Whole Cottonseed as an Effective Strategy to Mitigate Enteric Methane Emissions in Cattle Fed Low-Quality Forages †
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals, Experimental Design and Diets
2.2. Feed Intake and Digestibility
2.3. Enteric Methane Emission
2.4. Statistical Analyses
3. Results and Discussion
3.1. Feed Intake
3.2. Digestion
3.3. Animal Performance
3.4. Enteric Methane Emission
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Congio, G.F.S.; Bannink, A.; Mayorga, O.L.; Rodrigues, J.P.P.; Bougouin, A.; Kebreab, E.; Carvalho, P.C.F.; Berchielli, T.T.; Mercadante, M.E.Z.; Valadares-Filho, S.C.; et al. Improving the accuracy of beef cattle methane inventories in Latin America and Caribbean countries. Sci. Total Environ. 2023, 856, 159128. [Google Scholar] [CrossRef] [PubMed]
- CAC; UNEP. Global Methane Assessment: Benefits and Costs of Mitigating Methane Emissions. United Nations Environment Programme and Clean Air Coalition, Nairobi. 2021. Available online: https://www.unep.org/resources/report/global-methane-assessment-benefits-and-costs-mitigating-methane-emissions (accessed on 20 September 2021).
- FAOSTAT. ‘FAO Statistical Database’. (Food and Agricultural Organization of the United Nations: Rome). 2020. Available online: https://www.fao.org/faostat/en/#data (accessed on 20 July 2022).
- Tedeschi, L.O.; Abdalla, A.L.; Alvarez, C.; Anuga, S.W.; Arango, J.; Beauchemin, K.A.; Becquet, P.; Berndt, A.; Burns, R.; De Camillis, C.; et al. Quantification of methane emitted by ruminants: A review of methods. J. Anim. Sci. 2022, 100, skac197. [Google Scholar] [CrossRef] [PubMed]
- Ramin, M.; Huhtanen, P. Development of equations for predicting methane emissions from ruminants. J. Dairy Sci. 2013, 96, 2476–2493. [Google Scholar] [CrossRef] [PubMed]
- Palangi, V.; Taghizadeh, A.; Abachi, S.; Lackner, M. Strategies to Mitigate Enteric Methane Emissions in Ruminants: A Review. Sustainability 2022, 14, 13229. [Google Scholar] [CrossRef]
- Grainger, C.; Clarke, T.; Beauchemin, K.A.; McGinn, S.M.; Eckard, R.J. Supplementation with whole cottonseed reduces methane emissions and can profitably increase milk production of dairy cows offered a forage and cereal grain diet. Aust. J. Exp. Agric. 2008, 48, 73–76. [Google Scholar] [CrossRef]
- Beauchemin, K.A.; McGinn, S.M. Reducing Methane in Dairy and Beef Cattle Operations: What Is Feasible? Prairie Soil Crop. 2008, 1, 17–21. Available online: https://profils-profiles.science.gc.ca/en/publication/reducing-methane-dairy-and-beef-cattle-operations-what-feasible (accessed on 10 November 2024).
- Beck, M.R.; Thompson, L.R.; Williams, G.D.; Place, S.E.; Gunter, S.A.; Reuter, R.R. Fat supplements differing in physical form improve performance but divergently influence methane emissions of grazing beef cattle. Anim. Feed Sci. Technol. 2019, 254, 114210. [Google Scholar] [CrossRef]
- Johnson, K.A.; Kincaid, R.L.; Westberg, H.H.; Gaskins, C.T.; Lamb, B.K.; Cronrath, J.D. The effect of oilseeds in diets of lactating cows on milk production and methane emissions. J. Dairy Sci. 2002, 85, 1509–1515. [Google Scholar] [CrossRef] [PubMed]
- Eugène, M.; Massé, D.; Chiquette, J.; Benchaar, C. Meta-analysis on the effects of lipid supplementation on methane production in lactating dairy cows. Can. J. Anim. Sci. 2008, 88, 331–334. [Google Scholar] [CrossRef]
- Rabiee, A.R.; Breinhild, K.; Scott, W.; Golder, H.M.; Block, E.; Lean, I.J. Effect of fat additions to diets of dairy cattle on milk production and components: A meta-analysis and meta-regression. J. Dairy Sci. 2012, 95, 3225–3247. [Google Scholar] [CrossRef]
- Hristov, A.N.; Oh, J.; Firkins, J.; Dijkstra, J.; Kebreab, E.; Waghorn, G.; Makker, M.P.S.; Adesogan, A.T.; Yang, W.; Lee, C.; et al. SPECIAL TOPICS-Mitigation of methane nitrous oxide emissions from animal operations: I. A review of enteric methane mitigation options. J. Anim. Sci. 2013, 91, 5045–5069. [Google Scholar] [CrossRef]
- Enjalbert, F.; Combes, S.; Zened, A.; Meynadier, A. Rumen microbiota and dietary fat: A mutual shaping. J. Appl. Microbiol. 2017, 123, 782–797. [Google Scholar] [CrossRef] [PubMed]
- Beck, M.R.; Thompson, L.R.; White, J.E.; Williams, G.D.; Place, S.E.; Moffet, C.A.; Gunter, S.A.; Reuter, R.R. Whole cottonseed supplementation improves performance and reduces methane emission intensity of grazing beef steers. Prof. Anim. Sci. 2018, 34, 339–345. [Google Scholar] [CrossRef]
- Isaac, I.O.; Ekpa, O.D. Fatty Acid Composition of Cottonseed Oil and its Application in Production and Evaluation of Biopolymers. Am. J. Polymer Sci. 2013, 2, 13–22. [Google Scholar]
- Rogers, G.M.; Poore, M.H. Alternative feeds for beef cattle. Vet. Clin. Food Anim. Pract. 2002, 18, xi–xii. [Google Scholar] [CrossRef]
- Arroquy, J.I.; Cochran, R.C.; Villarreal, M.; Wickersham, T.A.; Llewellyn, D.A.; Titgemeyer, E.C.; Nagaraja, T.G.; Johnson, D.E.; Gnad, D. Effect of level of rumen degradable protein and type of supplemental non-fiber carbohydrate on intake and digestion of low-quality grass hay by beef cattle. Anim. Feed Sci. Technol. 2004, 115, 83–99. [Google Scholar] [CrossRef]
- Steele, J.D.; Banta, J.P.; Wettemann, R.P.; Krehbiel, C.R.; Lalman, D.L. Drought-stressed soybean supplementation for beef cows. Prof. Anim. Sci. 2007, 23, 358–365. [Google Scholar] [CrossRef]
- INDEC. Instituto Nacional de Estadística y Censos. Censo Nacional Agropecuario 2018. 2018. Available online: https://www.indec.gob.ar/indec/web/Nivel4-Tema-3-8-87 (accessed on 10 February 2024).
- Herrera-Ojeda, J.B.; Parra-Bracamonte, G.M.; Herrera-Camacho, J.; López-Villalobos, N.; Magaña-Monforte, J.G.; Martínez-González, J.C.; Lobit, P.; Vázquez-Armijo, J.F. Información climáticas asociada a estaciones productivas para el ajuste de modelos estadísticos de sistemas bovinos bajo condiciones extensivas. Arch. Zootec. 2018, 67, 21–28. [Google Scholar] [CrossRef]
- Cornacchione, M.V.; Fumagalli, A.E.; González Pérez, M.A.; Salgado, J.M.; Oneto, C.; Sokolic, L.; Mijoevich, L.M. Calidad estivo-otoñal de cuatro gramíneas forrajeras tropicales. Rev. Arg. Prod. Anim. 2008, 28, 349–543. [Google Scholar]
- Valente, E.E.L.; Paulino, M.F.; Detmann, E.; Valadares Filho, S.C.; Barros, L.V.; Acedo, T.S.; Couto, V.R.M.; Lopes, A.S. Levels of multiple supplements or nitrogen salt for beef heifers in pasture during the dry season. Rev. Bras. Zootec. 2011, 40, 2011–2019. [Google Scholar] [CrossRef]
- Añez-Osuna, F.; Penner, G.B.; Larson, K.; Jefferson, P.G.; Lardner, H.A.; McKinnon, J.J. Effect of rumen degradable energy supplementation on forage utilization and performance of steers grazing stockpiled cool season perennial grass pastures. Can. J. Anim. Sci. 2015, 95, 255–265. [Google Scholar] [CrossRef]
- Beck, P.A.; Anders, M.; Watkins, B.; Gunter, S.A.; Hubbell, D.; Gadberry, M.S. 2011 and 2012 Early Careers Achievement Awards: Improving the production, environmental, and economic efficiency of the stocker cattle industry in the southeastern United States. J. Anim. Sci. 2013, 91, 2456–2466. [Google Scholar] [CrossRef]
- Murillo, M.; Herrera, E.; Ruiz, O.; Reyes, O.; Carrete, F.O.; Gutiérrez, H. Effect of supplemental corn dried distillers grains with solubles fed to beef steers grazing native rangeland during the forage dormant season. Asian Australas. J. Anim. Sci. 2016, 29, 666. [Google Scholar] [CrossRef] [PubMed]
- Koza, G.A.; Mussart, N.B.; Fioranelli, S.A.; Álvarez Chamale, G.M.; Coppo, J.A. Respuesta de indicadores nutricionales en vaquillas suplementadas con semillas de soja y algodón en Chaco, Argentina. Rev. Vet. 2009, 20, 15–21. [Google Scholar] [CrossRef]
- Cochran, R.C.; Galyean, M.L. Measurement of in vivo forage digestion by ruminants. In Forage Quality, Evaluation, and Utilization; Fahey, G.C., Jr., Ed.; ASA-CSSA-SSSA: Madison, WI, USA, 1995; Volume 15, pp. 613–643. Available online: https://acsess.onlinelibrary.wiley.com/doi/book/10.2134/1994.foragequality (accessed on 20 October 2012).
- Johnson, K.; Huyler, M.; Westberg, H.; Lamb, B.; Zimmerman, P. Measurement of Methane Emissions from Ruminant Livestock Using a SF6 Tracer Technique. Environ. Sci. Technol. 1994, 28, 359–362. [Google Scholar] [CrossRef] [PubMed]
- Gere, J.I.; Gratton, R. Simple, low-cost flow controllers for time averaged atmospheric sampling and other applications. Lat. Am. Appl. Res. 2010, 40, 377–381. [Google Scholar]
- Pinares-Patiño, C.S.; D’Hour, P.; Jouany, J.P.; Martin, C. Effects of stocking rate on methane and carbon dioxide emissions from grazing cattle. Agric. Ecosyst. Environ. 2007, 121, 30–46. [Google Scholar] [CrossRef]
- Gere, J.I.; Bualó, R.A.; Perini, A.L.; Arias, R.D.; Ortega, F.M.; Wulff, A.E.; Berra, G. Methane emission factors for beef cows in Argentina: Effect of diet quality. New Zealand J. Agric. Res. 2019, 64, 260–268. [Google Scholar] [CrossRef]
- Di Rienzo, J.A.; Casanoves, F.; Balzarini, M.G.; Gonzalez, L.; Tablada, M.; Robledo, C.W. InfoStat versión 2020. Centro de Transferencia InfoStat, FCA, Universidad Nacional de Córdoba, Argentina. Available online: http://www.infostat.com.ar (accessed on 10 December 2020).
- Rogers, G.M.; Poore, M.H.; Paschal, J.C. Feeding cotton products to cattle. Vet. Clin. Food Anim. Pract. 2002, 18, 267–294. [Google Scholar] [CrossRef] [PubMed]
- Hill, G.M.; Poore, M.H.; Renney, D.J.; Nichols, A.J.; Pence, M.E.; Dowd, M.K.; Mullinix, B.G., Jr. Utilization of whole cottonseed and hay in beef cow diets. In Proceedings of the 19th Annual Florida Ruminant Nutrition Symposium, Gainesville, FL, USA, 29–30 January 2008. [Google Scholar]
- Chuntrakort, P.; Otsuka, M.; Hayashi, K.; Takenaka, A.; Udchachon, S.; Sommart, K. The effect of dietary coconut kernels, whole cottonseeds and sunflower seeds on the intake, digestibility and enteric methane emissions of Zebu beef cattle fed rice straw based diets. Livest. Sci. 2014, 161, 80–89. [Google Scholar] [CrossRef]
- Bradford, B.J.; Harvatine, K.J.; Allen, M.S. Dietary unsaturated fatty acids increase plasma glucagon-like peptide-1 and cholecystokinin and may decrease premeal ghrelin in lactating dairy cows. J. Dairy Sci. 2008, 91, 1443–1450. [Google Scholar] [CrossRef] [PubMed]
- Panahiha, P.; Mirzaei-Alamouti, H.; Kazemi-Bonchenari, M.; Poorhamdollah, M.; Vazirigohar, M.; Aschenbach, J.R. The type of lipid supplement has crucial implications for forage particle size in calf starter diets. J. Anim. Sci. Biotechnol. 2023, 14, 109. [Google Scholar] [CrossRef]
- Harvatine, K.J.; Allen, M.S. Effects of fatty acid supplements on feed intake, and feeding and chewing behavior of lactating dairy cows. J. Dairy Sci. 2006, 89, 1104–1112. [Google Scholar] [CrossRef]
- Kargar, S.; Khorvash, M.; Ghorbani, G.R.; Alikhani, M.; Yang, W.Z. Short communication: Effects of dietary fat supplements and forage:concentrate ratio on feed intake, feeding, and chewing behavior of Holstein dairy cows. J. Dairy Sci. 2010, 93, 4297–4301. [Google Scholar] [CrossRef]
- Drackley, J.K.; Klusmeyer, T.H.; Trusk, A.M.; Clark, J.H. Infusion of long-chain fatty acids varying in saturation and chain length into the abomasums of lactating dairy cows. J. Dairy Sci. 1992, 75, 1517–1526. [Google Scholar] [CrossRef] [PubMed]
- Benson, J.A.; Reynolds, C.K. Effects of abomasal infusion of long-chain fatty acids on splanchnic metabolism of pancreatic and gut hormones in lactating dairy cows. J. Dairy Sci. 2001, 84, 1488–1500. [Google Scholar] [CrossRef]
- Litherland, N.B.; Thire, S.; Beaulieu, A.D.; Reynolds, C.K.; Benson, J.A.; Drackley, J.K. Dry matter intake is decreased more by abomasal infusion of unsaturated free fatty acids than by unsaturated triglycerides. J. Dairy Sci. 2005, 88, 632–643. [Google Scholar] [CrossRef]
- Relling, A.E.; Reynolds, C.K. Feeding rumen-inert fats differing in their degree of saturation decreases intake and increases plasma concentrations of gut peptides in lactating dairy cows. J. Dairy Sci. 2007, 90, 1506–1515. [Google Scholar] [CrossRef] [PubMed]
- Nogueira, R.G.S.; Perna Junior, F.; Pereira, A.S.C.; Cassiano, E.C.O.; Carvalho, R.F.; Rodrigues, P.H.M. Methane mitigation and ruminal fermentation changes in cows fed cottonseed and vitamin E. Sci. Agric. 2020, 77, e20180247. [Google Scholar] [CrossRef]
- Schneid, K.N.; Foote, A.P.; Beck, P.A.; Farran, G.L.; Wilson, B.K. Using whole cottonseed to replace dried distillers grains plus solubles and prairie hay in finishing beef cattle rations balanced for physically effective neutral detergent fiber. Appl. Anim. Behav. Sci. 2022, 38, 417–432. [Google Scholar] [CrossRef]
- Vazquez, O.P.; Smith, T.R. Factors affecting pasture intake and total dry matter intake in grazing dairy cows. J. Dairy Sci. 2000, 83, 2301–2309. [Google Scholar] [CrossRef]
- Stahlhofer, M.; Valente, É.E.L.; de Barros, L.V.; Damasceno, M.L.; Barbizan, M.; Melo, B.V.R.; Arndt, S.N.D.S.; da Silva, S.S. Influence of energy supplementation on associative effects in Nellore bulls on a tropical pasture during the rainy season. Semin. Ciências Agrárias 2021, 42, 2585–2598. [Google Scholar] [CrossRef]
- Hyer, J.C.; Oltjen, J.W.; Galyean, M.L. Evaluation of a feed intake model for the grazing beef steer1. J. Anim. Sci. 1991, 69, 836–842. [Google Scholar] [CrossRef] [PubMed]
- Marsetyo, M. Feeding Strategies to Reduce Intake Substitution of Forages by Supplements in Beef Cattle. Ph.D. Thesis, University of Queensland, Brisbane, Australia, 2003; pp. 1–339. [Google Scholar]
- Nogueira, R.G. Enteric and feces methane emissions, ruminal fermentative parameters and feeding behavior of cows fed cottonseed and vitamin E. Univ. Sao Paulo. 2017, 13, 1–99. [Google Scholar]
- Beauchemin, K.A.; Kreuzer, M.; O’Mara, F.O.; McAllister, T.A. Nutritional management for enteric methane abatement: A review. Aust. J. Exp. Agric. 2008, 48, 21–27. [Google Scholar] [CrossRef]
- Grainger, C.; Clarke, T.; Eckard, R.J. Effect of whole cottonseed supplementation on energy and nitrogen partitioning and rumen function in dairy cattle on a forage and cereal grain diet. Aust. J. Exp. Agric. 2008, 48, 860–865. [Google Scholar] [CrossRef]
- Ismartoyo, M. Effect of feeding whole cottonseed as a supplement on digestibility and rumen fermentation characteristics of sheep. Bang. J. Anim. Sci. 2017, 46, 239–243. [Google Scholar] [CrossRef]
- Castro Veloz, C. Effect of Increasing Levels of Gossypol and Fatty Acids Coming from Whole Cottonseed on Rumen Fermentation, Nutrient Digestibility and Microbial Community Composition in Continuous Culture Fermenters. Master’s Thesis, Utah State University, Logan, UT, USA, 2023; pp. 1–69. Available online: https://digitalcommons.usu.edu/cgi/viewcontent.cgi?article=9877&context=etd (accessed on 18 November 2024).
- Coppock, C.E.; West, J.W.; Moya, J.R.; Nave, D.H.; LaBore, J.M.; Thompson, K.G.; Rowe, L.D.; Gates, C.E. Effects of Amount of Whole Cottonseed on Intake, Digestibility, and Physiological Responses of Dairy Cows. J. Dairy Sci. 1985, 68, 2248–2258. [Google Scholar] [CrossRef]
- de Gouvêa, V.N.; Biehl, M.V.; de Castro Ferraz Junior, M.V.; Moreira, E.M.; Neto, J.A.F.; Westphalen, M.F.; Oliveira, G.B.; Ferreira, E.M.; Polizel, D.M.; Pires, A.V. Effects of soybean oil or various levels of whole cottonseed on intake, digestibility, feeding behavior, and ruminal fermentation characteristics of finishing beef cattle. Livest. Sci. 2021, 244, 104390. [Google Scholar] [CrossRef]
- NASEM (National Academies of Science, Engineering, and Medicine). Nutrient Requirements of Beef Cattle, 8th revised, ed.; National Academies of Science, Engineering, and Medicine Press: Washington, DC, USA, 2016. [Google Scholar] [CrossRef]
- Boadi, D.A.; Wittenberg, K.M. Methane production from dairy and beef heifers fed forages differing in nutrient density using the sulphur hexafluoride (SF 6) tracer gas technique. Can. J. Anim. Sci. 2002, 82, 201–206. [Google Scholar] [CrossRef]
- Grainger, C.; Williams, R.; Clarke, T.; Wright, A.D.G.; Eckard, R.J. Supplementation with whole cottonseed causes long-term reduction of methane emissions from lactating dairy cows offered a forage and cereal grain diet. J. Dairy Sci. 2010, 93, 2612–2619. [Google Scholar] [CrossRef] [PubMed]
- Newbold, C.J.; De la Fuente, G.; Belanche, A.; Ramos-Morales, E.; McEwan, N.R. The role of ciliate protozoa in the rumen. Front. Microbiol. 2015, 6, 1313. [Google Scholar] [CrossRef] [PubMed]
- Williams, S.R.O.; Hannah, M.C.; Eckard, R.J.; Wales, W.J.; Moate, P.J. Supplementing the diet of dairy cows with fat or tannin reduces methane yield, and additively when fed in combination. Animal 2020, 14, s464–s472. [Google Scholar] [CrossRef] [PubMed]
- Beauchemin, K.A.; Ungerfeld, E.M.; Abdalla, A.L.; Alvarez, C.; Arndt, C.; Becquet, P.; Benchaar, C.; Berndt, A.; Mauricio, R.M.; McAllister, T.A.; et al. Invited review: Current enteric methane mitigation options. J. Dairy Sci. 2022, 105, 9297–9326. [Google Scholar] [CrossRef] [PubMed]
- Knapp, J.R.; Laur, G.L.; Vadas, P.A.; Weiss, W.P.; Tricarico, J.M. Invited review: Enteric methane in dairy cattle production: Quantifying the opportunities and impact of reducing emissions. J. Dairy Sci. 2014, 97, 3231–3261. [Google Scholar] [CrossRef] [PubMed]
- Muñoz, C.; Villalobos, R.; Peralta, A.M.T.; Morales, R.; Urrutia, N.L.; Ungerfeld, E.M. Long-term and carryover effects of supplementation with whole oilseeds on methane emission, milk production and milk fatty acid profile of grazing dairy cows. Animals 2021, 11, 2978. [Google Scholar] [CrossRef] [PubMed]
- Dohme, F.; Machmüller, A.; Wasserfallen, A.; Kreuzer, M. Comparative efficiency of various fats rich in medium chain fatty acids to suppress ruminal methanogenesis as measured with RUSITEC. Can. J. Anim. Sci. 2000, 80, 473–782. [Google Scholar] [CrossRef]
- Johnson, K.A.; Johnson, D.E. Methane emissions from cattle. J. Anim. Sci. 1995, 73, 2483–2492. [Google Scholar] [CrossRef]
- Ivan, M.; Mir, P.S.; Mir, Z.; Entz, T.; He, M.L.; McAllister, T.A. Effects of dietary sunflower seeds on rumen protozoa and growth of lambs. Br. J. Nutr. 2004, 92, 303–310. [Google Scholar] [CrossRef]
- Hristov, A.N. Invited review: Advances in nutrition and feed additives to mitigate enteric methane emissions. J. Dairy Sci. 2024, 107, 4129–4146. [Google Scholar] [CrossRef] [PubMed]
- González, F.A.; Cosentino, V.R.C.; Loza, C.; Cerón-Cucchi, M.E.; Williams, K.E.; Bualo, R.; Constantino, A.; Gere, J.G. Inclusion of Lotus tenuis in beef cattle systems in the Argentinian flooding pampa as an enteric methane mitigation strategy. New Zealand J. Agric. Res. 2024, 1–12. [Google Scholar] [CrossRef]
- Gere, J.I.; Restovich, S.B.; Mattera, J.; Cattoni, M.I.; Ortiz-Chura, A.; Posse, G.; Cerón-Cucchi, M.E. Enteric Methane Emission from Cattle Grazing Systems with Cover Crops and Legume–Grass Pasture. Animals 2024, 14, 3535. [Google Scholar] [CrossRef]
Item | Ingredients | |
---|---|---|
Guinea Grass Hay | Whole Cottonseed | |
DM, % | 84.60 | 77.70 |
OM, % | 90.30 | 93.32 |
CP, % DM | 5.29 | 20.97 |
NDF, % DM | 68.48 | 50.68 |
ADF, % DM | 51.86 | 44.14 |
EE, % DM | 1.27 | 18.71 |
Ash, % DM | 9.70 | 6.68 |
Period 1 | Period 2 | p-Value 3 | ||||||
---|---|---|---|---|---|---|---|---|
Treatments 1 | Treatments | SEM 2 | T | P | T × P | |||
0WCS | 0.5WCS | 0WCS | 0.5WCS | |||||
Body weight (kg) * | 310.84 | 324.33 | 304.25 | 332.50 | 13.56 | 0.14 | 0.0095 | 0.0001 |
DM intake (kg/d) | ||||||||
Forage | 5.78 | 3.65 | 6.58 | 5.05 | 0.12 | <0.001 | <0.001 | 0.02 |
WCS | 0 | 1.25 | 0 | 1.28 | 0.03 | <0.001 | 0.42 | 0.42 |
Total | 5.78 | 4.89 | 6.58 | 6.34 | 0.12 | <0.01 | <0.001 | 0.02 |
GEI (MJ/d) | 99.12 | 91.51 | 112.80 | 116.55 | 2.19 | 0.47 | <0.001 | 0.02 |
DM intake (% BW) | ||||||||
Forage | 1.87 | 1.10 | 2.15 | 1.65 | 0.05 | <0.001 | <0.001 | 0.03 |
WCS | 0 | 0.38 | 0 | 0.42 | 4.7×10-3 | <0.001 | 0.002 | 0.002 |
Total | 1.87 | 1.48 | 2.15 | 2.07 | 0.05 | <0.001 | <0.001 | 0.02 |
Nutrient intake (g/kg BW0.75) | ||||||||
DM | 78.23 | 62.99 | 90.44 | 79.00 | 2.41 | <0.001 | 0.001 | 0.29 |
OM | 70.64 | 57.35 | 81.66 | 71.81 | 2.11 | <0.001 | 0.001 | 0.29 |
CP | 4.55 | 6.46 | 5.27 | 7.37 | 0.18 | <0.01 | <0.01 | 0.51 |
NDF | 59.14 | 44.49 | 68.36 | 56.55 | 1.79 | <0.01 | <0.01 | 0.27 |
ADF | 38.71 | 29.90 | 44.73 | 37.85 | 1.18 | <0.01 | <0.01 | 0.24 |
EE | 1.00 | 3.58 | 1.16 | 3.81 | 0.08 | <0.01 | 0.05 | 0.68 |
Treatments 1 | SEM 2 | p-Value | ||
---|---|---|---|---|
0WCS | 0.5WCS | |||
Initial BW, kg * | 310.84 | 324.33 | 9.02 | 0.35 |
Final BW, kg ** | 304.25 | 347.83 | 9.97 | <0.01 |
ADG, kg/d | −0.10 | 0.28 | 0.02 | <0.01 |
DMD, % | 43.07 | 47.08 | 4.24 | 0.47 |
CPD, % | 35.55 | 65.03 | 4.60 | <0.01 |
NDFD, % | 46.80 | 46.53 | 4.33 | 0.97 |
ADFD, % | 42.94 | 42.26 | 4.69 | 0.92 |
EED, % | 43.28 | 86.05 | 6.89 | <0.01 |
Period 1 | Period 2 | p-Value 3 | ||||||
---|---|---|---|---|---|---|---|---|
Treatments 1 | Treatments | SEM 2 | T | P | T × P | |||
0WCS | 0.5WCS | 0WCS | 0.5WCS | |||||
CH4 (g/d) | 169.56 | 120.64 | 209.02 | 151.11 | 13.89 | <0.01 | 0.04 | 0.76 |
CH4 (g/kgDMI) | 29.23 | 24.72 | 27.04 | 19.83 | 1.89 | 0.02 | 0.11 | 0.50 |
CH4 (g/kg BW) | 0.55 | 0.37 | 0.69 | 0.44 | 0.04 | <0.01 | 0.05 | 0.45 |
CH4 (g/kg BW0.75) | 2.30 | 1.55 | 2.87 | 1.88 | 0.17 | <0.01 | 0.04 | 0.52 |
Ym | 9.41 | 7.30 | 10.24 | 7.16 | 0.74 | <0.01 | 0.97 | 0.74 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hernández, O.; López, A.; Ceron-Cucchi, M.E.; AdégbéÏga Alabi, C.D.; Loza, C.; Juárez Sequeira, A.V.; Fissolo, H.M.; García, E.M.; Gere, J.I. Whole Cottonseed as an Effective Strategy to Mitigate Enteric Methane Emissions in Cattle Fed Low-Quality Forages. Animals 2025, 15, 819. https://doi.org/10.3390/ani15060819
Hernández O, López A, Ceron-Cucchi ME, AdégbéÏga Alabi CD, Loza C, Juárez Sequeira AV, Fissolo HM, García EM, Gere JI. Whole Cottonseed as an Effective Strategy to Mitigate Enteric Methane Emissions in Cattle Fed Low-Quality Forages. Animals. 2025; 15(6):819. https://doi.org/10.3390/ani15060819
Chicago/Turabian StyleHernández, Olegario, Agustín López, Maria Esperanza Ceron-Cucchi, Cham Donald AdégbéÏga Alabi, Cecilia Loza, Ana Veronica Juárez Sequeira, Héctor Miguel Fissolo, Elisa Mariana García, and José Ignacio Gere. 2025. "Whole Cottonseed as an Effective Strategy to Mitigate Enteric Methane Emissions in Cattle Fed Low-Quality Forages" Animals 15, no. 6: 819. https://doi.org/10.3390/ani15060819
APA StyleHernández, O., López, A., Ceron-Cucchi, M. E., AdégbéÏga Alabi, C. D., Loza, C., Juárez Sequeira, A. V., Fissolo, H. M., García, E. M., & Gere, J. I. (2025). Whole Cottonseed as an Effective Strategy to Mitigate Enteric Methane Emissions in Cattle Fed Low-Quality Forages. Animals, 15(6), 819. https://doi.org/10.3390/ani15060819