Metabolomics Study Revealed the Effects of CaO-Treated Maize Straw on the Rumen Metabolites
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Ruminal Inoculum and In Vitro Rumen Fermentation
Total Mixed Ration | |
---|---|
Ingredient, g/kg DM | |
Corn meal | 230 |
Alfalfa hay | 449 |
Chinese wild rye hay | 150 |
Wheat bran | 42 |
Soybean meal | 52 |
Cottonseed meal | 64 |
Dicalcium phosphate | 4.2 |
NaCl | 4.2 |
Premix (1) | 4.2 |
Chemical composition | |
DM, g/kg | 527.5 |
CP, g/kg DM | 158 |
aNDF, g/kg DM | 432 |
ADF, g/kg DM | 295 |
NEL, Mcal/kg * | 1.4 |
2.3. Metabolomics Analysis
2.4. Data Analysis
3. Results
3.1. Principal Component Analysis of Microbial Metabolites
3.2. Differential Metabolite Analysis
3.3. KEGG Enrichment Analysis
3.4. The Analysis of Correlation Between Fermentation Parameters and Differential Metabolites
3.5. Correlation Analysis Between Rumen Microbial Composition and Differential Metabolites
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Novaes, E.; Kirst, M.; Chiang, V.; Winter-Sederoff, H.; Sederoff, R. Lignin and Biomass: A Negative Correlation for Wood Formation and Lignin Content in Trees. Plant Physiol. 2010, 154, 555–561. [Google Scholar] [CrossRef]
- Hu, Y.; He, Y.; Gao, S.; Liao, Z.; Lai, T.; Zhou, H.; Chen, Q.; Li, L.; Gao, H.; Lu, W. The effect of a diet based on rice straw co-fermented with probiotics and enzymes versus a fresh corn Stover-based diet on the rumen bacterial community and metabolites of beef cattle. Sci. Rep. 2020, 10, 10721. [Google Scholar] [CrossRef] [PubMed]
- Raffrenato, E.; Fievisohn, R.; Cotanch, K.W.; Grant, R.J.; Chase, L.E.; Van Amburgh, M.E. Effect of lignin linkages with other plant cell wall components on in vitro and in vivo neutral detergent fiber digestibility and rate of digestion of grass forages. J. Dairy. Sci. 2017, 100, 8119–8131. [Google Scholar] [CrossRef] [PubMed]
- Adesogan, A.T.; Arriola, K.G.; Jiang, Y.; Oyebade, A.; Paula, E.M.; Pech-Cervantes, A.A.; Romero, J.J.; Ferraretto, L.F.; Vyas, D. Symposium review: Technologies for improving fiber utilization. J. Dairy. Sci. 2019, 102, 5726–5755. [Google Scholar] [CrossRef] [PubMed]
- Bachmann, M.; Martens, S.D.; Le Brech, Y.; Kervern, G.; Bayreuther, R.; Steinhöfel, O.; Zeyner, A. Physicochemical characterisation of barley straw treated with sodium hydroxide or urea and its digestibility and in vitro fermentability in ruminants. Sci. Rep. 2022, 12, 20530. [Google Scholar] [CrossRef]
- Ciriaco, F.M.; Henry, D.D.; Beierbach, R.; Schulmeister, T.M.; Ruiz-Moreno, M.; Garcia-Ascolani, M.E.; Podversich, F.; Dubeux, J.; DiLorenzo, N. Ruminal in situ degradability of forage components and in vitro organic matter digestibility of warm-season grasses treated with calcium oxide. Transl. Anim. Sci. 2021, 5, txab204. [Google Scholar] [CrossRef]
- Shi, M.; Ma, Z.; Tian, Y.; Zhang, X.; Shan, H. Effects of maize straw treated with various levels of CaO and moisture on composition, structure, and digestion by in vitro gas production. Anim. Biosci. 2021, 34, 1940–1950. [Google Scholar] [CrossRef]
- Shi, M.J.; Ma, Z.X.; Tian, Y.J.; Ma, C.; Li, Y.D.; Zhang, X.W. Effects of corn straw treated with CaO on rumen degradation characteristics and fermentation parameters and their correlation with microbial diversity in rumen. Anim. Feed. Sci. Technol. 2022, 292, 115403. [Google Scholar] [CrossRef]
- Su, S.; Wang, L.; Fu, S.; Zhao, J.; He, X.; Chen, Q.; Belobrajdic, D.P.; Yu, C.; Liu, H.; Wu, H.; et al. Effects of oat (Avena sativa L.) hay diet supplementation on the intestinal microbiome and metabolome of Small-tail Han sheep. Front. Microbiol. 2022, 13, 1032622. [Google Scholar] [CrossRef]
- Newbold, C.J.; Ramos-Morales, E. Review: Ruminal microbiome and microbial metabolome: Effects of diet and ruminant host. Animals 2020, 14, s78–s86. [Google Scholar] [CrossRef]
- Li, Y.; Lv, M.; Wang, J.; Tian, Z.; Yu, B.; Wang, B.; Liu, J.; Liu, H. Dandelion (Taraxacum mongolicum Hand.-Mazz.) Supplementation-Enhanced Rumen Fermentation through the Interaction between Ruminal Microbiome and Metabolome. Microorganisms 2021, 9, 83. [Google Scholar] [CrossRef] [PubMed]
- Ogunade, I.; Schweickart, H.; Andries, K.; Lay, J.; Adeyemi, J. Monensin Alters the Functional and Metabolomic Profile of Rumen Microbiota in Beef Cattle. Animals 2018, 8, 211. [Google Scholar] [CrossRef] [PubMed]
- Menke, K.H.; Raab, L.; Salewski, A.; Steingass, H.; Fritz, D.; Schneider, W. The estimation of the digestibility and metabolizable energy content of ruminant feedingstuffs from the gas production when they are incubated with rumen liquor in vitro. J. Agric. Sci. 1979, 93, 217–222. [Google Scholar] [CrossRef]
- National Research Council, Committee on Animal Nutrition, and Subcommittee on Dairy Cattle Nutrition. Nutrient Requirements of Dairy Cattle: 2001, 7th ed.; National Academies Press: Washington, DC, USA, 2001. [Google Scholar]
- Del Río, J.C.; Rencoret, J.; Gutiérrez, A.; Elder, T.; Kim, H.; Ralph, J. Lignin Monomers from beyond the Canonical Monolignol Biosynthetic Pathway: Another Brick in the Wall. Acs Sustain. Chem. Eng. 2020, 8, 4997–5012. [Google Scholar] [CrossRef]
- Chesson, A.; Stewart, C.S.; Wallace, R.J. Influence of Plant Phenolic Acids on Growth and Cellulolytic Activity of Rumen Bacteria. Appl. Environ. Microbiol. 1982, 44, 597–603. [Google Scholar] [CrossRef]
- de Oliveira, D.M.; Finger Teixeira, A.; Rodrigues Mota, T.; Salvador, V.H.; Moreira Vilar, F.C.; Correa Molinari, H.B.; Craig Mitchell, R.A.; Marchiosi, R.; Ferrarese Filho, O.; Dantas Dos Santos, W. Ferulic acid: A key component in grass lignocellulose recalcitrance to hydrolysis. Plant Biotechnol. J. 2015, 13, 1224–1232. [Google Scholar] [CrossRef]
- Lam, T.B.; Kadoya, K.; Iiyama, K. Bonding of hydroxycinnamic acids to lignin: Ferulic and p-coumaric acids are predominantly linked at the benzyl position of lignin, not the beta-position, in grass cell walls. Phytochemistry 2001, 57, 987–992. [Google Scholar] [CrossRef]
- Varel, V.H.; Jung, H.J.G. Influence of forage phenolics on ruminal fibrolytic bacteria and in vitro fiber degradation. Appl. Environ. Microbiol. 1986, 52, 275–280. [Google Scholar] [CrossRef]
- Gunam, I.B.W.; Setiyo, Y.; Antara, N.S.; Wijaya, I.M.M.; Arnata, I.W.; Putra, I.W.W.P. Enhanced delignification of corn straw with alkaline pretreatment at mild temperature. Rasayan J. Chem. 2020, 13, 1022–1029. [Google Scholar] [CrossRef]
- Ishiguro, M.; Endo, T. Effect of the addition of calcium hydroxide on the hydrothermal–mechanochemical treatment of Eucalyptus. Bioresour. Technol. 2015, 177, 298–301. [Google Scholar] [CrossRef]
- Linh, T.N.; Fujita, H.; Sakoda, A. Release kinetics of esterified p-coumaric acid and ferulic acid from rice straw in mild alkaline solution. Bioresour. Technol. 2017, 232, 192–203. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, W.; Wu, Q.; Yang, H. The release and catabolism of ferulic acid in plant cell wall by rumen microbes: A review. Anim. Nutr. 2022, 9, 335–344. [Google Scholar] [CrossRef] [PubMed]
- Chesson, A.; Provan, G.J.; Russell, W.R.; Scobbie, L.; Richardson, A.J.; Stewart, C. Hydroxycinnamic acids in the digestive tract of livestock and humans. J. Sci. Food. Agric. 1999, 79, 373–378. [Google Scholar] [CrossRef]
- Huang, C.; Ge, F.; Yao, X.; Guo, X.; Bao, P.; Ma, X.; Wu, X.; Chu, M.; Yan, P.; Liang, C. Microbiome and Metabolomics Reveal the Effects of Different Feeding Systems on the Growth and Ruminal Development of Yaks. Front. Microbiol. 2021, 12, 682989. [Google Scholar] [CrossRef]
- Estevez, A.M.; Estevez, R.J. A Short Overview on the Medicinal Chemistry of (-)- Shikimic Acid. Mini-Rev. Med. Chem. 2012, 12, 1443–1464. [Google Scholar] [CrossRef]
- Wen, Q.; Yu, S.; Wang, S.; Qin, Y.; Xia, Q.; Wang, S.; Chen, G.; Shen, C.; Song, S. Impact of intestinal microbiota on metabolic toxicity and potential detoxification of amygdalin. Front. Microbiol. 2022, 13, 1030516. [Google Scholar] [CrossRef]
- Yi, X.; Huang, C.; Huang, C.; Zhao, M.; Lu, Q. Fecal microbiota from MRL/lpr mice exacerbates pristane-induced lupus. Arthritis Res. Ther. 2023, 25, 42. [Google Scholar] [CrossRef]
- Konopelski, P.; Mogilnicka, I. Biological Effects of Indole-3-Propionic Acid, a Gut Microbiota-Derived Metabolite, and Its Precursor Tryptophan in Mammals’ Health and Disease. Int. J. Mol. Sci. 2022, 23, 1222. [Google Scholar] [CrossRef]
- Saeed, O.A.; Sazili, A.Q.; Akit, H.; Alimon, A.R.; Samsudin, A.A.B. Effect of corn supplementation on purine derivatives and rumen fermentation in sheep fed PKC and urea-treated rice straw. Trop. Anim. Health Prod. 2018, 50, 1859–1864. [Google Scholar] [CrossRef]
- Sriskandarajah, N.; Kellaway, R.C. Effects of alkali treatment of wheat straw on intake and microbial protein synthesis in cattle. Br. J. Nutr. 1984, 51, 289. [Google Scholar] [CrossRef]
- Makkar, H.P.S. Use of nuclear and related techniques to develop simple tannin assays for predicting and improving the safety and efficiency of feeding ruminants on tanniniferous tree foliage: Achievements, result implications, and future research. Anim. Feed. Sci. Technol. 2005, 122, 3–12. [Google Scholar] [CrossRef]
- Polyorach, S.; Wanapat, M. Improving the quality of rice straw by urea and calcium hydroxide on rumen ecology, microbial protein synthesis in beef cattle. J. Anim. Physiol. Anim. Nutr. 2015, 99, 449–456. [Google Scholar] [CrossRef] [PubMed]
Pathway | Metabolites |
---|---|
Tryptophan metabolism | 5-Hydroxy-L-tryptophan, L-Kynurenine, 3-Indoleacetic Acid, L-Tryptophan, Indole-3-Pyruvic Acid, 5-Hydroxyindoleacetic acid |
Phenylalanine, tyrosine, and tryptophan biosynthesis | L-Phenylalanine, L-Tryptophan, Shikimic Acid, 5-Dehydroquinic acid, Quinic acid |
Phenylpropanoid biosynthesis | Coniferyl aldehyde, L-Phenylalanine, Sinapyl alcohol, Chlorogenic acid, 5-Hydroxyferulate, 2-Hydroxycinnamic acid |
Cyanoamino acid metabolism | N,N-Dihydroxy-L-tyrosine, L-Phenylalanine, N,N-Dihydroxy-L-phenylalanine |
Purine metabolism | Adenosine 3′-monophosphate, Deoxyinosine, Ribose 1-phosphate |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Shi, M.; Ma, Z.; Zhang, X.; Shan, H.; Xu, X.; Quan, S.; Zhang, J.; Tian, Y. Metabolomics Study Revealed the Effects of CaO-Treated Maize Straw on the Rumen Metabolites. Animals 2025, 15, 674. https://doi.org/10.3390/ani15050674
Wang H, Shi M, Ma Z, Zhang X, Shan H, Xu X, Quan S, Zhang J, Tian Y. Metabolomics Study Revealed the Effects of CaO-Treated Maize Straw on the Rumen Metabolites. Animals. 2025; 15(5):674. https://doi.org/10.3390/ani15050674
Chicago/Turabian StyleWang, Hui, Mingjun Shi, Zhanxia Ma, Xuewei Zhang, Huiyong Shan, Xiaofeng Xu, Suyu Quan, Junqin Zhang, and Yujia Tian. 2025. "Metabolomics Study Revealed the Effects of CaO-Treated Maize Straw on the Rumen Metabolites" Animals 15, no. 5: 674. https://doi.org/10.3390/ani15050674
APA StyleWang, H., Shi, M., Ma, Z., Zhang, X., Shan, H., Xu, X., Quan, S., Zhang, J., & Tian, Y. (2025). Metabolomics Study Revealed the Effects of CaO-Treated Maize Straw on the Rumen Metabolites. Animals, 15(5), 674. https://doi.org/10.3390/ani15050674