Genomic Prediction of Milk Fat Percentage Among Crossbred Cattle in the Indian Subcontinent
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
- Retention of cows with four or more monthly records taken between 8 and 340 days after calving on milk fat percentages for each lactation;
- Removal of cows with an average milk fat percentage greater than 3 standard deviations above the population average;
- Based on an initial statistical analysis using a linear regression model by R script, the removal of individual records for which the standardized residual was outside the −2 to +2 range (Figure 1).
3. Results
3.1. Phenotypic Quality Control
3.1.1. Data Structure
3.1.2. Herd Size and Number of Cows
3.2. Genotypic Quality Control
3.3. Imputation
3.4. Residual Effects and Genetic Parameter
3.5. Genomic-Estimated Breeding Value
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hegde, N.G. Impact of Crossbreeding and Upgrading of Nondescript Cattle and Buffaloes on Livestock Quality and Income. Indian J. Anim. Sci. 2018, 88, 606–611. [Google Scholar] [CrossRef]
- Hemme, T.; Garcia, O.; Saha, A. A Review of Milk Production in India with Particular Emphasis on Small-Scale Producers; Food and Agriculture Organization, Animal Production and Health Division, Viale delle Terme di Caracalla: Rome Italy, 2003. [Google Scholar] [CrossRef]
- Letha, D.G.; Kataktalware, M.; Nikita, L. Dairying and Rural Development: Challenges and Prospectus. Indian Dairym. 2018, 70, 129–131. [Google Scholar]
- FAOSTAT. 2024. Available online: https://www.fao.org/faostat/en/#home (accessed on 19 February 2025).
- Mathur, B.N. Current Problems and Challenges Confronting the Dairy Industry in India. Asian-Aust. J. Anim. Sci. 2000, 13, 447–452. [Google Scholar]
- Moran, J. Managing High Yielding Dairy Cows in the Tropics; CSIRO Publishing: Clayton, Australia, 2012. [Google Scholar] [CrossRef]
- Bauman, D.E.; Perfield, J.W.; Harvatine, K.J. Regulation of Fat Synthesis by Conjugated Linoleic Acid. Adv. Food Nutr. Res. 2006, 50, 83–108. [Google Scholar]
- Alothman, M.; Hogan, S.A.; Hennessy, D.; Dillon, P.; Kilcawley, K.N.; O’Donovan, M.; Tobin, J.; Fenelon, M.A.; O’Callaghan, T.F. The “Grass-Fed” Milk Story: Understanding the Impact of Pasture Feeding on the Composition and Quality of Bovine Milk. Foods 2019, 8, 350. [Google Scholar] [CrossRef]
- García-Ruiz, A.; Cole, J.B.; VanRaden, P.M.; Wiggans, G.R.; Ruiz-López, F.J.; Van Tassell, C.P. Changes in Genetic Selection Differentials and Generation Intervals in US Holstein Dairy Cattle as a Result of Genomic Selection. Proc. Natl. Acad. Sci. USA 2016, 113, E3995–E4004. [Google Scholar] [CrossRef] [PubMed]
- Wiggans, G.R.; Cole, J.B.; Hubbard, S.M.; Sonstegard, T.S. Genomic Selection in Dairy Cattle: The USDA Experience. Annu. Rev. Anim. Biosci. 2017, 5, 309–327. [Google Scholar]
- Banerjee, P.; Mustak, M.S.; De, S.; Mukherjee, A. Genetic Variation in Milk Composition Traits Among Indigenous and Crossbred Cattle in India. J. Dairy Sci. 2019, 102, 4321–4332. [Google Scholar]
- Singh, R.K.; Kumar, A.; Sharma, A. Genetic Basis of Milk Fat Percentage in Crossbred Cattle: Current Status and Future Perspectives. Indian J. Anim. Sci. 2020, 90, 1234–1243. [Google Scholar]
- Vohra, V. Genomic Selection and Its Significance in Indian Dairying. Indian J. Dairy Sci. 2018, 71, 539–545. [Google Scholar]
- Velayudhan, S.M.; Yin, T.; Alam, S.; Brügemann, K.; Sejian, V.; Bhatta, R.; Schlecht, E.; König, S. Unraveling the Genomic Association for Milk Production Traits and Signatures of Selection of Cattle in a Harsh Tropical Environment. Biology 2023, 12, 1483. [Google Scholar] [CrossRef] [PubMed]
- Vijh, R.K.; Tantia, M.S.; Mishra, B.; Bharani Kumar, S.T. Genomic Approaches for Improving Milk Traits in Indian Cattle: Challenges and Opportunities. Front. Genet. 2021, 12, 659238. [Google Scholar]
- Galukande, E.; Mulindwa, H.; Wurzinger, M.; Roschinsky, R.; Mwai, A.O.; Sölkner, J. Crossbreeding Cattle for Milk Production in the Tropics: Achievements, Challenges and Opportunities. Anim. Genet. Resour. Inf. 2013, 52, 111–125. [Google Scholar] [CrossRef]
- Ibtisham, F.; Zhang, L.; Xiao, M.; An, L.; Ramzan, M.B.; Nawab, A.; Zhao, Y.; Li, G.; Xu, Y. Genomic Selection and Its Application in Animal Breeding. Thai J. Vet. Med. 2017, 47, 301–310. [Google Scholar] [CrossRef]
- Hiendleder, S.; Bauersachs, S.; Boulesteix, A.; Blum, H.; Arnold, G.J.; Fröhlich, T.; Wolf, E. Functional Genomics: Tools for Improving Farm Animal Health and Welfare. Rev. Sci. Tech. Off. Int. Epiz. 2005, 24, 355–371. [Google Scholar]
- Henryon, M.; Berg, P.; Sørensen, A.C. Animal-Breeding Schemes Using Genomic Information Need Breeding Plans Designed to Maximise Long-Term Genetic Gains. Livest. Sci. 2014, 166, 38–47. [Google Scholar] [CrossRef]
- Mrode, R.; Ojango, J.M.K.; Okeyo, A.M.; Mwacharo, J.M. Genomic Selection and Use of Molecular Tools in Breeding Programs for Indigenous and Crossbred Cattle in Developing Countries: Current Status and Future Prospects. Front. Genet. 2019, 9, 694. [Google Scholar] [CrossRef]
- Th, M.; Bj, H.; Me, G. Prediction of Total Genetic Value Using Genome-Wide Dense Marker Maps. Genetics 2001, 157, 1819–1829. [Google Scholar] [CrossRef]
- Aliloo, H.; Mrode, R.; Okeyo, A.M.; Gibson, J.P. Ancestral Haplotype Mapping for GWAS and Detection of Signatures of Selection in Admixed Dairy Cattle of Kenya. Front. Genet. 2020, 11, 544. [Google Scholar] [CrossRef]
- Cole, J.B.; da Silva, M.V.G.B. Genomic Selection in Multi-Breed Dairy Cattle Populations. Rev. Bras. Zootec. 2016, 45, 195–202. [Google Scholar] [CrossRef]
- Chen, Z.; Yao, Y.; Ma, P.; Wang, Q.; Pan, Y. Haplotype-Based Genome-Wide Association Study Identifies Loci and Candidate Genes for Milk Yield in Holsteins. PLoS ONE 2018, 13, e0192695. [Google Scholar] [CrossRef]
- Sharko, F.S.; Khatib, A.; Prokhortchouk, E.B. Genomic Estimated Breeding Value of Milk Performance and Fertility Traits in the Russian Black-and-White Cattle Population. Acta Naturae 2022, 14, 109–122. [Google Scholar] [CrossRef] [PubMed]
- Data Cleaning—Dealing with Outliers. Neural Data Science. Available online: https://neuraldatascience.io/5-eda/data_cleaning.html (accessed on 19 October 2023).
- Zhang, M.; Luo, H.; Xu, L.; Shi, Y.; Zhou, J.; Wang, D.; Zhang, X.; Huang, X.; Wang, Y. Genomic Selection for Milk Production Traits in Xinjiang Brown Cattle. Animals 2022, 12, 136. [Google Scholar] [CrossRef]
- Fardo, D.W.; Ionita-Laza, I.; Lange, C. On Quality Control Measures in Genome-Wide Association Studies: A Test to Assess the Genotyping Quality of Individual Probands in Family-Based Association Studies and an Application to the HapMap Data. PLoS Genet. 2009, 5, e1000572. [Google Scholar] [CrossRef]
- Ding, X.; Zhang, Z.; Li, X.; Wang, S.; Wu, X.; Sun, D.; Yu, Y.; Liu, J.; Wang, Y.; Zhang, Y. Accuracy of Genomic Prediction for Milk Production Traits in the Chinese Holstein Population Using a Reference Population Consisting of Cows. J. Dairy Sci. 2013, 96, 5315–5323. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Kumar, A.; Gondro, C.; Pandey, A.K.; Dutt, T.; Mishra, B.P. Genome Wide Scan to Identify Potential Genomic Regions Associated With Milk Protein and Minerals in Vrindavani Cattle. Front. Vet. Sci. 2022, 9, 760364. [Google Scholar] [CrossRef] [PubMed]
- Al Kalaldeh, M.; Swaminathan, M.; Gaundare, Y.; Joshi, S.; Aliloo, H.; Strucken, E.M.; Ducrocq, V.; Gibson, J.P. Genomic Evaluation of Milk Yield in a Smallholder Crossbred Dairy Production System in India. Genet. Sel. Evol. 2021, 53, 73. [Google Scholar] [CrossRef]
- Mrode, R.; Ojango, J.; Ekine-Dzivenu, C.; Aliloo, H.; Gibson, J.; Okeyo, M.A. Genomic Prediction of Crossbred Dairy Cattle in Tanzania: A Route to Productivity Gains in Smallholder Dairy Systems. J. Dairy Sci. 2021, 104, 11779–11789. [Google Scholar] [CrossRef]
- Sargolzaei, M.; Chesnais, J.P.; Schenkel, F.S. A New Approach for Efficient Genotype Imputation Using Information from Relatives. BMC Genom. 2014, 15, 478. [Google Scholar] [CrossRef]
- VanRaden, P.M. Efficient Methods to Compute Genomic Predictions. J. Dairy Sci. 2008, 91, 4414–4423. [Google Scholar] [CrossRef]
- Lidauer, M.; Mäntysaari, E.A.; Strandén, I. Comparison of Test-Day Models for Genetic Evaluation of Production Traits in Dairy Cattle. Livest. Prod. Sci. 2003, 79, 73–86. [Google Scholar] [CrossRef]
- Naserkheil, M.; Miraie-Ashtiani, S.R.; Nejati-Javaremi, A.; Son, J.; Lee, D. Random Regression Models Using Legendre Polynomials to Estimate Genetic Parameters for Test-Day Milk Protein Yields in Iranian Holstein Dairy Cattle. Asian-Australas J. Anim. Sci. 2016, 29, 1682–1687. [Google Scholar] [CrossRef]
- Strabel, T.; Ptak, E.; Szyda, J.; Jamrozik, J. Multiple-Lactation Random Regression Test-Day Model for Polish Black and White Cattle. Interbull Bull. 2004, 32, 133. [Google Scholar]
- Lee, Y.-M.; Dang, C.-G.; Alam, M.Z.; Kim, Y.-S.; Cho, K.-H.; Park, K.-D.; Kim, J.-J. The Effectiveness of Genomic Selection for Milk Production Traits of Holstein Dairy Cattle. Asian-Australas J. Anim. Sci. 2020, 33, 382–389. [Google Scholar] [CrossRef]
- Lu, H.; Wang, Y.; Bovenhuis, H. Genome-Wide Association Study for Genotype by Lactation Stage Interaction of Milk Production Traits in Dairy Cattle. J. Dairy Sci. 2020, 103, 5234–5245. [Google Scholar] [CrossRef]
- Khansefid, M.; Goddard, M.E.; Haile-Mariam, M.; Konstantinov, K.V.; Schrooten, C.; de Jong, G.; Jewell, E.G.; O’Connor, E.; Pryce, J.E.; Daetwyler, H.D.; et al. Improving Genomic Prediction of Crossbred and Purebred Dairy Cattle. Front. Genet. 2020, 11, 598580. [Google Scholar]
- Jamrozik, J.; Schaeffer, L.R.; Dekkers, J.C.M. Genetic Evaluation of Dairy Cattle Using Test Day Yields and Random Regression Model. J. Dairy Sci. 1997, 80, 1217–1226. [Google Scholar] [CrossRef]
- Buaban, S.; Prempree, S.; Sumreddee, P.; Duangjinda, M.; Masuda, Y. Genomic Prediction of Milk-Production Traits and Somatic Cell Score Using Single-Step Genomic Best Linear Unbiased Predictor with Random Regression Test-Day Model in Thai Dairy Cattle. J. Dairy Sci. 2021, 104, 12713–12723. [Google Scholar] [CrossRef]
- Cheruiyot, E.K.; Bett, R.C.; Amimo, J.O.; Mujibi, F.D.N. Milk Composition for Admixed Dairy Cattle in Tanzania. Front. Genet. 2018, 9, 142. [Google Scholar]
- Penasa, M.; Tiezzi, F.; Sturaro, A.; Cassandro, M.; De Marchi, M. A Comparison of the Predicted Coagulation Characteristics and Composition of Milk from Multi-Breed Herds of Holstein-Friesian, Brown Swiss and Simmental Cows. Int. Dairy J. 2014, 35, 6–10. [Google Scholar] [CrossRef]
- Hayes, B.J.; Bowman, P.J.; Chamberlain, A.C.; Verbyla, K.; Goddard, M.E. Accuracy of Genomic Breeding Values in Multi-Breed Dairy Cattle Populations. Genet. Sel. Evol. 2009, 41, 51. [Google Scholar] [CrossRef] [PubMed]
- Iso-Touru, T.; Sahana, G.; Guldbrandtsen, B.; Lund, M.S.; Vilkki, J. Genome-Wide Association Analysis of Milk Yield Traits in Nordic Red Cattle Using Imputed Whole Genome Sequence Variants. BMC Genet. 2016, 17, 55. [Google Scholar] [CrossRef]
- Oliveira, H.R.; Brito, L.F.; Silva, F.F.; Lourenco, D.A.L.; Jamrozik, J.; Schenkel, F.S. Genomic Prediction of Lactation Curves for Milk, Fat, Protein, and Somatic Cell Score in Holstein Cattle. J. Dairy Sci. 2019, 102, 452–463. [Google Scholar] [CrossRef] [PubMed]
- Carvalheiro, R.; Boison, S.A.; Neves, H.H.R.; Sargolzaei, M.; Schenkel, F.S.; Utsunomiya, Y.T.; O’Brien, A.M.P.; Sölkner, J.; McEwan, J.C.; Van Tassell, C.P.; et al. Accuracy of Genotype Imputation in Nelore Cattle. Genet. Sel. Evol. 2014, 46, 69. [Google Scholar] [CrossRef]
- Jenko, J.; Wiggans, G.R.; Cooper, T.A.; Eaglen, S.A.E.; Luff, W.G.d.L.; Bichard, M.; Pong-Wong, R.; Woolliams, J.A. Cow Genotyping Strategies for Genomic Selection in a Small Dairy Cattle Population. J. Dairy Sci. 2017, 100, 439–452. [Google Scholar] [CrossRef] [PubMed]
- Fernandes Júnior, G.A.; Carvalheiro, R.; De Oliveira, H.N.; Sargolzaei, M.; Costilla, R.; Ventura, R.V.; Fonseca, L.F.S.; Neves, H.H.R.; Hayes, B.J.; De Albuquerque, L.G. Imputation Accuracy to Whole-Genome Sequence in Nellore Cattle. Genet. Sel. Evol. 2021, 53, 27. [Google Scholar] [CrossRef]
- Kudinov, A.A.; Mäntysaari, E.A.; Pitkänen, T.J.; Saksa, E.I.; Aamand, G.P.; Uimari, P.; Strandén, I. Single-step Genomic Evaluation of Russian Dairy Cattle Using Internal and External Information. J. Anim. Breed. Genet. 2022, 139, 259–270. [Google Scholar] [CrossRef]
- Guillenea, A.; Su, G.; Lund, M.S.; Karaman, E. Genomic Prediction in Nordic Red Dairy Cattle Considering Breed Origin of Alleles. J. Dairy Sci. 2022, 105, 2426–2438. [Google Scholar] [CrossRef]
- Pangmao, S.; Thomson, P.C.; Khatkar, M.S. Genetic Parameters of Milk and Lactation Curve Traits of Dairy Cattle from Research Farms in Thailand. Anim. Biosci. 2022, 35, 1499–1511. [Google Scholar] [CrossRef]
- Calus, M.P.L.; Carrick, M.J.; Veerkamp, R.F.; Goddard, M.E. Estimation of Genetic Parameters for Milk Fat Depression in Dairy Cattle. J. Dairy Sci. 2005, 88, 1166–1177. [Google Scholar] [CrossRef]
- Missanjo, E.; Imbayarwo-Chikosi, V.; Halimani, T. Estimation of Genetic and Phenotypic Parameters for Production Traits and Somatic Cell Count for Jersey Dairy Cattle in Zimbabwe. ISRN Vet. Sci. 2013, 2013, 470585. [Google Scholar] [CrossRef]
- Sneddon, N.; Lopez-Villalobos, N.; Davis, S.; Hickson, R.; Shalloo, L.; Garrick, D. Estimates of Genetic and Crossbreeding Parameters for Milk Components and Potential Yield of Dairy Products from New Zealand Dairy Cattle. N. Z. J. Agric. Res. 2016, 59, 79–89. [Google Scholar] [CrossRef]
- Charton, C.; Guinard-Flament, J.; Lefebvre, R.; Barbey, S.; Gallard, Y.; Boichard, D.; Larroque, H. Genetic Parameters of Milk Production Traits in Response to a Short Once-Daily Milking Period in Crossbred Holstein × Normande Dairy Cows. J. Dairy Sci. 2018, 101, 2235–2247. [Google Scholar] [CrossRef] [PubMed]
- Misztal, I.; Lourenco, D.A.L.; Legarra, A. Current status of genomic evaluation. Annu. Rev. Anim. Biosci. 2020, 8, 261–280. [Google Scholar] [CrossRef] [PubMed]
- Toro, M.A.; Varona, L. Non-additive genetic effects and inbreeding depression in genomic selection. Genet. Sel. Evol. 2010, 42, 33. [Google Scholar] [CrossRef]
- Neshat, M.; Lee, S.; Momin, M.M.; Truong, B.; van der Werf, J.H.J.; Lee, S.H. An effective hyper-parameter can increase the prediction accuracy in a single-step genetic evaluation. Front. Genet. 2023, 14, 1104906. [Google Scholar] [CrossRef]
- Andonov, S.; Lourenco, D.A.L.; Fragomeni, B.O.; Masuda, Y.; Pocrnic, I.; Tsuruta, S.; Misztal, I. Small genotyped populations using different sources of external information—A simulation study. J. Dairy Sci. 2017, 100, 395–401. [Google Scholar] [CrossRef]
- Bouquet, A.; Juga, J. Integrating genomic selection into dairy cattle breeding programmes: A review. Animals 2013, 7, 705–713. [Google Scholar] [CrossRef]
Herd Size | Herds | Number of Animals |
---|---|---|
1 | 839 | 839 |
2 | 297 | 594 |
3 | 79 | 237 |
4 | 21 | 84 |
5 | 15 | 75 |
6 | 5 | 30 |
7 and above | 4 | 37 |
Total | 1260 | 1896 |
Conditions | Threshold | Number of Animals/SNPs Screened | Number of Animals/SNPs Retained | Number of Animals/SNPs Dropped |
---|---|---|---|---|
No. of duplicates removed | 0.98 | 1478 | Nil | Nil |
No. of animals’ call rates | 0.90 | 1478 | 1477 | 1 |
No. of markers with low call rates and low MAF removed | 0.95 0.01 | 49,911 | 45,682 | 4229 |
No. of markers only in autosomes | Removal of X, Y, MT chromosome markers | 49,911 | 40,822 | 9089 |
Sl.No. | Animal ID | IFE | ARE | HRE | AFP |
---|---|---|---|---|---|
1 | 6BA9CA3D-B98E-40DC-B86A-0B2116127746 | 0.13 | −0.05 | 0.05 | 0.13 |
2 | 6BA9CA3D-B98E-40DC-B86A-0B2116127746 | −0.10 | −0.05 | 0.05 | −0.11 |
3 | 6BA9CA3D-B98E-40DC-B86A-0B2116127746 | 0.44 | −0.05 | 0.05 | 0.44 |
4 | 6BA9CA3D-B98E-40DC-B86A-0B2116127746 | 0.49 | −0.05 | 0.05 | 0.49 |
5 | 013CFDC6-0446-471B-AE0D-545834C921AB | −0.33 | 0.30 | 0.05 | 0.03 |
6 | 013CFDC6-0446-471B-AE0D-545834C921AB | 0.44 | 0.30 | 0.05 | 0.79 |
7 | 6BA9CA3D-B98E-40DC-B86A-0B2116127746 | 0.87 | −0.05 | 0.05 | 0.87 |
8 | 6BA9CA3D-B98E-40DC-B86A-0B2116127746 | −0.84 | −0.05 | 0.05 | −0.84 |
9 | 013CFDC6-0446-471B-AE0D-545834C921AB | −0.30 | 0.30 | 0.05 | 0.05 |
10 | 6BA9CA3D-B98E-40DC-B86A-0B2116127746 | 0.28 | −0.05 | 0.05 | 0.28 |
Parameter | Milk Fat Percentage |
---|---|
Additive genetic variance (Va) | 0.012 |
Environmental variance (Ve) | 0.106 |
Total phenotypic variance (Vp) | 0.118 |
Heritability (h2) | 0.10 ± 0.036 |
Animal ID | GEBV (%) |
---|---|
0BB54BC5-F4E4-45C0-903A-A7552588CB13 | 3.10 |
1FAA4E0A-75DA-44D5-A94A-A9D7E0252CD6 | 2.77 |
3A324D0B-E441-4D59-948D-302CF3FCCCBF | 2.44 |
6ACFB5B6-A14D-403B-9331-8CD0E740439B | 2.32 |
8A3022D7-53F1-4691-A555-EBA1FB5DBC16 | 2.21 |
5D127AF5-80CE-4353-B146-401623836E0F | 1.63 |
60AA4C28-B1C4-4AFE-B353-A33327FDE7B0 | 1.63 |
87CB327A-C7D6-4DE4-9B99-4E07E94233D5 | 1.14 |
2079EDB5-4B26-496E-8CAD-C24F19DB292E | 1.11 |
5A7911D7-F0A6-48D7-9028-1145FE2BCEAE | 1.07 |
6E9BED8F-964B-44FC-AC2C-0CE95A8A12B8 | 1.05 |
2996D785-6FD9-42EC-96C0-CF9B59A5E13E | 1.05 |
293DC3D5-9DBE-4C6E-A48E-F645FD5646D8 | 1.00 |
7ADB65B4-69AB-4D0C-B460-A0595833BD94 | 0.97 |
73BEA21E-6DB6-47FA-A69B-B344797F7126 | 0.95 |
405BA838-B753-417D-8B0F-C78D484EF8DF | 0.22 |
82B60872-60DC-450E-A10D-125A87423BB2 | 0.21 |
46569474-EF61-40BF-A59C-C66CE550E423 | 0.13 |
0D471917-2B6B-4207-90EE-B2655C4FF5DE | 0.12 |
405BA838-B753-417D-8B0F-C78D484EF8DF | 0.22 |
08D7934D-2CBB-44E2-B9C4-85F0E7C9CA84 | −0.095 |
5F8C5E44-918B-4FBF-816F-80B6FC9F1B38 | −0.096 |
2FDCDC60-0FC3-4815-B32C-7DF1A95CF677 | −0.096 |
4AF62135-6568-4262-A994-C82815927CD7 | −0.096 |
1F590D1D-C358-4F6F-B97D-7D580C9D93FD | −0.096 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balasubramanian, R.V.; Nagarajan, M.; Swaminathan, M.; Angamuthu, R.; Jaganadhan, M.; Ramasamy, S.; Muthusamy, M.; Aranganoor Kannan, T.; Peters, S.O. Genomic Prediction of Milk Fat Percentage Among Crossbred Cattle in the Indian Subcontinent. Animals 2025, 15, 1004. https://doi.org/10.3390/ani15071004
Balasubramanian RV, Nagarajan M, Swaminathan M, Angamuthu R, Jaganadhan M, Ramasamy S, Muthusamy M, Aranganoor Kannan T, Peters SO. Genomic Prediction of Milk Fat Percentage Among Crossbred Cattle in the Indian Subcontinent. Animals. 2025; 15(7):1004. https://doi.org/10.3390/ani15071004
Chicago/Turabian StyleBalasubramanian, Raghavendran Vadivel, Murali Nagarajan, Marimuthu Swaminathan, Raja Angamuthu, Muralidharan Jaganadhan, Saravanan Ramasamy, Malarmathi Muthusamy, Thiruvenkadan Aranganoor Kannan, and Sunday Olusola Peters. 2025. "Genomic Prediction of Milk Fat Percentage Among Crossbred Cattle in the Indian Subcontinent" Animals 15, no. 7: 1004. https://doi.org/10.3390/ani15071004
APA StyleBalasubramanian, R. V., Nagarajan, M., Swaminathan, M., Angamuthu, R., Jaganadhan, M., Ramasamy, S., Muthusamy, M., Aranganoor Kannan, T., & Peters, S. O. (2025). Genomic Prediction of Milk Fat Percentage Among Crossbred Cattle in the Indian Subcontinent. Animals, 15(7), 1004. https://doi.org/10.3390/ani15071004