020, 170, 105285. [Google Scholar] [CrossRef]
- Eckelkamp, E. Invited Review: Current state of wearable precision dairy technologies in disease detection. Appl. Anim. Sci. 2019, 35, 209–220. [Google Scholar] [CrossRef]
- Huston, G. How Artificial Intelligence Could Change the Dairy Farming Industry. 2022. Available online: https://www.tastingtable.com/754854/how-artificial-intelligence-could-change-the-dairy-farming-industry/ (accessed on 3 January 2025).
- Vázquez-Diosdado, J.A.; Gruhier, J.; Miguel-Pacheco, G.; Green, M.; Dottorini, T.; Kaler, J. Accurate prediction of calving in dairy cows by applying feature engineering and machine learning. Prev. Veter. Med. 2023, 219, 106007. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wojewodzic, D.; Gołębiewski, M.; Grodkowski, G. Methods of Observing the Signs of Approaching Calving in Cows—A Review. Animals 2025, 15, 1018. https://doi.org/10.3390/ani15071018
Wojewodzic D, Gołębiewski M, Grodkowski G. Methods of Observing the Signs of Approaching Calving in Cows—A Review. Animals. 2025; 15(7):1018. https://doi.org/10.3390/ani15071018
Chicago/Turabian StyleWojewodzic, Daria, Marcin Gołębiewski, and Grzegorz Grodkowski. 2025. "Methods of Observing the Signs of Approaching Calving in Cows—A Review" Animals 15, no. 7: 1018. https://doi.org/10.3390/ani15071018
APA StyleWojewodzic, D., Gołębiewski, M., & Grodkowski, G. (2025). Methods of Observing the Signs of Approaching Calving in Cows—A Review. Animals, 15(7), 1018. https://doi.org/10.3390/ani15071018