Sugarcane Extract (Polygain™) Supplementation Reduces Enteric Methane Emission in Dairy Calves
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Location and Design
2.2. Data Collection
2.3. Data Analysis
3. Results
3.1. Variation in Calf Body Weight by Group
3.2. Variation in GHG Emissions by Experimental Group
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Min, B.R.; Lee, S.; Jung, H.; Miller, D.N.; Chen, R. Enteric methane emissions and animal performance in dairy and beef cattle production: Strategies, opportunities, and impact of reducing emissions. Animals 2022, 12, 948. [Google Scholar] [CrossRef]
- Van Breukelen, A.E.; Aldridge, M.N.; Veerkamp, R.F.; Koning, L.; Sebek, L.B.; de Haas, Y. Heritability and genetic correlations between enteric methane production and concentration recorded by GreenFeed and sniffers on dairy cows. J. Dairy Sci. 2023, 106, 4121–4132. [Google Scholar] [CrossRef]
- Baceninaite, D.; Dzermeikaite, K.; Antanaitis, R. Global Warming and Dairy Cattle: How to Control and Reduce Methane Emission. Animals 2022, 12, 2687. [Google Scholar] [CrossRef]
- Bica, R.; Palarea-Albaladejo, J.; Lima, J.; Uhrin, D.; Miller, G.A.; Bowen, J.M.; Pacheco, D.; Macrae, A.; Dewhurst, R.J. Methane emissions and rumen metabolite concentrations in cattle fed two different silages. Sci. Rep. 2022, 12, 5441. [Google Scholar] [CrossRef]
- Black, J.L.; Davison, T.M.; Box, I. Methane Emissions from Ruminants in Australia: Mitigation Potential and Applicability of Mitigation Strategies. Animals 2021, 11, 951. [Google Scholar] [CrossRef]
- Evans, J.D.; Martin, S.A. Effects of thymol on ruminal microorganisms. Curr. Microbiol. 2000, 41, 336–340. [Google Scholar] [CrossRef]
- Villar, M.L.; Hegarty, R.S.; Nolan, J.V.; Godwin, I.R.; McPhee, M. The effect of dietary nitrate and canola oil alone or in combination on fermentation, digesta kinetics and methane emissions from cattle. Anim. Feed. Sci. Technol. 2020, 259, 114294. [Google Scholar] [CrossRef]
- Honan, M.; Feng, X.; Tricarico, J.M.; Kebreab, E. Feed additives as a strategic approach to reduce enteric methane production in cattle: Modes of action, effectiveness and safety. Anim. Prod. Sci. 2021, 62, 1303–1317. [Google Scholar] [CrossRef]
- Ahmed, M.G.; Elwakeel, E.A.; El-Zarkouny, S.Z.; Al-Sagheer, A.A. Environmental impact of phytobiotic additives on greenhouse gas emission reduction, rumen fermentation manipulation, and performance in ruminants: An updated review. Environ. Sci. Pollut. Res. 2024, 31, 37943–37962. [Google Scholar] [CrossRef]
- Prathap, P.; Chauhan, S.S.; Flavel, M.; Mitchell, S.; Cottrell, J.J.; Leury, B.J.; Dunshea, F.R. Effects of Sugarcane-Derived Polyphenol Supplementation on Methane Production and Rumen Microbial Diversity of Second-Cross Lambs. Animals 2024, 14, 905. [Google Scholar] [CrossRef]
- Batley, R.J.; Chaves, A.V.; Johnson, J.B.; Naiker, M.; Quigley, S.P.; Trotter, M.G.; Costa, D.F. Rapid screening of methane-reducing compounds for deployment in livestock drinking water using in vitro and FTIR-ATR analyses. Methane 2024, 3, 533–560. [Google Scholar] [CrossRef]
- Frazier, A.N.; Beck, M.R.; Waldrip, H.; Koziel, J.A. Connecting the ruminant microbiome to climate change: Insights from current ecological and evolutionary concepts. Front. Microbiol. 2024, 15, 1503315. [Google Scholar] [CrossRef]
- Frazier, A.N.; Ferree, L.; Belk, A.D.; Al-Lakhen, K.; Cramer, M.C.; Metcalf, J.L. Stochasticity Highlights the Development of Both the Gastrointestinal and Upper-Respiratory-Tract Microbiomes of Neonatal Dairy Calves in Early Life. Animals 2025, 15, 361. [Google Scholar] [CrossRef] [PubMed]
- Huuki, H.; Tapio, M.; Mantysaari, P.; Negussie, E.; Ahvenjarvi, S.; Vilkki, J.; Vanhatalo, A.; Tapio, I. Long-term effects of early-life rumen microbiota modulation on dairy cow production performance and methane emissions. Front. Microbiol. 2022, 13, 983823. [Google Scholar] [CrossRef] [PubMed]
- Cristobal-Carballo, O.; McCoard, S.A.; Cookson, A.L.; Ganesh, S.; Lowe, K.; Laven, R.A.; Muetzel, S. Effect of methane inhibitors on ruminal microbiota during early life and its relationship with ruminal metabolism and growth in calves. Front. Microbiol. 2021, 12, 710914. [Google Scholar] [CrossRef] [PubMed]
- Munoz, C.; Munoz, I.A.; Rodriguez, R.; Urrutia, N.L.; Ungerfeld, E.M. Effect of combining the methanogenesis inhibitor 3-nitrooxypropanol and cottonseeds on methane emissions, feed intake, and milk production of grazing dairy cows. Animal 2024, 18, 101203. [Google Scholar] [CrossRef]
- Crowley, S.B.; Purfield, D.C.; Conroy, S.B.; Kelly, D.N.; Evans, R.D.; Ryan, C.V.; Berry, D.P. Associations between a range of enteric methane emission traits and performance traits in indoor-fed growing cattle. J. Anim. Sci. 2024, 102, 346. [Google Scholar] [CrossRef]
- Lee, S.S.; Wi, J.; Kim, H.S.; Seong, P.N.; Lee, S.D.; Kim, J.; Lee, Y. Effects of Rheum palmatum Root on In Vitro and In Vivo Methane Production and Rumen Fermentation Characteristics. Animals 2024, 14, 2637. [Google Scholar] [CrossRef]
- Perez Segura, L.F.; Lee-Rangel, H.A.; Flores Ramirez, R.; Garcia-Lopez, J.C.; Alvarez-Fuentes, G.; Vazquez Valladolid, A.; Hernandez-Garcia, P.A.; Negrete Sanchez, O.; Rendon Huerta, J.A. Impact of Calcium Propionate Supplementation on the Lactation Curve and Milk Metabolomic Analysis on Rambouillet Ewes. Vet. Sci. 2025, 12, 79. [Google Scholar] [CrossRef]
- Meale, S.J.; Popova, M.; Saro, C.; Martin, C.; Bernard, A.; Lagree, M.; Yanez-Ruiz, D.R.; Boudra, H.; Duval, S.; Morgavi, D.P. Early life dietary intervention in dairy calves results in a long-term reduction in methane emissions. Sci. Rep. 2021, 11, 3003. [Google Scholar] [CrossRef]
- Martinez-Fernandez, G.; Denman, S.E.; Walker, N.; Kindermann, M.; McSweeney, C.S. Programming rumen microbiome development in calves with the anti-methanogenic compound 3-NOP. Anim. Microbiome 2024, 6, 60. [Google Scholar] [CrossRef]
- Meo-Filho, P.; Hood, J.; Lee, M.; Fleming, H.; Meethal, M.; Misselbrook, T. Performance and enteric methane emissions from housed beef cattle fed silage produced on pastures with different forage profiles. Animal 2023, 17, 100726. [Google Scholar] [CrossRef] [PubMed]
- Prathap, P.; Chauhan, S.; Flavel, M.; Mitchell, S.; Cottrell, J.; Leury, B.; Dunshea, F. Australian grown sugarcane derived polyphenol has the potential to reduce enteric methane emission from second cross lambs. Proc. Nutr. Soc. 2023, 82, 122. [Google Scholar] [CrossRef]
- Pressman, E.M.; Kebreab, E. A review of key microbial and nutritional elements for mechanistic modeling of rumen fermentation in cattle under methane-inhibition. Front. Microbiol. 2024, 15, 1488370. [Google Scholar] [CrossRef] [PubMed]
- Ungerfeld, E.M.; Pitta, D. Biological consequences of the inhibition of rumen methanogenesis. Animal 2024, 101170. [Google Scholar] [CrossRef] [PubMed]
- Lambo, M.T.; Ma, H.; Liu, R.; Dai, B.; Zhang, Y.; Li, Y. Mechanism, effectiveness, and the prospects of medicinal plants and their bioactive compounds in lowering ruminants’ enteric methane emission. Animal 2024, 18, 101134. [Google Scholar] [CrossRef]
- Vasta, V.; Daghio, M.; Cappucci, A.; Buccioni, A.; Serra, A.; Viti, C.; Mele, M. Invited review: Plant polyphenols and rumen microbiota responsible for fatty acid biohydrogenation, fiber digestion, and methane emission: Experimental evidence and methodological approaches. J. Dairy Sci. 2019, 102, 3781–3804. [Google Scholar] [CrossRef]
- Martins, L.F.; Cueva, S.F.; Lage, C.F.A.; Ramin, M.; Silvestre, T.; Tricarico, J.; Hristov, A.N. A meta-analysis of methane-mitigation potential of feed additives evaluated in vitro. J. Dairy Sci. 2024, 107, 288–300. [Google Scholar] [CrossRef]
- Hristov, A.N. Invited review: Advances in nutrition and feed additives to mitigate enteric methane emissions. J. Dairy Sci. 2024, 107, 4129–4146. [Google Scholar] [CrossRef]
- Huhtanen, P.; Ramin, M.; Hristov, A.N. Enteric methane emission can be reliably measured by the GreenFeed monitoring unit. Livest. Sci. 2019, 222, 31–40. [Google Scholar] [CrossRef]
- Liu, R.; Hailemariam, D.; Yang, T.; Miglior, F.; Schenkel, F.; Wang, Z.; Stothard, P.; Zhang, S.; Plastow, G. Predicting enteric methane emission in lactating Holsteins based on reference methane data collected by the GreenFeed system. Animal 2022, 16, 100469. [Google Scholar] [CrossRef]
- Nejad, J.G.; Ju, M.S.; Jo, J.H.; Oh, K.H.; Lee, Y.S.; Lee, S.D.; Kim, E.J.; Roh, S.; Lee, H.G. Advances in methane emission estimation in livestock: A review of data collection methods, model mevelopment and the role of AI technologies. Animals 2024, 14, 435. [Google Scholar] [CrossRef]
- van Gastelen, S.; Burgers, E.E.A.; Dijkstra, J.; de Mol, R.; Muizelaar, W.; Walker, N.; Bannink, A. Long-term effects of 3-nitrooxypropanol on methane emission and milk production characteristics in Holstein-Friesian dairy cows. J. Dairy Sci. 2024, 107, 5556–5573. [Google Scholar] [CrossRef]
- R Core Team. A Language and Environment for Statistical Computing, Version 4.4.2; R Foundation for Statistical Computing: Vienna, Austria, 2024; Available online: https://www.R-project.org/ (accessed on 10 February 2025).
- Hristov, A.N.; Melgar, A. Short communication: Relationship of dry matter intake with enteric methane emission measured with the GreenFeed system in dairy cows receiving a diet without or with 3-nitrooxypropanol. Animal 2020, 14, 484–490. [Google Scholar] [CrossRef]
- Moraes, L.E.; Strathe, A.B.; Fadel, J.G.; Casper, D.P.; Kebreab, E. Prediction of enteric methane emissions from cattle. Glob. Change Biol. 2014, 20, 2140–2148. [Google Scholar] [CrossRef]
- Filonchyk, M.; Peterson, M.P.; Zhang, L.; Hurynovich, V.; He, Y. Greenhouse gases emissions and global climate change: Examining the influence of CO2, CH4, and N2O. Sci. Total Environ. 2024, 935, 173359. [Google Scholar] [CrossRef]
- Besharati, M.; Maggiolino, A.; Palangi, V.; Kaya, A.; Jabbar, M.; Eseceli, H.; De Palo, P.; Lorenzo, J.M. Tannin in ruminant nutrition. Molecules 2022, 27, 8273. [Google Scholar] [CrossRef]
- Yanza, Y.R.; Fitri, A.; Suwignyo, B.; Hidayatik, N.; Kumalasari, N.R.; Irawan, A.; Jayanegara, A. The utilisation of tannin extract as a dietary additive in ruminant nutrition: A meta-analysis. Animals 2021, 11, 3317. [Google Scholar] [CrossRef]
- Hodge, I.; Quille, P.; O’Connell, S. A review of potential feed additives intended for carbon footprint reduction through methane abatement in dairy cattle. Animals 2024, 14, 568. [Google Scholar] [CrossRef]
- Guerreiro, P.; Costa, D.F.A.; Limede, A.C.; Congio, G.F.S.; Meschiatti, M.A.P.; Bernardes, P.A.; Santos, F.A.P. effects of monensin, calcareous algae, and essential oils on performance, carcass traits, and methane emissions across different breeds of feedlot-finished beef cattle. Ruminants 2025, 5, 2. [Google Scholar] [CrossRef]
- Boadi, D.; Benchaar, C.; Chiquette, J.; Masse, D. Mitigation strategies to reduce enteric methane emissions from dairy cows: Update review. Can. J. Anim. Sci. 2004, 84, 319–335. [Google Scholar] [CrossRef]
- de Haas, Y.; Veerkamp, R.F.; de Jong, G.; Aldridge, M.N. Selective breeding as a mitigation tool for methane emissions from dairy cattle. Animal 2021, 15, 100294. [Google Scholar] [CrossRef]
- Pfau, F.; Hunerberg, M.; Sudekum, K.H.; Breves, G.; Clauss, M.; Hummel, J. Effects of dilution rate on fermentation characteristics of feeds with different carbohydrate composition incubated in the rumen simulation technique (RUSITEC). Front. Anim. Sci. 2021, 2, 715142. [Google Scholar] [CrossRef]
- Richardson, C.M.; Crowley, J.J.; Gredler-Grandl, B.; Amer, P.R. Exploring sustainability in dairy cattle breeding focusing on feed efficiency and methane emissions. JDS Commun. 2024, 5, 751–755. [Google Scholar] [CrossRef] [PubMed]
- Kamalanathan, S.; Houlahan, K.; Miglior, F.; Chud, T.C.S.; Seymour, D.J.; Hailemariam, D.; Plastow, G.; de Oliveira, H.R.; Baes, C.F.; Schenkel, F.S. Genetic analysis of methane emission traits in holstein dairy cattle. Animals 2023, 13, 1308. [Google Scholar] [CrossRef]
- Fresco, S.; Boichard, D.; Fritz, S.; Lefebvre, R.; Barbey, S.; Gaborit, M.; Martin, P. Comparison of methane production, intensity, and yield throughout lactation in Holstein cows. J. Dairy Sci. 2023, 106, 4147–4157. [Google Scholar] [CrossRef]
- Aubry, A.; Yan, T. Meta-analysis of calorimeter data to establish relationships between methane and carbon dioxide emissions or oxygen consumption for dairy cattle. Anim. Nutr. 2015, 1, 128–134. [Google Scholar] [CrossRef]
- Pinares-Patino, C.; D’hour, P.; Jouany, J.-P.; Martin, C. Effects of stocking rate on methane and carbon dioxide emissions from grazing cattle. Agric. Ecosyst. Environ. 2007, 121, 30–46. [Google Scholar] [CrossRef]
- Della Rosa, M.M.; Pacheco, D.; Sandoval, E.; Jonker, A. Simulating the number of spot-samples required to estimate the methane to carbon dioxide ratio in lambs and its relationship with methane yield. N. Zeal. J. Agri. Res. 2024, 67, 303–313. [Google Scholar] [CrossRef]
- Oikawa, K.; Kim, M.; Terada, F.; Masaki, T.; Yasuda, Y.; Shiroshita, Y.; Ideo, T.; Kamiya, Y.; Suzuki, T. Variation among individual beef cattle in methane-to-carbon dioxide ratio measured under on-farm conditions using the sniffer method. Anim. Sci. J. 2024, 95, 13916. [Google Scholar] [CrossRef]
- O’Hara, E.; Dubois, M.; Ribeiro, G.O.; Gruninger, R.J. PSIX-18 Multiomic analysis to identify host and microbiome contributions to digestibility in beef cattle. J. Anim. Sci. 2024, 102, 734–735. [Google Scholar] [CrossRef]
- Manzanilla-Pech, C.I.V.; Stephansen, R.B.; Difford, G.F.; Lovendahl, P.; Lassen, J. Selecting for feed efficient cows will help to reduce methane gas emissions. Front. Genet. 2022, 13, 1–10. [Google Scholar] [CrossRef] [PubMed]
Parameter | Control Group | Treatment Group |
---|---|---|
Initial body weight (kg) | 185.3 ± 25.5 (12) | 192.0 ± 27.2 (12) |
Final body weight (kg) | 251.0 ± 31.6 (12) | 250.2 ± 25.9 (12) |
Average daily gain (kg/d) | 1.09 ± 0.2 (12) | 0.97 ± 0.1 (12) |
Parameter | Control (g/Day) | n | Treatment (g/Day) | n | p Value |
---|---|---|---|---|---|
CH4 | 35.3 a ± 22.4 | 219 | 26.7 b ± 18.1 | 183 | <0.001 |
CO2 | 4125.0 ± 765.2 | 219 | 4164.2 ± 768.2 | 183 | 0.61 |
O2 | 3044.2 ± 535.5 | 219 | 2973.0 ± 563.8 | 183 | 0.19 |
CO2/CH4 | 183.1 b ± 138.9 | 219 | 235.3 a ± 146.7 | 183 | <0.001 |
CO2/O2 | 1.4 a ± 0.01 | 219 | 1.3 b ± 0.01 | 183 | <0.001 |
O2/CH4 | 135.4 b ± 102.8 | 219 | 168.6 a ± 153.2 | 183 | 0.002 |
CO2 | CH4 | O2 | CO2:CH4 | CO2:O2 | O2:CH4 | |
---|---|---|---|---|---|---|
CO2 | 1 | 0.2578 | 0.8697 | 0.0873 | 0.2382 | 0.0535 |
CH4 | <0.0001 | 1 | 0.2209 | −0.7744 | 0.0599 | −0.7748 |
O2 | <0.0001 | <0.0001 | 1 | 0.0615 | −0.2597 | 0.0992 |
CO2: CH4 | 0.0848 | <0.0001 | 0.2186 | 1 | 0.0592 | 0.9861 |
CO2: O2 | <0.0001 | 0.2305 | <0.0001 | 0.2362 | 1 | 0.0801 |
O2: CH4 | 0.0535 | <0.0001 | 0.0468 | <0.0001 | 0.1087 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Osei-Amponsah, R.; Prathap, P.; Dunshea, F.R.; Eckard, R.; Flavel, M.; Elayadeth-Meethal, M.; Chauhan, S.S. Sugarcane Extract (Polygain™) Supplementation Reduces Enteric Methane Emission in Dairy Calves. Animals 2025, 15, 781. https://doi.org/10.3390/ani15060781
Osei-Amponsah R, Prathap P, Dunshea FR, Eckard R, Flavel M, Elayadeth-Meethal M, Chauhan SS. Sugarcane Extract (Polygain™) Supplementation Reduces Enteric Methane Emission in Dairy Calves. Animals. 2025; 15(6):781. https://doi.org/10.3390/ani15060781
Chicago/Turabian StyleOsei-Amponsah, Richard, Pragna Prathap, Frank R. Dunshea, Richard Eckard, Matthew Flavel, Muhammed Elayadeth-Meethal, and Surinder S. Chauhan. 2025. "Sugarcane Extract (Polygain™) Supplementation Reduces Enteric Methane Emission in Dairy Calves" Animals 15, no. 6: 781. https://doi.org/10.3390/ani15060781
APA StyleOsei-Amponsah, R., Prathap, P., Dunshea, F. R., Eckard, R., Flavel, M., Elayadeth-Meethal, M., & Chauhan, S. S. (2025). Sugarcane Extract (Polygain™) Supplementation Reduces Enteric Methane Emission in Dairy Calves. Animals, 15(6), 781. https://doi.org/10.3390/ani15060781