Effects of Olive Pomace and Spice Extracts on Performance and Antioxidant Function in Broiler Chickens
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Birds and Husbandry
2.2. Experimental Design and Diets
2.3. Laboratory Analysis
2.4. Growth Performance and Sampling
2.5. Plasma TBARs and Total Antioxidant Capacity
2.6. Plasma Enzyme Activity and α-Tocopherol Content
2.7. Gene Expression Analysis
2.8. Statistical Analysis
3. Results
3.1. Growth Performance
3.2. Plasma TBARs and Total Antioxidant Capacity
3.3. Plasma Enzyme Activity and α-Tocopherol Content
3.4. Gene Expression
4. Discussion
4.1. Growth Performance
4.2. α-Tocopherol (vit E) Plasma Concentrations
4.3. Antioxidant Function
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Estévez, M. Oxidative damage to poultry: From farm to fork. Poult. Sci. 2015, 94, 1368–1378. [Google Scholar] [CrossRef] [PubMed]
- Korver, D.R. Review: Current challenges in poultry nutrition, health, and welfare. Animal 2023, 17, 100755. [Google Scholar] [CrossRef] [PubMed]
- Khan, R.U.; Rahman, Z.U.; Nikousefat, Z.; Javdani, M.; Tufarelli, V.; Dario, C.; Selvaggi, M.; Laudadio, V. Immunomodulating effects of vitamin E in broilers. World’s Poult. Sci. J. 2012, 68, 31–40. [Google Scholar] [CrossRef]
- National Research Council (NRC). Nutrient Requirements of Poultry: Ninth Revised Edition, 9th ed.; National Academy Press: Washington, DC, USA, 1994. [Google Scholar]
- Leeson, S. Vitamin requirements: Is there basis for re-evaluating dietary specifications? World’s Poult. Sci. J. 2007, 63, 255–266. [Google Scholar] [CrossRef]
- Panda, A.K.; Cherian, G. Tissue tocopherol status, meat lipid stability, and serum lipids in broiler chickens fed Artemisia annua. Eur. J. Lipid Sci. Technol. 2017, 119, 1500438. [Google Scholar] [CrossRef]
- Bejaoui, B.; Saidani, M.; Souf, I.B.; Nefzi, K.; Joly, N.; Larbi, M.B.; M’Hamdi, N.; Lequart, V.; Martin, P. Natural Antioxidants: Sources, Extraction Techniques and Their Use in Livestock Production. Preprints 2024, 2024100404. [Google Scholar] [CrossRef]
- Zhang, S.; Tan, Z.Z.; Zhang, J.; Li, S.Z.; Qiu, K.R.; Zhu, F. Comparison of Vitamin E Isomers Composition among Three Animal Feeds Containing the Insects Musca Domestica, (Diptera: Muscidae), Hermetia Illucens (Diptera: Stratiomyidae) and Tenebrio Molitor (Coleoptera: Tenebrionidae). Entomol. News 2023, 130, 502. [Google Scholar] [CrossRef]
- Rey, A.I.; Segura, J.; Olivares, A.; Cerisuelo, A.; Piñeiro, C.; López-Bote, C.J. Effect of Micellized Natural (D-α-Tocopherol) vs. Synthetic (DL-α-Tocopheryl Acetate) Vitamin E Supplementation given to Turkeys on Oxidative Status and Breast Meat Quality Characteristics. Poult. Sci. 2015, 94, 1259–1269. [Google Scholar] [CrossRef]
- Cheng, K.; Zhang, M.; Huang, X.; Zheng, X.; Song, Z.; Zhang, L.; Wang, T. An Evaluation of Natural and Synthetic Vitamin E Supplementation on Growth Performance and Antioxidant Capacity of Broilers in Early Age. Can. J. Anim. Sci. 2017, 98, 187–193. [Google Scholar] [CrossRef]
- Windisch, W.; Schedle, K.; Plitzner, C.; Kroismayr, A. Use of phytogenic products as feed additives for swine and poultry. J. Anim. Sci. 2008, 86, E140–E148. [Google Scholar] [CrossRef]
- Zhang, Z.; Xu, P.; Liu, C.; Chen, J.; Ren, B.; Du, E.; Guo, S.; Li, P.; Li, L.; Ding, B. Effect of tannic acid on antioxidant function, immunity, and intestinal barrier of broilers co-infected with Coccidia and Clostridium perfringens. Animals 2024, 14, 955. [Google Scholar] [CrossRef]
- Embuscado, M.E. Spices and herbs: Natural sources of antioxidants—A mini review. J. Funct. Foods 2015, 18, 811–819. [Google Scholar] [CrossRef]
- Zhou, D.-Y.; Sun, Y.-X.; Shahidi, F. Preparation and antioxidant activity of tyrosol and hydroxytyrosol esters. J. Funct. Foods 2017, 37, 66–73. [Google Scholar] [CrossRef]
- López-Salas, L.; Díaz-Moreno, J.; Ciulu, M.; Borrás-Linares, I.; Quirantes-Piné, R.; Lozano-Sánchez, J. Monitoring the phenolic and terpenic profile of olives, olive oils and by-Products throughout the production process. Foods 2024, 13, 1555. [Google Scholar] [CrossRef] [PubMed]
- Griela, E.; Paraskeuas, V.; Mountzouris, K.C. Effects of diet and phytogenic inclusion on the antioxidant capacity of the broiler chicken gut. Animals 2021, 11, 739. [Google Scholar] [CrossRef]
- Lv, Z.; Xu, X.; Sun, Z.; Yang, Y.X.; Guo, H.; Li, J.; Sun, K.; Wu, R.; Xu, J.; Jiang, Q.; et al. TRPV1 alleviates osteoarthritis by inhibiting M1 macrophage polarization via Ca2+/CaMKII/Nrf2 signaling pathway. Cell Death Dis. 2021, 12, 504. [Google Scholar] [CrossRef]
- Wang, F.; Xue, Y.; Fu, L.; Wang, Y.; He, M.; Zhao, L.; Liao, X. Extraction, purification, bioactivity and pharmacological effects of capsaicin: A review. Crit. Rev. Food Sci. Nutr. 2022, 62, 5322–5348. [Google Scholar] [CrossRef]
- Srinivasan, K. Biological activities of red pepper (Capsicum annuum) and its pungent principle capsaicin: A review. Crit. Rev. Food Sci. Nutr. 2016, 56, 1488–1500. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, J.; Wang, T.; Zhang, J.; Zhang, L.; Wang, T. Effects of capsaicin on growth performance, meat quality, digestive enzyme activities, intestinal morphology, and organ indexes of broilers. Front. Vet. Sci. 2022, 9, 841231. [Google Scholar] [CrossRef]
- Shehata, A.A.; Yalçın, S.; Latorre, J.D.; Basiouni, S.; Attia, Y.A.; Abd El-Wahab, A.; Visscher, C.; El-Seedi, H.R.; Huber, C.; Hafez, H.M.; et al. Probiotics, prebiotics, and phytogenic substances for optimizing gut health in poultry. Microorganisms 2022, 10, 395. [Google Scholar] [CrossRef]
- Herrero-Encinas, J.; Huerta, A.; Blanch, M.; Pastor, J.J.; Morais, S.; Menoyo, D. Impact of dietary supplementation of spice extracts on growth performance, nutrient digestibility and antioxidant response in broiler chickens. Animals 2023, 13, 250. [Google Scholar] [CrossRef] [PubMed]
- Herrero-Encinas, J.; Blanch, M.; Pastor, J.J.; Mereu, A.; Ipharraguerre, I.R.; Menoyo, D. Effects of a bioactive olive pomace extract from Olea europaea on growth performance, gut function, and intestinal microbiota in broiler chickens. Poult. Sci. 2020, 99, 2–10. [Google Scholar] [CrossRef] [PubMed]
- Herrero-Encinas, J.; Blanch, M.; Pastor, J.J.; Menoyo, D. Diet Supplementation with a Bioactive Pomace Extract from Olea europaea Partially Mitigates Negative Effects on Gut Health Arising from a Short-Term Fasting Period in Broiler Chickens. Animals 2020, 10, 349. [Google Scholar] [CrossRef] [PubMed]
- Suárez Montenegro, Z.J.; Álvarez-Rivera, G.; Sánchez-Martínez, J.D.; Gallego, R.; Valdés, A.; Bueno, M.; Cifuentes, A.; Ibáñez, E. Neuroprotective Effect of Terpenoids Recovered from Olive Oil By-Products. Foods 2021, 10, 1507. [Google Scholar] [CrossRef]
- Fernández-Aparicio, Á.; Perona, J.S.; Castellano, J.M.; Correa-Rodríguez, M.; Schmidt-RioValle, J.; González-Jiménez, E. Oleanolic Acid-Enriched Olive Oil Alleviates the Interleukin-6 Overproduction Induced by Postprandial Triglyceride-Rich Lipoproteins in THP-1 Macrophages. Nutrients 2021, 13, 3471. [Google Scholar] [CrossRef]
- Corrales, N.L.; Sevillano, F.; Escudero, R.; Mateos, G.G.; Menoyo, D. Replacement of vitamin E by an extract from an olive oil by-product, rich in hydroxytyrosol, in broiler diets: Effects on growth performance and breast meat quality. Antioxidants 2023, 12, 1940. [Google Scholar] [CrossRef]
- Le Tutour, B.; Guedon, D. Antioxidative activities of Olea europaea leaves and related Pphenolic compounds. Phytochemistry 1992, 31, 1173–1178. [Google Scholar] [CrossRef]
- Agah, M.J.; Mirakzehi, M.T.; Saleh, H. Effects of olive leaf extract (Olea europea L.) on growth performance, blood metabolites and antioxidant activities in broiler chickens under heat stress. J. Anim. Plant Sci. 2019, 20–23, 657–666. [Google Scholar]
- Tufarelli, V.; Laudadio, V.; Casalino, E. An extra-virgin olive oil rich in polyphenolic compounds has antioxidant effects in meat-type broiler chickens. Environ. Sci. Pollut. Res. 2016, 23, 6197–6204. [Google Scholar] [CrossRef]
- BOE. RD 53/2013, de 21 de octubre por la que se establecen las normas básicas aplicables para la protección de los animales utilizados en experimentación y otros fines científicos, incluyendo la docencia, Spain. Boletín Estado 2013, 252, 34367–34391. [Google Scholar]
- Cobb Broiler. Management Guide. Available online: https://www.cobb-vantress.com (accessed on 1 June 2022).
- Fundación Española Desarrollo Nutrición Animal (FEDNA). Necesidades Nutricionales para Avicultura. In Normas FEDNA, 2nd ed.; Santomá, G., Mateos, G.G., Eds.; Fundación Española Desarrollo Nutrición Animal (FEDNA): Madrid, Spain, 2018. [Google Scholar]
- AOAC International. Official Methods of Analysis of AOAC International, 18th ed.; AOAC International: Rockville, MD, USA, 2005. [Google Scholar]
- Amazan, D.; Cordero, G.; López-Bote, C.J.; Lauridsen, C.; Rey, A.I. Effects of Oral Micellized Natural Vitamin E (d-α-Tocopherol) v. Synthetic Vitamin E (Dl-α-Tocopherol) in Feed on α-Tocopherol Levels, Stereoisomer Distribution, Oxidative Stress and the Immune Response in Piglets. Animal 2014, 8, 410–419. [Google Scholar] [CrossRef] [PubMed]
- Rey, A.I.; Daza, A.; López-Carrasco, C.; López-Bote, C.J. Quantitative study of the α- and γ-tocopherols accumulation in muscle and backfat from iberian pigs kept free-range as affected by time of free-range feeding or weight gain. Anim. Sci. 2006, 82, 901–908. [Google Scholar] [CrossRef]
- Wang, P.H.; Ko, Y.H.; Chin, H.J.; Hsu, C.; Ding, S.T.; Chen, C.Y. The effect of feed restriction on expression of hepatic lipogenic genes in broiler chickens and the function of SREBP1. Comp. Biochem. Physiol. 2009, 153, 327–331. [Google Scholar] [CrossRef] [PubMed]
- De Boever, S.; Vangestel, C.; De Backer, P.; Croubels, S.; Sys, S.U. Identification and validation of housekeeping genes as internal control for gene expression in an intravenous LPS inflammation model in chickens. Vet. Immunol. Immunopathol. 2008, 122, 312–317. [Google Scholar] [CrossRef]
- Habashy, W.S.; Milfort, M.C.; Rekaya, R.; Aggrey, S.E. Expression of genes that encode cellular oxidant/antioxidant systems are affected by heat stress. Mol. Biol. Rep. 2018, 45, 389–394. [Google Scholar] [CrossRef]
- Orlowski, S.; Flees, J.; Greene, E.S.; Ashley, D.; Lee, S.-O.; Yang, F.L.; Owens, C.M.; Kidd, M.; Anthony, N.; Dridi, S. Effects of phytogenic additives on meat quality traits in broiler chickens. J. Anim. Sci. 2018, 96, 3757–3767. [Google Scholar] [CrossRef]
- Gilani, S.; Howarth, G.S.; Nattrass, G.; Kitessa, S.M.; Barekatain, R.; Forder, R.E.A.; Tran, C.D.; Hughes, R.J. Gene expression and morphological changes in the intestinal mucosa associated with increased permeability induced by short-term fasting in chickens. J. Anim. Physiol. Anim. Nutr. 2018, 102, 12808. [Google Scholar] [CrossRef]
- Malila, Y.; Thanatsang, K.; Arayamethakorn, S.; Uengwetwanit, T.; Srimarut, Y.; Petracci, M.; Strasburg, G.M.; Rungrassamee, W.; Visessanguan, W. Absolute expressions of hypoxia-inducible factor-1 alpha (HIF1A) transcript and the associated genes in chicken skeletal muscle with white striping and wooden breast myopathies. Molecules 2019, 14, e0220904. [Google Scholar] [CrossRef]
- Pitargue, F.M.; Kim, J.H.; Goo, D.; Delos Reyes, J.B.; Kil, D.Y. Effect of Vvitamin E sources and inclusion levels in diets on growth performance, meat quality, alpha-tocopherol retention, and intestinal inflammatory cytokine expression in broiler chickens. Poult. Sci. 2019, 98, 4584–4594. [Google Scholar] [CrossRef]
- Steibel, J.P.; Poletto, R.; Coussens, P.M.; Rosa, G.J.M. A powerful and flexible linear mixed model framework for the analysis of relative quantification RT-PCR Data. Genomics 2009, 94, 146–152. [Google Scholar] [CrossRef]
- Pfaffl, M.W.; Tichopad, A.; Prgomet, C.; Neuvians, T.P. Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: Bestkeeper—Excel-based tool using pair-wise correlations. Biotechnol. Lett. 2004, 26, 509–515. [Google Scholar] [CrossRef] [PubMed]
- Pompeu, M.A.; Cavalcanti, L.F.L.; Toral, F.L.B. Effect of vitamin E supplementation on growth performance, meat quality, and immune response of male broiler chickens: A meta-analysis. Livest. Sci. 2018, 208, 5–13. [Google Scholar] [CrossRef]
- Panda, A.K.; Cherian, G. Role of Vitamin E in Counteracting Oxidative Stress in Poultry. J. Poult. Sci. 2014, 51, 109–117. [Google Scholar] [CrossRef]
- Surai, P.F.; Kochish, I.I.; Romanov, M.N.; Griffin, D.K. Nutritional modulation of the antioxidant capacities in poultry: The case of vitamin E. Poult. Sci. 2019, 98, 4030–4041. [Google Scholar] [CrossRef]
- Shakeri, M.; Oskoueian, E.; Le, H.; Shakeri, M. Strategies to combat heat stress in broiler chickens: Unveiling the roles of selenium, vitamin E and vitamin C. Vet. Sci. 2020, 7, 71. [Google Scholar] [CrossRef]
- Cheng, K.; Niu, Y.; Zheng, X.C.; Zhang, H.; Chen, Y.P.; Zhang, M.; Huang, X.X.; Zhang, L.L.; Zhou, Y.M.; Wang, T. A comparison of natural (D-α-tocopherol) and Synthetic (DL-α-tocopherol acetate) vitamin E supplementation on the growth performance, meat quality and oxidative status of broilers. Asian Australas. J. Anim. Sci. 2016, 29, 681–688. [Google Scholar] [CrossRef]
- Panda, A.K.; Rao, S.V.; Raju, M.V.L.N.; Sunder, G.S.; Reddy, M.R. Effect of Higher Concentration of Dietary Vitamin E Supplementation on Growth, Immune Competence and Antioxidant Status in Broilers. Indian J. Poultry Sci. 2009, 44, 187–190. [Google Scholar]
- Chae, B.; Lohakare, J.; Choi, J.; Han, K.; Yong, J.; Won, H.; Park, Y.; Hahn, T.-W. The Efficacy of Vitamin E-Polyethylene Glycolcomplex on Growth Performance, Chicken Meatquality and Immunity in Broilers. J. Anim. Feed Sci. 2005, 14, 125–138. [Google Scholar] [CrossRef]
- Ferlisi, F.; Tang, J.; Cappelli, K.; Trabalza-Marinucci, M. Dietary Supplementation with Olive Oil Co-Products Rich in Polyphenols: A Novel Nutraceutical Approach in Monogastric Animal Nutrition. Front. Vet. Sci. 2023, 10, 1272274. [Google Scholar] [CrossRef]
- Abawi, F.G.; Sullivan, T.W. Interactions of vitamins A, D3, E, and K in the diet of broiler chicks. Poult. Sci. 1989, 68, 1490–1498. [Google Scholar] [CrossRef]
- Bartov, I.; Frigg, M. Effect of high concentrations of dietary vitamin E during various age periods on performance, plasma vitamin E and meat stability of broiler chicks at 7 weeks of age. Br. Poult. Sci. 1992, 33, 393–402. [Google Scholar] [CrossRef] [PubMed]
- Arslan, M.; Özcan, M.; Matur, E.; ÇötelïOğlu, Ü.; Ergül, E. The effects of vitamin E on some blood parameters in broilers. Turk. J. Vet. Anim. Sci. 2001, 25, 711–716. [Google Scholar]
- Rengaraj, D.; Truong, A.D.; Hong, Y.; Pitargue, F.M.; Kim, J.H.; Hong, Y.H.; Han, J.Y.; Kil, D.Y. Identification and expression analysis of alpha tocopherol transfer protein in chickens fed diets containing different concentrations of alpha-tocopherol. Res. Vet. Sci. 2019, 123, 99–110. [Google Scholar] [CrossRef]
- Salami, S.A.; Guinguina, A.; Agboola, J.O.; Omede, A.A.; Agbonlahor, E.M.; Tayyab, U. Review: In Vivo and Postmortem Effects of Feed Antioxidants in Livestock: A Review of the Implications on Authorization of Antioxidant Feed Additives. Animal 2016, 10, 1375–1390. [Google Scholar] [CrossRef]
- Reboul, E. Vitamin E Intestinal Absorption: Regulation of Membrane Transport across the Enterocyte. IUBMB Life 2019, 71, 416–423. [Google Scholar] [CrossRef]
- Herrero-Encinas, J.; Corrales, N.L.; Sevillano, F.; Ringseis, R.; Eder, K.; Menoyo, D. Replacement of Vitamin E by an Extract from an Olive Oil By-Product, Rich in Hydroxytyrosol, in Broiler Diets: Effects on Liver Traits, Oxidation, Lipid Profile, and Transcriptome. Antioxidants 2023, 12, 1751. [Google Scholar] [CrossRef]
- Surai, P.F.; Fisinin, V.I. Antioxidant systems of the body: From vitamin E to Polyphenols and beyond. In Proceedings of the 35th Western Nutrition Conference, Edmonton, AB, Canada, 24–25 September 2014; pp. 265–277. [Google Scholar]
- Barella, L.; Muller, P.Y.; Schlachter, M.; Hunziker, W.; Stöcklin, E.; Spitzer, V.; Meier, N.; de Pascual-Teresa, S.; Minihane, A.-M.; Rimbach, G. Identification of Hepatic Molecular Mechanisms of Action of Alpha-Tocopherol Using Global Gene Expression Profile Analysis in Rats. Biochim. Biophys. Acta (BBA)—Mol. Basis Dis. 2004, 1689, 66–74. [Google Scholar] [CrossRef] [PubMed]
- Zingg, J. Vitamin E: Regulatory Role on Signal Transduction. IUBMB Life 2019, 71, 456–478. [Google Scholar] [CrossRef]
- Korošec, T.; Tomažin, U.; Horvat, S.; Keber, R.; Salobir, J. The Diverse Effects of α- and γ-Tocopherol on Chicken Liver Transcriptome. Poult. Sci. 2017, 96, 667–680. [Google Scholar] [CrossRef]
- Surai, P.F.; Kochish, I.I.; Fisinin, V.I.; Velichko, O.A. Selenium in Poultry Nutrition: From Sodium Selenite to Organic Selenium Sources. Jpn. Poult. Sci. 2018, 55, 79–93. [Google Scholar] [CrossRef]
- Murugesan, S.; Ullengala, R.; Amirthalingam, V. Heat Shock Protein and Thermal Stress in Chicken. In Heat Shock Proteins in Veterinary Medicine and Sciences; Asea, A.A.A., Kaur, P., Eds.; Heat Shock Proteins; Springer International Publishing: Cham, Switzerland, 2017; Volume 12, pp. 179–193. ISBN 978-3-319-73376-0. [Google Scholar]
- Basiouni, S.; Tellez-Isaias, G.; Latorre, J.D.; Graham, B.D.; Petrone-Garcia, V.M.; El-Seedi, H.R.; Yalçın, S.; El-Wahab, A.A.; Visscher, C.; May-Simera, H.L.; et al. Anti-Inflammatory and Antioxidative Phytogenic Substances against Secret Killers in Poultry: Current Status and Prospects. Vet. Sci. 2023, 10, 55. [Google Scholar] [CrossRef] [PubMed]
- Chaudhary, A.; Gour, J.K.; Rizvi, S.I. Capsaicin Has Potent Anti-Oxidative Effects in Vivo through a Mechanism Which Is Non-Receptor Mediated. Arch. Physiol. Biochem. 2022, 128, 141–147. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Huélamo, M.; Rodríguez-Morató, J.; Boronat, A.; De la Torre, R. Modulation of Nrf2 by Olive Oil and Wine Polyphenols and Neuroprotection. Antioxidants 2017, 6, 73. [Google Scholar] [CrossRef] [PubMed]
- Moskaug, J.Ø.; Carlsen, H.; Myhrstad, M.C.; Blomhoff, R. Polyphenols and Glutathione Synthesis Regulation. Am. J. Clin. Nutr. 2005, 81, 277S–283S. [Google Scholar] [CrossRef]
- Zhang, H.; Gong, W.; Wu, S.; Perrett, S. Hsp70 in Redox Homeostasis. Cells 2022, 11, 829. [Google Scholar] [CrossRef]
- El Golli-Bennour, E.; Bacha, H. Hsp70 Expression as Biomarkers of Oxidative Stress: Mycotoxins’ Exploration. Toxicology 2011, 287, 1–7. [Google Scholar] [CrossRef]
- Sarıca, Ş.; Özdemir, D.; Öztürk, H. The Effects of Dietary Oleuropein and Organic Selenium Supplementation on Performance and Heat Shock Protein 70 Response of Brain in Heat-Stressed Quail. Ital. J. Anim. Sci. 2015, 14, 3737. [Google Scholar] [CrossRef]
- Shehata, A.M.; Saadeldin, I.M.; Tukur, H.A.; Habashy, W.S. Modulation of Heat-Shock Proteins Mediates Chicken Cell Survival against Thermal Stress. Animals 2020, 10, 2407. [Google Scholar] [CrossRef]
- Yurasakpong, L.; Nantasenamat, C.; Nobsathian, S.; Chaithirayanon, K.; Apisawetakan, S. Betulinic acid modulates the expression of hspa and activates apoptosis in two cell lines of human colorectal cancer. Molecules 2021, 26, 6377. [Google Scholar] [CrossRef]
- Mazari, A.M.; Zhang, L.; Ye, Z.W.; Zhang, J.; Tew, K.D.; Townsend, D.M. The multifaceted role of glutathione S-transferases in health and disease. Biomolecules 2023, 13, 688. [Google Scholar] [CrossRef]
- Bali, E.B.; Ergin, V.; Rackova, L.; Bayraktar, O.; Küçükboyacı, N.; Karasu, Ç. Olive leaf extracts protect cardiomyocytes against 4-hydroxynonenal-induced toxicity in vitro: Comparison with oleuropein, hydroxytyrosol, and quercetin. Planta Med. 2014, 80, 984–992. [Google Scholar] [CrossRef] [PubMed]
- Zininga, T.; Ramatsui, L.; Shonhai, A. Heat Shock Proteins as Immunomodulants. Molecules 2018, 23, 2846. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.G.; Xia, W.G.; Chen, W.; Abouelezz, K.F.M.; Ruan, D.; Wang, S.; Zhang, Y.N.; Huang, X.B.; Li, K.C.; Zheng, C.T.; et al. Effects of Capsaicin on Laying Performance, Follicle Development, and Ovarian Antioxidant Capacity in Aged Laying Ducks. Poult. Sci. 2021, 100, 100901. [Google Scholar] [CrossRef] [PubMed]
Ingredient, % | Starter | Grower |
---|---|---|
Maize | 58.7 | 64.0 |
Soybean meal (48%) | 36.4 | 29.9 |
Soybean oil | 1.20 | 3.05 |
Calcium carbonate | 1.06 | 0.96 |
Monocalcium phosphate | 1.02 | 0.50 |
Mineral/Vitamin premix 1 | 0.40 | 0.40 |
Sodium chloride | 0.38 | 0.34 |
DL-Methionine | 0.31 | 0.28 |
L-Lysine HCl | 0.25 | 0.23 |
AxtraPhyt10000 | 0.10 | 0.10 |
L-Threonine | 0.09 | 0.09 |
Monensin 20% | 0.05 | 0.05 |
L-Valine | 0.04 | 0.03 |
Calculated composition | ||
AMEn 2, kcal/kg | 2904 | 3087 |
Crude protein, % | 21.64 | 19.08 |
Ash, % | 5.65 | 4.70 |
Ether extract, % | 3.82 | 5.72 |
Lysine, % | 1.37 | 1.18 |
Methionine, % | 0.63 | 0.57 |
Methionine + cystine, % | 0.99 | 0.89 |
Threonine, % | 0.91 | 0.81 |
Tryptophan, % | 0.25 | 0.21 |
Calcium, % | 0.87 | 0.72 |
Non phytic phosphorus, % | 0.35 | 0.22 |
Sodium, % | 0.16 | 0.16 |
Analyzed composition | ||
Dry Matter, % | 88.6 | 89.0 |
Gross energy, kcal/kg | 3940 | 4052 |
Crude protein, % | 22.8 | 19.7 |
Ash, % | 6.03 | 4.88 |
Ether extract, % | 4.02 | 5.42 |
Vit E, ppm 3 | 11.0 | 9.00 |
Gene * | 5’-Primer Sequence Forward-3’ | 5’-Primer Sequence Reverse-3’ | Reference |
---|---|---|---|
β-Actin | GTGATGGACTCTGGTGATGG | TGGTGAAGCTGTAGCCTCTC | [37] |
UB | GGGATGCAGATCTTCGTGAAA | CTTGCCAGCAAAGATCAACCTT | [38] |
CAT | GAGATGGTGAGGGCAGTTATT | GCCAATGTATGAGGAGGTTAGT | [39] |
SOD1 | TGGCTTCCATGTGCATGAAT | AGCACCTGCGCTGGTACAC | [40] |
GPx1 | CCACTTCGAGACCATCAAACT | GGTGCGGGCTTTCCTTTA | [39] |
Nrf2 | CAGAAGCTTTCCCGTTCATAGA | TGGGTGGCTGAGTTTGATTAG | [39] |
NOX3 | GAGTCCTGTGGTGCTGTATATC | GACTCCAGAGGAATGTGTTACC | [39] |
HSP70 | GGCTGGAGAGAAGAATGTGC | CAGCTGTGGACTTCACCTCA | [40] |
GSTA4 | TGCCACTGGTTGAGATCGACG | TCTCCTTTGCCTCAGGTGGA | [41] |
GSTM2 | GTGGACTTCCTGGCTTACGA | GCCGTGTACCAGAAAATGG | [42] |
TTPA | TCCAGCAGTGGCCAAGAAAA | GCGAAGACTGGGTGGAAGAA | [43] |
Treatments 3,4 | Tukey, Adjusted p-Values | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Item 2 | NC | PC | OE | SPICY | SPIOE | SEM (n = 8) | OE vs. SPIOE | SPICY vs. SPIOE | ||
From 0 to 7 days | BW0d, g | 45.2 | 45.0 | 44.9 | 44.8 | 44.7 | 0.299 | 0.940 | 0.767 | 0.930 |
BW7 d, g | 194 | 195 | 191 | 196 | 194 | 2.84 | 0.191 | 0.554 | 0.744 | |
ADG, g/d | 21.2 | 21.4 | 20.8 | 21.5 | 21.3 | 0.395 | 0.166 | 0.491 | 0.758 | |
ADFI, g/d | 20.8 | 20.8 | 20.8 | 21.3 | 20.4 | 0.367 | 0.318 | 0.565 | 0.051 | |
FCR | 0.984 | 0.967 | 0.999 | 0.987 | 0.963 | 0.018 | 0.782 | 0.121 | 0.361 | |
From 8 to 14 days | BW14 d, g | 505 | 522 | 506 | 517 | 517 | 7.82 | 0.345 | 0.311 | 0.997 |
ADG, g/d | 44.5 | 46.7 | 45.0 | 45.9 | 46.3 | 0.839 | 0.566 | 0.316 | 0.896 | |
ADFI, g/d | 59.8 | 59.6 | 60.9 | 59.8 | 59.4 | 1.47 | 0.769 | 0.605 | 0.961 | |
FCR | 1.35 | 1.28 | 1.35 | 1.30 | 1.28 | 0.038 | 0.465 | 0.213 | 0.861 | |
From 15 to 21 days | BW21 d, g | 1026 | 1063 | 1030 | 1051 | 1057 | 15.8 | 0.404 | 0.223 | 0.920 |
ADG, g/d | 74.3 | 77.4 | 74.9 | 76.3 | 77.1 | 1.64 | 0.685 | 0.391 | 0.876 | |
ADFI, g/d | 98.3 | 98.3 | 101 | 98.9 | 99.1 | 3.07 | 0.751 | 0.783 | 0.998 | |
FCR | 1.32 | 1.27 | 1.35 | 1.30 | 1.29 | 0.042 | 0.386 | 0.283 | 0.976 | |
Starter (from 0 to 21 days) | ADG, g/d | 46.7 | 48.5 | 46.9 | 47.9 | 48.2 | 0.753 | 0.400 | 0.217 | 0.917 |
ADFI, g/d | 59.1 | 60.1 | 60.9 | 60.0 | 60.0 | 1.49 | 0.803 | 0.676 | 0.970 | |
FCR | 1.27 | 1.23 | 1.30 | 1.25 | 1.25 | 0.034 | 0.337 | 0.266 | 0.977 | |
From 22 to 28 days | BW28 d, g | 1803 | 1878 | 1803 | 1854 | 1816 | 34.6 | 0.313 | 0.925 | 0.518 |
ADG, g/d | 111 | 116 | 109 | 115 | 108 | 4.18 | 0.376 | 0.985 | 0.296 | |
ADFI, g/d | 150 | 153 | 151 | 155 | 150 | 3.78 | 0.551 | 0.975 | 0.423 | |
FCR, g/d | 1.35 | 1.32 | 1.41 | 1.35 | 1.39 | 0.052 | 0.560 | 0.970 | 0.706 | |
From 29 to 35 days | BW35 d, g | 2515 | 2644 | 2557 | 2611 | 2550 | 68.7 | 0.719 | 0.995 | 0.658 |
ADG, g/d | 102 | 109 | 108 | 108 | 105 | 7.66 | 0.999 | 0.928 | 0.911 | |
ADFI, g/d | 173 | 175 | 174 | 175 | 172 | 5.19 | 0.988 | 0.934 | 0.870 | |
FCR, g/d | 1.74 | 1.61 | 1.63 | 1.64 | 1.67 | 0.114 | 0.988 | 0.908 | 0.961 | |
Grower (from 22 to 35 days) | ADG, g/d | 106 | 113 | 108 | 111 | 107 | 4.59 | 0.793 | 0.923 | 0.561 |
ADFI, g/d | 161 | 164 | 162 | 165 | 161 | 4.06 | 0.829 | 0.943 | 0.636 | |
FCR | 1.53 | 1.45 | 1.50 | 1.49 | 1.52 | 0.052 | 0.980 | 0.925 | 0.839 | |
Global (from 0 to 35 days) | ADG, g/d | 70.6 | 74.3 | 71.8 | 73.3 | 71.6 | 1.96 | 0.717 | 0.995 | 0.658 |
ADFI, g/d | 99.9 | 102 | 101 | 102 | 101 | 2.27 | 0.981 | 0.843 | 0.742 | |
FCR | 1.40 | 1.20 | 1.41 | 1.39 | 1.42 | 0.113 | 0.981 | 0.996 | 0.994 |
Treatments 2,3,4 | Tukey, Adjusted p-Values | ||||||||
---|---|---|---|---|---|---|---|---|---|
Item | NC | PC | OE | SPICY | SPIOE | SEM (n = 8) | OE vs. SPICY | OE vs. SPIOE | SPICY vs. SPIOE |
α—tocopherol (ppm) | 5.42 | 30.6 | 6.31 | 4.77 | 5.51 | 1.91 | 0.698 | 0.906 | 0.920 |
CAT 5 (U/mL) | 1.75 | 1.80 | 1.86 | 1.92 | 1.59 | 0.250 | 0.968 | 0.522 | 0.395 |
SOD (U/mL) | 25.8 | 25.7 | 20.8 | 28.1 | 27.5 | 3.69 | 0.131 | 0.167 | 0.987 |
GPx (mU/mL) | 506 | 662 | 537 | 564 | 481 | 61.2 | 0.893 | 0.633 | 0.367 |
TBARs (μM MDA) 6 | 0.296 | 0.325 | 0.243 | 0.418 | 0.294 | 0.074 | 0.051 | 0.789 | 0.225 |
TAC (mM TE) 7 | 2.66 | 2.46 | 2.51 | 2.19 | 2.92 | 0.503 | 0.792 | 0.702 | 0.335 |
Treatments 2,3 | Tukey, Adjusted p-Values | |||||||
---|---|---|---|---|---|---|---|---|
Gene 4 | NC | PC | OE | SPICY | SPIOE | OE vs. SPICY | OE vs. SPIOE | SPICY vs. SPIOE |
CAT | 1 | 0.854 | 0.775 | 1.03 | 1.02 | 0.267 | 0.300 | 0.997 |
(1.20–0.835) | (1.02–0.713) | (0.928–0.647) | (1.23–0.860) | (1.22–0.849) | ||||
SOD | 1 | 1.29 | 1.15 | 1.08 | 1.14 | 0.884 | 0.999 | 0.898 |
(1.14–0.879) | (1.47–1.14) | (1.31–1.01) | (1.23–0.947) | (1.30–1.01) | ||||
GPx1 | 1 | 1.04 | 0.671 | 0.916 | 0.681 | 0.244 | 0.997 | 0.277 |
(1.21–0.827) | (1.25–0.858) | (0.812–0.555) | (1.11–0.758) | (0.824–0.563) | ||||
Nrf2 | 1 | 1.05 | 0.884 | 0.975 | 0.854 | 0.794 | 0.973 | 0.661 |
(1.16–0.859) | (1.22–0.901) | (1.03–0.759) | (1.14–0.838) | (0.995–0.734) | ||||
HSP70 | 1 | 0.727 | 0.480 | 0.920 | 0.599 | 0.0233 | 0.615 | 0.174 |
(1.26–0.791) | (0.918–0.575) | (0.606–0.380) | (1.16–0.728) | (0.757–0.474) | ||||
GSTA4 | 1 | 0.507 | 0.188 | 0.358 | 0.295 | 0.331 | 0.573 | 0.904 |
(1.56–0.640) | (0.792–0.325) | (0.293–0.120) | (0.559–0.229) | (0.461–0.189) | ||||
GSTM2 | 1 | 0.630 | 0.725 | 0.847 | 0.849 | 0.899 | 0.896 | 1.000 |
(1.42–0.703) | (0.896–0.443) | (1.03–0.510) | (1.20–0.595) | (1.21–0.597) |
Treatments 2 | Tukey, Adjusted p-Values | |||||||
---|---|---|---|---|---|---|---|---|
Gene 3 | NC | PC | OE | SPICY | SPIOE | OE vs. SPICY | OE vs. SPIOE | SPICY vs. SPIOE |
CAT | 1 | 0.995 | 0.890 | 0.798 | 0.985 | 0.767 | 0.799 | 0.386 |
(1.17–0.855) | (1.17–0.851) | (1.04–0.761) | (0.934–0.682) | (1.15–0.841) | ||||
SOD | 1 | 1.09 | 1.22 | 1.12 | 1.09 | 0.815 | 0.711 | 0.983 |
(1.15–0.868) | (1.25–0.946) | (1.41–1.06) | (1.28–0.972) | (1.26–0.948) | ||||
GPx1 | 1 | 0.933 | 0.999 | 0.899 | 0.816 | 0.676 | 0.247 | 0.717 |
(1.13–0.883) | (1.06–0.825) | (1.13–0.882) | (1.02–0.794) | (0.924–0.721) | ||||
Nrf2 | 1 | 0.970 | 0.974 | 0.978 | 0.918 | 1.000 | 0.901 | 0.889 |
(1.15–0.847) | (1.11–0.847) | (1.12–0.851) | (1.12–0.854) | (1.05–0.802) | ||||
NOX | 1 | 1.47 | 1.36 | 1.52 | 1.66 | 0.916 | 0.748 | 0.942 |
(1.32–0.757) | (1.94–1.11) | (1.79–1.03) | (2.00–1.15) | (2.19–1.26) | ||||
HSP70 | 1 | 0.748 | 0.617 | 0.746 | 0.790 | 0.627 | 0.456 | 0.957 |
(1.23–0.815) | (0.918–0.609) | (0.757–0.503) | (0.916–0.608) | (0.970–0.644) | ||||
GSTA4 | 1 | 0.938 | 0.977 | 0.914 | 0.810 | 0.942 | 0.631 | 0.825 |
(1.23–0.816) | (1.15–0.766) | (1.20–0.797) | (1.12–0.746) | (0.993–0.661) | ||||
GSTM2 | 1 | 0.936 | 0.933 | 0.953 | 0.981 | 0.99 | 0.942 | 0.98 |
(1.16–0.860) | (1.09–0.805) | (1.09–0.802) | (1.11–0.819) | (1.14–0.843) | ||||
TTPA | 1 | 0.921 | 0.907 | 0.922 | 1.00 | 0.996 | 0.872 | 0.909 |
(1.22–0.822) | (1.12–0.757) | (1.10–0.746) | (1.12–0.758) | (1.22–0.822) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sevillano, F.; Blanch, M.; Pastor, J.J.; Ibáñez, M.A.; Menoyo, D. Effects of Olive Pomace and Spice Extracts on Performance and Antioxidant Function in Broiler Chickens. Animals 2025, 15, 808. https://doi.org/10.3390/ani15060808
Sevillano F, Blanch M, Pastor JJ, Ibáñez MA, Menoyo D. Effects of Olive Pomace and Spice Extracts on Performance and Antioxidant Function in Broiler Chickens. Animals. 2025; 15(6):808. https://doi.org/10.3390/ani15060808
Chicago/Turabian StyleSevillano, Fernando, Marta Blanch, Jose J. Pastor, Miguel Angel Ibáñez, and David Menoyo. 2025. "Effects of Olive Pomace and Spice Extracts on Performance and Antioxidant Function in Broiler Chickens" Animals 15, no. 6: 808. https://doi.org/10.3390/ani15060808
APA StyleSevillano, F., Blanch, M., Pastor, J. J., Ibáñez, M. A., & Menoyo, D. (2025). Effects of Olive Pomace and Spice Extracts on Performance and Antioxidant Function in Broiler Chickens. Animals, 15(6), 808. https://doi.org/10.3390/ani15060808