Photoperiod Management in Farm Animal Husbandry: A Review
Simple Summary
Abstract
1. Introduction
2. Dairy Cows
3. Poultry
3.1. Broilers, Laying Hens, and Turkeys
3.2. Ducks, Geese, and Quail
4. Pigs
5. Rabbits
6. Goats
7. Horse
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Øverland, S.; Woicik, W.; Sikora, L.; Whittaker, K.; Heli, H.; Skjelkvåle, F.S.; Sivertsen, B.; Colman, I. Seasonality and Symptoms of Depression: A Systematic Review of the Literature. Epidemiol. Psychiatr. Sci. 2020, 29, e31. [Google Scholar] [CrossRef]
- Zhang, H.; Khan, A.; Chen, Q.; Larsson, H.; Rzhetsky, A. Do Psychiatric Diseases Follow Annual Cyclic Seasonality? PLoS Biol. 2021, 19, e3001347. [Google Scholar] [CrossRef] [PubMed]
- Jameson, A.N.; Siemann, J.K.; Melchior, J.; Calipari, E.S.; McMahon, D.G.; Grueter, B.A. Photoperiod Impacts Nucleus Accumbens Dopamine Dynamics. eNeuro 2023, 10, ENEURO.0361-22.2023. [Google Scholar] [CrossRef]
- Paronis, E.; Kapogiannatou, A.; Paschidis, K.; Stasinopoulou, M.; Alexakos, P.; Skaliora, I.; Kostomitsopoulos, N.G. Lighting Environment: What Colour of Light Do Male C57BL/6J Prefer? Appl. Anim. Behav. Sci. 2018, 209, 99–103. [Google Scholar] [CrossRef]
- Itzhacki, J.; Clesse, D.; Goumon, Y.; Van Someren, E.J.; Mendoza, J. Light Rescues Circadian Behavior and Brain Dopamine Abnormalities in Diurnal Rodents Exposed to a Winter-like Photoperiod. Brain Struct. Funct. 2018, 223, 2641–2652. [Google Scholar] [CrossRef] [PubMed]
- Phillips, C.J.; Lomas, C.A. The Perception of Color by Cattle and Its Influence on Behavior. J. Dairy Sci. 2001, 84, 807–813. [Google Scholar] [CrossRef]
- Jacobs, G.H.; Deegan, J.F.; Neitz, J. Photopigment Basis for Dichromatic Color Vision in Cows, Goats, and Sheep. Vis. Neurosci. 1998, 15, 581–584. [Google Scholar] [CrossRef]
- Prescott, N.B.; Wathes, C.M. Reflective Properties of Domestic Fowl (Gallus g. Domesticus), the Fabric of Their Housing and the Characteristics of the Light Environment in Environmentally Controlled Poultry Houses. Br. Poult. Sci. 1999, 40, 185–193. [Google Scholar] [CrossRef]
- Osorio, D.; Vorobyev, M.; Jones, C.D. Colour Vision of Domestic Chicks. J. Exp. Biol. 1999, 202, 2951–2959. [Google Scholar] [CrossRef]
- Gieling, E.T.; Nordquist, R.E.; van der Staay, F.J. Assessing Learning and Memory in Pigs. Anim. Cogn. 2011, 14, 151–173. [Google Scholar] [CrossRef]
- Tanida, H.; Miura, A.; Tanaka, T.; Yoshimoto, T. Behavioral Responses of Piglets to Darkness and Shadows. Appl. Anim. Behav. Sci. 1996, 49, 173–183. [Google Scholar] [CrossRef]
- Kuenzel, W.J.; Kang, S.W.; Zhou, Z.J. Exploring Avian Deep-Brain Photoreceptors and Their Role in Activating the Neuroendocrine Regulation of Gonadal Development. Poult. Sci. 2015, 94, 786–798. [Google Scholar] [CrossRef] [PubMed]
- Lewis, M.H.; Lindenmaier, Z.; Boswell, K.; Edington, G.; King, M.A.; Muehlmann, A.M. Subthalamic Nucleus Pathology Contributes to Repetitive Behavior Expression and Is Reversed by Environmental Enrichment. Genes Brain Behav. 2018, 17, e12468. [Google Scholar] [CrossRef]
- Bruininx, E.M.A.M.; Heetkamp, M.J.W.; van den Bogaart, D.; van der Peet-Schwering, C.M.C.; Beynen, A.C.; Everts, H.; den Hartog, L.A.; Schrama, J.W. A Prolonged Photoperiod Improves Feed Intake and Energy Metabolism of Weanling Pigs. J. Anim. Sci. 2002, 80, 1736–1745. [Google Scholar] [CrossRef] [PubMed]
- Duarte, G.; Nava-Hernández, M.P.; Malpaux, B.; Delgadillo, J.A. Ovulatory Activity of Female Goats Adapted to the Subtropics Is Responsive to Photoperiod. Anim. Reprod. Sci. 2010, 120, 65–70. [Google Scholar] [CrossRef]
- Morrissey, A.D.; Cameron, A.W.N.; Tilbrook, A.J. Artificial Lighting during Winter Increases Milk Yield in Dairy Ewes. J. Dairy Sci. 2008, 91, 4238–4243. [Google Scholar] [CrossRef]
- Dahl, G.E.; Buchanan, B.A.; Tucker, H.A. Photoperiodic Effects on Dairy Cattle: A Review. J. Dairy Sci. 2000, 83, 885–893. [Google Scholar] [CrossRef]
- Peters, R.R.; Chapin, L.T.; Leining, K.B.; Tucker, H.A. Supplemental Lighting Stimulates Growth and Lactation in Cattle. Science 1978, 199, 911–912. [Google Scholar] [CrossRef]
- Bilodeau, P.P.; Petitclerc, D.; St., Pierre, N.; Pelletier, G.; St., Laurent, G.J. Effects of Photoperiod and Pair-Feeding on Lactation of Cows Fed Corn or Barley Grain in Total Mixed Rations. J. Dairy Sci. 1989, 72, 2999–3005. [Google Scholar] [CrossRef]
- Evans, N.M.; Hacker, R.R. Effect of Chronobiological Manipulation of Lactation in the Dairy Cow. J. Dairy Sci. 1989, 72, 2921–2927. [Google Scholar] [CrossRef]
- Freeman, M.E.; Kanyicska, B.; Lerant, A.; Nagy, G. Prolactin: Structure, Function, and Regulation of Secretion. Physiol. Rev. 2000, 80, 1523–1631. [Google Scholar] [CrossRef] [PubMed]
- Lacasse, P.; Ollier, S.; Lollivier, V.; Boutinaud, M. New Insights into the Importance of Prolactin in Dairy Ruminants. J. Dairy Sci. 2016, 99, 864–874. [Google Scholar] [CrossRef] [PubMed]
- Lacasse, P.; Vinet, C.M.; Petitclerc, D. Effect of Prepartum Photoperiod and Melatonin Feeding on Milk Production and Prolactin Concentration in Dairy Heifers and Cows. J. Dairy Sci. 2014, 97, 3589–3598. [Google Scholar] [CrossRef] [PubMed]
- Stanisiewski, E.P.; Chapin, L.T.; Ames, N.K.; Zinn, S.A.; Tucker, H.A. Melatonin and Prolactin Concentrations in Blood of Cattle Exposed to 8, 16 or 24 Hours of Daily Light. J. Anim. Sci. 1988, 66, 727. [Google Scholar] [CrossRef] [PubMed]
- Lincoln, G.A.; Clarke, I.J. Photoperiodically-lnduced Cycles in the Secretion of Prolactin in Hypothalamo-Pituitary Disconnected Rams: Evidence for Translation of the Melatonin Signal in the Pituitary Gland. J. Neuroendocrinol. 1994, 6, 251–260. [Google Scholar] [CrossRef]
- Miller, A.R.E.; Erdman, R.A.; Douglass, L.W.; Dahl, G.E. Effects of Photoperiodic Manipulation During the Dry Period of Dairy Cows. J. Dairy Sci. 2000, 83, 962–967. [Google Scholar] [CrossRef]
- Auchtung, T.L.; Rius, A.G.; Kendall, P.E.; McFadden, T.B.; Dahl, G.E. Effects of Photoperiod During the Dry Period on Prolactin, Prolactin Receptor, and Milk Production of Dairy Cows. J. Dairy Sci. 2005, 88, 121–127. [Google Scholar] [CrossRef]
- Velasco, J.M.; Reid, E.D.; Fried, K.K.; Gressley, T.F.; Wallace, R.L.; Dahl, G.E. Short-Day Photoperiod Increases Milk Yield in Cows with a Reduced Dry Period Length. J. Dairy Sci. 2008, 91, 3467–3473. [Google Scholar] [CrossRef]
- Crawford, H.; Morin, D.; Wall, E.; McFadden, T.; Dahl, G. Evidence for a Role of Prolactin in Mediating Effects of Photoperiod during the Dry Period. Animals 2015, 5, 803–820. [Google Scholar] [CrossRef]
- Capuco, A.V.; Akers, R.M.; Smith, J.J. Mammary Growth in Holstein Cows During the Dry Period: Quantification of Nucleic Acids and Histology. J. Dairy Sci. 1997, 80, 477–487. [Google Scholar] [CrossRef]
- Wall, E.H.; Auchtung, T.L.; Dahl, G.E.; Ellis, S.E.; McFadden, T.B. Exposure to Short Day Photoperiod During the Dry Period Enhances Mammary Growth in Dairy Cows. J. Dairy Sci. 2005, 88, 1994–2003. [Google Scholar] [CrossRef] [PubMed]
- Accorsi, P.A.; Pacioni, B.; Pezzi, C.; Forni, M.; Flint, D.J.; Seren, E. Role of Prolactin, Growth Hormone and Insulin-Like Growth Factor 1 in Mammary Gland Involution in the Dairy Cow. J. Dairy Sci. 2002, 85, 507–513. [Google Scholar] [CrossRef] [PubMed]
- Khastayeva, A.Z.; Zhamurova, V.S.; Mamayeva, L.A.; Kozhabergenov, A.T.; Karimov, N.Z.; Muratbekova, K.M. Qualitative Indicators of Milk of Simmental and Holstein Cows in Different Seasons of Lactation. Vet. World 2021, 14, 956–963. [Google Scholar] [CrossRef] [PubMed]
- Miller, A.R.E.; Stanisiewski, E.P.; Erdman, R.A.; Douglass, L.W.; Dahl, G.E. Effects of Long Daily Photoperiod and Bovine Somatotropin (Trobest®) on Milk Yield in Cows. J. Dairy Sci. 1999, 82, 1716–1722. [Google Scholar] [CrossRef]
- Romanini, E.B.; Volpato, A.M.; Sifuentes Dos Santos, J.; De Santana, E.H.W.; De Souza, C.H.B.; Ludovico, A. Melatonin Concentration in Cow’s Milk and Sources of Its Variation. J. Appl. Anim. Res. 2019, 47, 140–145. [Google Scholar] [CrossRef]
- Asher, A.; Shabtay, A.; Brosh, A.; Eitam, H.; Agmon, R.; Cohen-Zinder, M.; Zubidat, A.E.; Haim, A. “Chrono-Functional Milk”: The Difference between Melatonin Concentrations in Night-Milk versus Day-Milk under Different Night Illumination Conditions. Chronobiol. Int. 2015, 32, 1409–1416. [Google Scholar] [CrossRef]
- Teng, Z.W.; Yang, G.Q.; Wang, L.F.; Fu, T.; Lian, H.X.; Sun, Y.; Han, L.Q.; Zhang, L.Y.; Gao, T.Y. Effects of the Circadian Rhythm on Milk Composition in Dairy Cows: Does Day Milk Differ from Night Milk? J. Dairy Sci. 2021, 104, 8301–8313. [Google Scholar] [CrossRef]
- Bodurov, N. [Effect of supplementary artificial illumination with visible rays on biochemical indices in the blood serum, milk yields and fertilization during lactation]. Vet. Med. Nauki 1979, 16, 58–65. [Google Scholar]
- Lim, D.-H.; Kim, T.-I.; Park, S.-M.; Ki, K.-S.; Kim, Y. Effects of Photoperiod and Light Intensity on Milk Production and Milk Composition of Dairy Cows in Automatic Milking System. J. Anim. Sci. Technol. 2021, 63, 626–639. [Google Scholar] [CrossRef]
- Phillips, C.J.C.; Schofield, S.A. The Effect of Supplementary Light on the Production and Behaviour of Dairy Cows. Anim. Sci. 1989, 48, 293–303. [Google Scholar] [CrossRef]
- Cohen Engler, A.; Hadash, A.; Shehadeh, N.; Pillar, G. Breastfeeding May Improve Nocturnal Sleep and Reduce Infantile Colic: Potential Role of Breast Milk Melatonin. Eur. J. Pediatr. 2012, 171, 729–732. [Google Scholar] [CrossRef]
- Salfer, I.J.; Dechow, C.D.; Harvatine, K.J. Annual Rhythms of Milk and Milk Fat and Protein Production in Dairy Cattle in the United States. J. Dairy Sci. 2019, 102, 742–753. [Google Scholar] [CrossRef] [PubMed]
- Pan, X.; Hussain, M.M. Clock Is Important for Food and Circadian Regulation of Macronutrient Absorption in Mice. J. Lipid Res. 2009, 50, 1800–1813. [Google Scholar] [CrossRef] [PubMed]
- Duez, H.; Van Der Veen, J.N.; Duhem, C.; Pourcet, B.; Touvier, T.; Fontaine, C.; Derudas, B.; Baugé, E.; Havinga, R.; Bloks, V.W.; et al. Regulation of Bile Acid Synthesis by the Nuclear Receptor Rev-Erbα. Gastroenterology 2008, 135, 689–698.e5. [Google Scholar] [CrossRef]
- Matenchuk, B.A.; Mandhane, P.J.; Kozyrskyj, A.L. Sleep, Circadian Rhythm, and Gut Microbiota. Sleep Med. Rev. 2020, 53, 101340. [Google Scholar] [CrossRef]
- Yu, Y.; Qiu, J.; Cao, J.; Guo, Y.; Bai, H.; Wei, S.; Yan, P. Effects of Prolonged Photoperiod on Growth Performance, Serum Lipids and Meat Quality of Jinjiang Cattle in Winter. Anim. Biosci. 2021, 34, 1569–1578. [Google Scholar] [CrossRef]
- Osborne, V.R.; Odongo, N.E.; Edwards, A.M.; McBride, B.W. Effects of Photoperiod and Glucose-Supplemented Drinking Water on the Performance of Dairy Calves. J. Dairy Sci. 2007, 90, 5199–5207. [Google Scholar] [CrossRef]
- Jiang, S.; Fu, Y.; Cheng, H.-W. Daylight Exposure and Circadian Clocks in Broilers: Part I-Photoperiod Effect on Broiler Behavior, Skeletal Health, and Fear Response. Poult. Sci. 2023, 102, 103162. [Google Scholar] [CrossRef]
- Mohawk, J.A.; Green, C.B.; Takahashi, J.S. Central and Peripheral Circadian Clocks in Mammals. Annu. Rev. Neurosci. 2012, 35, 445–462. [Google Scholar] [CrossRef]
- Van der Vinne, V.; Martin Burgos, B.; Harrington, M.E.; Weaver, D.R. Deconstructing Circadian Disruption: Assessing the Contribution of Reduced Peripheral Oscillator Amplitude on Obesity and Glucose Intolerance in Mice. J. Pineal Res. 2020, 69, e12654. [Google Scholar] [CrossRef]
- Gomes De Oliveira, R.; José Camargos Lara, L. Lighting Programmes and Its Implications for Broiler Chickens. World’s Poult. Sci. J. 2016, 72, 735–742. [Google Scholar] [CrossRef]
- Wu, Y.; Huang, J.; Quan, S.; Yang, Y. Light Regimen on Health and Growth of Broilers: An Update Review. Poult. Sci. 2022, 101, 101545. [Google Scholar] [CrossRef] [PubMed]
- Hofmann, T.; Schmucker, S.S.; Bessei, W.; Grashorn, M.; Stefanski, V. Impact of Housing Environment on the Immune System in Chickens: A Review. Animals 2020, 10, 1138. [Google Scholar] [CrossRef]
- Parvin, R.; Mushtaq, M.M.H.; Kim, M.J.; Choi, H.C. Light Emitting Diode (LED) as a Source of Monochromatic Light: A Novel Lighting Approach for Behaviour, Physiology and Welfare of Poultry. World’s Poult. Sci. J. 2014, 70, 543–556. [Google Scholar] [CrossRef]
- Archer, G.S.; Mench, J.A. Exposing Avian Embryos to Light Affects Post-Hatch Anti-Predator Fear Responses. Appl. Anim. Behav. Sci. 2017, 186, 80–84. [Google Scholar] [CrossRef]
- Riber, A.B. Effects of Color of Light on Preferences, Performance, and Welfare in Broilers. Poult. Sci. 2015, 94, 1767–1775. [Google Scholar] [CrossRef]
- Nelson, J.R.; Bray, J.L.; Delabbio, J.; Archer, G.S. Comparison of an Intermittent, Short-Dawn/Dusk Photoperiod with an Increasing, Long-Dawn/Dusk Photoperiod on Broiler Growth, Stress, and Welfare. Poult. Sci. 2020, 99, 3908–3913. [Google Scholar] [CrossRef]
- Olanrewaju, H.A.; Miller, W.W.; Maslin, W.R.; Collier, S.D.; Purswell, J.L.; Branton, S.L. Interactive Effects of Light-Sources, Photoperiod, and Strains on Growth Performance, Carcass Characteristics, and Health Indices of Broilers Grown to Heavy Weights1. Poult. Sci. 2019, 98, 6232–6240. [Google Scholar] [CrossRef]
- Yang, H.; Xing, H.; Wang, Z.; Xia, J.; Wan, Y.; Hou, B.; Zhang, J. Effects of Intermittent Lighting on Broiler Growth Performance, Slaughter Performance, Serum Biochemical Parameters and Tibia Parameters. Ital. J. Anim. Sci. 2015, 14, 4143. [Google Scholar] [CrossRef]
- Kim, H.-J.; Son, J.; Jeon, J.-J.; Kim, H.-S.; Yun, Y.-S.; Kang, H.-K.; Hong, E.-C.; Kim, J.-H. Effects of Photoperiod on the Performance, Blood Profile, Welfare Parameters, and Carcass Characteristics in Broiler Chickens. Animals 2022, 12, 2290. [Google Scholar] [CrossRef]
- Abo Ghanima, M.M.; Abd El-Hack, M.E.; Abougabal, M.S.; Taha, A.E.; Tufarelli, V.; Laudadio, V.; Naiel, M.A.E. Growth, Carcass Traits, Immunity and Oxidative Status of Broilers Exposed to Continuous or Intermittent Lighting Programs. Anim. Biosci. 2021, 34, 1243–1252. [Google Scholar] [CrossRef] [PubMed]
- Willenberg, H.S.; Päth, G.; Vögeli, T.A.; Scherbaum, W.A.; Bornstein, S.R. Role of Interleukin-6 in Stress Response in Normal and Tumorous Adrenal Cells and during Chronic Inflammation. Ann. N. Y Acad. Sci. 2002, 966, 304–314. [Google Scholar] [CrossRef] [PubMed]
- Lien, R.J.; Hess, J.B.; McKee, S.R.; Bilgili, S.F.; Townsend, J.C. Effect of Light Intensity and Photoperiod on Live Performance, Heterophil-to-Lymphocyte Ratio, and Processing Yields of Broilers. Poult. Sci. 2007, 86, 1287–1293. [Google Scholar] [CrossRef]
- Classen, H.L.; Riddell, C.; Robinson, F.E. Effects of Increasing Photoperiod Length on Performance and Health of Broiler Chickens. Br. Poult. Sci. 1991, 32, 21–29. [Google Scholar] [CrossRef]
- Schwean-Lardner, K.; Fancher, B.I.; Gomis, S.; Van Kessel, A.; Dalal, S.; Classen, H.L. Effect of Day Length on Cause of Mortality, Leg Health, and Ocular Health in Broilers. Poult. Sci. 2013, 92, 1–11. [Google Scholar] [CrossRef]
- Li, J.; Tian, G.; Wang, X.; Tang, H.; Liu, Y.; Guo, H.; Wang, C.; Chen, Y.; Yang, Y. Effects of Short Photoperiod on Cashmere Growth, Hormone Concentrations and Hair Follicle Development-Related Gene Expression in Cashmere Goats. J. Appl. Anim. Res. 2023, 51, 52–61. [Google Scholar] [CrossRef]
- Riaz, M.F.; Mahmud, A.; Hussain, J.; Rehman, A.U.; Usman, M.; Mehmood, S.; Ahmad, S. Impact of Light Stimulation during Incubation on Hatching Traits and Post-Hatch Performance of Commercial Broilers. Trop. Anim. Health Prod. 2021, 53, 107. [Google Scholar] [CrossRef]
- Shynkaruk, T.; Classen, H.L.; Crowe, T.G.; Schwean-Lardner, K. The Impact of Dark Exposure on Broiler Feeding Behavior and Weight of Gastrointestinal Tract Segments and Contents. Poult. Sci. 2019, 98, 2448–2458. [Google Scholar] [CrossRef]
- Ma, D.; Yu, M.; Zhang, M.; Feng, J. Research Note: The Effect of Photoperiod on the NLRP3 Inflammasome and Gut Microbiota in Broiler Chickens. Poult. Sci. 2024, 103, 103507. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Z.; Yang, P.; Zhang, M.; Xi, L.; Liu, Q.; Li, J. Molecular Mechanism Underlying the Effect of Illumination Time on the Growth Performance of Broilers via Changes in the Intestinal Bacterial Community. PeerJ 2020, 8, e9638. [Google Scholar] [CrossRef]
- Shynkaruk, T.; Buchynski, K.; Schwean-Lardner, K. Lighting Programme as a Management Tool for Broilers Raised without Antibiotics—Impact on Productivity and Welfare. Br. Poult. Sci. 2022, 63, 761–767. [Google Scholar] [CrossRef] [PubMed]
- Voigt, R.M.; Forsyth, C.B.; Green, S.J.; Engen, P.A.; Keshavarzian, A. Circadian Rhythm and the Gut Microbiome. Int. Rev. Neurobiol. 2016, 131, 193–205. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Xiao, Z.; An, W.; Dong, Y.; Zhang, B. Dietary Sodium Butyrate Improves Intestinal Development and Function by Modulating the Microbial Community in Broilers. PLoS ONE 2018, 13, e0197762. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Chen, X.; Zhang, B.; Liu, L.; Li, F. Sodium Butyrate Improved Intestinal Barrier in Rabbits. Ital. J. Anim. Sci. 2020, 19, 1482–1492. [Google Scholar] [CrossRef]
- Sun, F.; Zhao, Q.; Chen, X.; Zhao, G.; Gu, X. Physiological Indicators and Production Performance of Dairy Cows With Tongue Rolling Stereotyped Behavior. Front. Vet. Sci. 2022, 9, 840726. [Google Scholar] [CrossRef]
- Malinen, E.; Krogius-Kurikka, L.; Lyra, A.; Nikkilä, J.; Jääskeläinen, A.; Rinttilä, T.; Vilpponen-Salmela, T.; von Wright, A.J.; Palva, A. Association of Symptoms with Gastrointestinal Microbiota in Irritable Bowel Syndrome. World J. Gastroenterol. 2010, 16, 4532–4540. [Google Scholar] [CrossRef]
- De Cesare, A.; Sirri, F.; Manfreda, G.; Moniaci, P.; Giardini, A.; Zampiga, M.; Meluzzi, A. Effect of Dietary Supplementation with Lactobacillus Acidophilus D2/CSL (CECT 4529) on Caecum Microbioma and Productive Performance in Broiler Chickens. PLoS ONE 2017, 12, e0176309. [Google Scholar] [CrossRef]
- Zhao, H.; Li, M.; Liu, L.; Li, D.; Zhao, L.; Wu, Z.; Zhou, M.; Jia, L.; Yang, F. Cordyceps Militaris Polysaccharide Alleviates Diabetic Symptoms by Regulating Gut Microbiota against TLR4/NF-κB Pathway. Int. J. Biol. Macromol. 2023, 230, 123241. [Google Scholar] [CrossRef]
- Geng, A.L.; Zhang, Y.; Zhang, J.; Wang, H.H.; Chu, Q.; Yan, Z.X.; Liu, H.G. Effects of Light Regime on Circadian Rhythmic Behavior and Reproductive Parameters in Native Laying Hens. Poult. Sci. 2022, 101, 101808. [Google Scholar] [CrossRef]
- Hassan, M.R.; Sultana, S.; Choe, H.S.; Ryu, K.S. Effect of Monochromatic and Combined Light Colour on Performance, Blood Parameters, Ovarian Morphology and Reproductive Hormones in Laying Hens. Ital. J. Anim. Sci. 2013, 12, e56. [Google Scholar] [CrossRef]
- Ouyang, H.; Yang, B.; Lao, Y.; Tang, J.; Tian, Y.; Huang, Y. Photoperiod Affects the Laying Performance of the Mountain Duck by Regulating Endocrine Hormones and Gene Expression. Vet. Med. Sci. 2021, 7, 1899–1906. [Google Scholar] [CrossRef]
- Bédécarrats, G.Y.; Baxter, M.; Sparling, B. An Updated Model to Describe the Neuroendocrine Control of Reproduction in Chickens. Gen. Comp. Endocrinol. 2016, 227, 58–63. [Google Scholar] [CrossRef] [PubMed]
- Sorrentino, S. Ovulation in PMS-Treated Rats with Gonadotropin Releasing Hormone after Pentobarbital and Melatonin Block. Neuroendocrinology 1975, 19, 170–176. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.-M.; Tian, X.-Z.; Zhou, G.-B.; Wang, L.; Gao, C.; Zhu, S.-E.; Zeng, S.-M.; Tian, J.-H.; Liu, G.-S. Melatonin Exists in Porcine Follicular Fluid and Improves in Vitro Maturation and Parthenogenetic Development of Porcine Oocytes. J. Pineal Res. 2009, 47, 318–323. [Google Scholar] [CrossRef] [PubMed]
- Geng, A.L.; Xu, S.F.; Zhang, Y.; Zhang, J.; Chu, Q.; Liu, H.G. Effects of Photoperiod on Broodiness, Egg-Laying and Endocrine Responses in Native Laying Hens. Br. Poult. Sci. 2014, 55, 264–269. [Google Scholar] [CrossRef]
- Yameen, R.M.K.; Hussain, J.; Mahmud, A.; Saima. Effects of Different Light Durations during Incubation on Hatching, Subsequent Growth, Welfare, and Meat Quality Traits among Three Broiler Strains. Trop. Anim. Health Prod. 2020, 52, 3639–3653. [Google Scholar] [CrossRef]
- Walter, J.H.; Voitle, R.A. Effects of Photoperiod during Incubation on Embryonic and Post-Embryonic Development of Broilers. Poult. Sci. 1972, 51, 1122–1126. [Google Scholar] [CrossRef]
- Li, X.; McLean, N.; MacIsaac, J.; Martynenko, A.; Rathgeber, B. Effect of Photoperiod during Incubation on Embryonic Temperature, Hatch Traits, and Performance of 2 Commercial Broiler Strains. Poult. Sci. 2023, 102, 102632. [Google Scholar] [CrossRef]
- Rozenboim, I.; Huisinga, R.; Halevy, O.; El Halawani, M.E. Effect of Embryonic Photostimulation on the Posthatch Growth of Turkey Poults. Poult. Sci. 2003, 82, 1181–1187. [Google Scholar] [CrossRef]
- Leis, M.L.; Dodd, M.-M.U.; Starrak, G.; Vermette, C.J.; Gomis, S.; Bauer, B.S.; Sandmeyer, L.S.; Schwean-Lardner, K.; Classen, H.L.; Grahn, B.H. Effect of Prolonged Photoperiod on Ocular Tissues of Domestic Turkeys. Vet. Ophthalmol. 2017, 20, 232–241. [Google Scholar] [CrossRef]
- Zawilska, J.B.; Lorenc, A.; Berezínska, M.; Vivien-Roels, B.; Pévet, P.; Skene, D.J. Photoperiod-Dependent Changes in Melatonin Synthesis in the Turkey Pineal Gland and Retina. Poult. Sci. 2007, 86, 1397–1405. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.-M.; Wang, J.; Zhang, H.-J.; Qi, G.-H.; Qiao, H.-Z.; Gan, L.-P.; Wu, S.-G. Effect of Changes in Photoperiods on Melatonin Expression and Gut Health Parameters in Laying Ducks. Front. Microbiol. 2022, 13, 819427. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.-M.; Wang, J.; Zhang, H.-J.; Qi, G.-H.; Wu, S.-G. Effects of Photoperiod on Performance, Ovarian Morphology, Reproductive Hormone Level, and Hormone Receptor mRNA Expression in Laying Ducks. Poult. Sci. 2021, 100, 100979. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Wang, J.; Hai-jun, Z.; Feng, J.; Wu, S.; Qi, G. Effect of Photoperiod on Ovarian Morphology, Reproductive Hormone Secretion, and Hormone Receptor mRNA Expression in Layer Ducks during the Pullet Phase. Poult. Sci. 2019, 98, 2439–2447. [Google Scholar] [CrossRef]
- Tsutsui, K.; Ubuka, T.; Bentley, G.E.; Kriegsfeld, L.J. Review: Regulatory Mechanisms of Gonadotropin-Inhibitory Hormone (GnIH) Synthesis and Release in Photoperiodic Animals. Front. Neurosci. 2013, 7, 60. [Google Scholar] [CrossRef]
- House, G.M.; Sobotik, E.B.; Nelson, J.R.; Archer, G.S. Pekin Duck Productivity, Physiological Stress, Immune Response and Behavior under 20L:4D and 16L:8D Photoperiods. Appl. Anim. Behav. Sci. 2021, 240, 105351. [Google Scholar] [CrossRef]
- Liu, G.J.; Chen, Z.F.; Zhao, X.H.; Li, M.Y.; Guo, Z.H. Meta-Analysis: Supplementary Artificial Light and Goose Reproduction. Anim. Reprod. Sci. 2020, 214, 106278. [Google Scholar] [CrossRef]
- Shi, Z.D.; Tian, Y.B.; Wu, W.; Wang, Z.Y. Controlling Reproductive Seasonality in the Geese: A Review. World’s Poult. Sci. J. 2008, 64, 343–355. [Google Scholar] [CrossRef]
- Bao, Q.; Gu, W.; Song, L.; Weng, K.; Cao, Z.; Zhang, Y.; Zhang, Y.; Ji, T.; Xu, Q.; Chen, G. The Photoperiod-Driven Cyclical Secretion of Pineal Melatonin Regulates Seasonal Reproduction in Geese (Anser cygnoides). Int. J. Mol. Sci. 2023, 24, 11998. [Google Scholar] [CrossRef]
- Zhu, H.; Shao, X.; Chen, Z.; Wei, C.; Lei, M.; Ying, S.; Yu, J.; Shi, Z. Induction of Out-of-Season Egg Laying by Artificial Photoperiod in Yangzhou Geese and the Associated Endocrine and Molecular Regulation Mechanisms. Anim. Reprod. Sci. 2017, 180, 127–136. [Google Scholar] [CrossRef]
- Wang, C.-M.; Chen, L.-R.; Lee, S.-R.; Jea, Y.-S.; Kao, J.-Y. Supplementary Artificial Light to Increase Egg Production of Geese under Natural Lighting Conditions. Anim. Reprod. Sci. 2009, 113, 317–321. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.X.; Liu, X.Q.; Hu, M.D.; Lei, M.M.; Chen, Z.; Ying, S.J.; Yu, J.N.; Dai, Z.C.; Shi, Z.D. Endocrine and Molecular Regulation Mechanisms of the Reproductive System of Hungarian White Geese Investigated under Two Artificial Photoperiodic Programs. Theriogenology 2019, 123, 167–176. [Google Scholar] [CrossRef] [PubMed]
- Hu, M.; Jin, H.; Wu, J.; Zhou, X.; Yang, S.; Zhao, A.; Wang, H. Identification of the Differentially Expressed Genes in the Leg Muscles of Zhedong White Geese (Anser cygnoides) Reared under Different Photoperiods. Poult. Sci. 2022, 101, 102193. [Google Scholar] [CrossRef] [PubMed]
- Busso, J.M.; Dominchin, M.F.; Marin, R.H.; Palme, R. Cloacal Gland, Endocrine Testicular, and Adrenocortical Photoresponsiveness in Male Japanese Quail Exposed to Short Days. Domest. Anim. Endocrinol. 2013, 44, 151–156. [Google Scholar] [CrossRef]
- Dominchin, M.F.; Marin, R.H.; Palme, R.; Busso, J.M. Temporal Dynamic of Adrenocortical and Gonadal Photo-Responsiveness in Male Japanese Quail Exposed to Short Days. Domest. Anim. Endocrinol. 2014, 49, 80–85. [Google Scholar] [CrossRef]
- Georgelin, M.; Ferreira, V.H.B.; Cornilleau, F.; Meurisse, M.; Poissenot, K.; Beltramo, M.; Keller, M.; Lansade, L.; Dardente, H.; Calandreau, L. Short Photoperiod Modulates Behavior, Cognition and Hippocampal Neurogenesis in Male Japanese Quail. Sci. Rep. 2023, 13, 951. [Google Scholar] [CrossRef]
- Boon, P. Effect of Photoperiod on Body Weight Gain, and Daily Energy Intake and Energy Expenditure in Japanese Quail (Coturnix c. Japonica). Physiol. Behav. 2000, 70, 249–260. [Google Scholar] [CrossRef]
- Zhou, X.; Jiang, D.; Zhang, Z.; Shen, X.; Pan, J.; Xu, D.; Tian, Y.; Huang, Y. Expression of GnIH and Its Effects on Follicle Development and Steroidogenesis in Quail Ovaries under Different Photoperiods. Poult. Sci. 2022, 101, 102227. [Google Scholar] [CrossRef]
- Ingram, D.L.; Dauncey, M.J. Circadian Rhythms in the Pig. Comp. Biochem. Physiol. Part A Physiol. 1985, 82, 1–5. [Google Scholar] [CrossRef]
- Martelli, G.; Scalabrin, M.; Scipioni, R.; Sardi, L. The Effects of the Duration of the Artificial Photoperiod on the Growth Parameters and Behaviour of Heavy Pigs. Vet. Res. Commun. 2005, 29 (Suppl. 2), 367–369. [Google Scholar] [CrossRef]
- Kim, J.C.; Hansen, C.F.; Mullan, B.P.; Pluske, J.R. Nutrition and Pathology of Weaner Pigs: Nutritional Strategies to Support Barrier Function in the Gastrointestinal Tract. Anim. Feed Sci. Technol. 2012, 173, 3–16. [Google Scholar] [CrossRef]
- Heo, J.M.; Opapeju, F.O.; Pluske, J.R.; Kim, J.C.; Hampson, D.J.; Nyachoti, C.M. Gastrointestinal Health and Function in Weaned Pigs: A Review of Feeding Strategies to Control Post-Weaning Diarrhoea without Using in-Feed Antimicrobial Compounds. J. Anim. Physiol. Anim. Nutr. 2013, 97, 207–237. [Google Scholar] [CrossRef] [PubMed]
- Niekamp, S.R.; Sutherland, M.A.; Dahl, G.E.; Salak-Johnson, J.L. Photoperiod Influences the Immune Status of Multiparous Pregnant Sows and Their Piglets. J. Anim. Sci. 2006, 84, 2072–2082. [Google Scholar] [CrossRef]
- Martelli, G.; Nannoni, E.; Grandi, M.; Bonaldo, A.; Zaghini, G.; Vitali, M.; Biagi, G.; Sardi, L. Growth Parameters, Behavior, and Meat and Ham Quality of Heavy Pigs Subjected to Photoperiods of Different Duration. J. Anim. Sci. 2015, 93, 758–766. [Google Scholar] [CrossRef]
- Iida, R.; Koketsu, Y. Delayed Age of Gilts at First Mating Associated with Photoperiod and Number of Hot Days in Humid Subtropical Areas. Anim. Reprod. Sci. 2013, 139, 115–120. [Google Scholar] [CrossRef]
- Tummaruk, P. Effects of Season, Outdoor Climate and Photo Period on Age at First Observed Estrus in Landrace×Yorkshire Crossbred Gilts in Thailand. Livest. Sci. 2012, 144, 163–172. [Google Scholar] [CrossRef]
- Simitzis, P.E.; Veis, D.; Demiris, N.; Charismiadou, M.A.; Ayoutanti, A.; Deligeorgis, S.G. The Effects of the Light Regimen Imposed during Lactation on the Performance and Behaviour of Sows and Their Litters. Appl. Anim. Behav. Sci. 2013, 144, 116–120. [Google Scholar] [CrossRef]
- Smital, J. Effects Influencing Boar Semen. Anim. Reprod. Sci. 2009, 110, 335–346. [Google Scholar] [CrossRef]
- Muratoğlu, S.; Akarca Dizakar, O.S.; Keskin Aktan, A.; Ömeroğlu, S.; Akbulut, K.G. The Protective Role of Melatonin and Curcumin in the Testis of Young and Aged Rats. Andrologia 2019, 51, e13203. [Google Scholar] [CrossRef]
- Zhang, T.; Zhou, Y.; Li, L.; Zhao, Y.; De Felici, M.; Reiter, R.J.; Shen, W. Melatonin Protects Prepuberal Testis from Deleterious Effects of Bisphenol A or Diethylhexyl Phthalate by Preserving H3K9 Methylation. J. Pineal Res. 2018, 65, e12497. [Google Scholar] [CrossRef]
- Tast, A.; Hälli, O.; Ahlström, S.; Andersson, H.; Love, R.J.; Peltoniemi, O.A.T. Seasonal Alterations in Circadian Melatonin Rhythms of the European Wild Boar and Domestic Gilt. J. Pineal Res. 2001, 30, 43–49. [Google Scholar] [CrossRef] [PubMed]
- Knecht, D.; Środoń, S.; Szulc, K.; Duziński, K. The Effect of Photoperiod on Selected Parameters of Boar Semen. Livest. Sci. 2013, 157, 364–371. [Google Scholar] [CrossRef]
- Sancho, S.; Rodríguez-Gil, J.E.; Pinart, E.; Briz, M.; Garcia-Gil, N.; Badia, E.; Bassols, J.; Pruneda, A.; Bussalleu, E.; Yeste, M.; et al. Effects of Exposing Boars to Different Artificial Light Regimens on Semen Plasma Markers and “in Vivo” Fertilizing Capacity. Theriogenology 2006, 65, 317–331. [Google Scholar] [CrossRef]
- Diez, C.; Perez, J.A.; Prieto, R.; Alonso, M.E.; Olmedo, J.A. Activity Patterns of Wild Rabbit (Oryctolagus cuniculus, L. 1758), under Semi-Freedom Conditions, during Autumn and Winter. Wildl. Biol. Pract 2005, 1, 7. [Google Scholar] [CrossRef]
- Minj, A.P.; Das, P.; Ranjan, R.; Kumari, P. Effect of Light and Dark Shift on Post Natal Development of Ovary in Rabbit (Oryctolagus cuniculus)#. Indian J. Anim. Res. 2016, 50, 905–908. [Google Scholar] [CrossRef]
- Quintela, L.; Peña, A.; Barrio, M.; Vega, M.D.; Diaz, R.; Maseda, F.; Garcia, P. Reproductive Performance of Multiparous Rabbit Lactating Does: Effect of Lighting Programs and PMSG Use. Reprod. Nutr. Dev. 2001, 41, 247–257. [Google Scholar] [CrossRef]
- Mousa-Balabel, T.M.; Mohamed, R.A. Effect of Different Photoperiods and Melatonin Treatment on Rabbit Reproductive Performance. Vet. Q. 2011, 31, 165–171. [Google Scholar] [CrossRef]
- Liu, B.; Gao, F.; Guo, J.; Wu, D.; Hao, B.; Li, Y.; Zhao, C. A Microarray-Based Analysis Reveals That a Short Photoperiod Promotes Hair Growth in the Arbas Cashmere Goat. PLoS ONE 2016, 11, e0147124. [Google Scholar] [CrossRef]
- Jin, J.; Yaegashi, T.; Sawai, K.; Hashizume, T. Effects of Photoperiod on the Secretion of Growth Hormone in Female Goats. Anim. Sci. J. 2012, 83, 610–616. [Google Scholar] [CrossRef]
- Mao, C.; Xu, Y.; Shi, L.; Guo, S.; Jin, X.; Yan, S.; Shi, B. Effects of Photoperiod Change on Melatonin Secretion, Immune Function and Antioxidant Status of Cashmere Goats. Animals 2019, 9, 766. [Google Scholar] [CrossRef]
- Kunii, H.; Nambo, Y.; Okano, A.; Matsui, A.; Ishimaru, M.; Asai, Y.; Sato, F.; Fujii, K.; Nagaoka, K.; Watanabe, G.; et al. Effects of an Extended Photoperiod on Gonadal Function and Condition of Hair Coats in Thoroughbred Colts and Fillies. J. Equine Sci. 2015, 26, 57–66. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, C.; Darcy-Dunne, M.R.; Murphy, B.A. The Effects of Extended Photoperiod and Warmth on Hair Growth in Ponies and Horses at Different Times of Year. PLoS ONE 2020, 15, e0227115. [Google Scholar] [CrossRef] [PubMed]
- Ishimaru, M.; Okano, A.; Matsui, A.; Murase, H.; Korosue, K.; Akiyama, K.; Taya, K. Effects of an Extended Photoperiod on Body Composition of Young Thoroughbreds in Training. J. Vet. Med. Sci. 2024, 86, 58–65. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, K.; Wang, L.; Wang, Z.; Han, W.; Chen, D.; Wei, Y.; Su, R.; Wang, R.; Liu, Z.; et al. Comparative Study on Seasonal Hair Follicle Cycling by Analysis of the Transcriptomes from Cashmere and Milk Goats. Genomics 2020, 112, 332–345. [Google Scholar] [CrossRef]
- Ansari-Renani, H.R.; Ebadi, Z.; Moradi, S.; Baghershah, H.R.; Ansari-Renani, M.Y.; Ameli, S.H. Determination of Hair Follicle Characteristics, Density and Activity of Iranian Cashmere Goat Breeds. Small Rumin. Res. 2011, 95, 128–132. [Google Scholar] [CrossRef]
- Fischer, T.W.; Slominski, A.; Tobin, D.J.; Paus, R. Melatonin and the Hair Follicle. J. Pineal Res. 2008, 44, 1–15. [Google Scholar] [CrossRef]
- Hardman, J.A.; Haslam, I.S.; Farjo, N.; Farjo, B.; Paus, R. Thyroxine Differentially Modulates the Peripheral Clock: Lessons from the Human Hair Follicle. PLoS ONE 2015, 10, e0121878. [Google Scholar] [CrossRef]
- Plikus, M.V.; Mayer, J.A.; de la Cruz, D.; Baker, R.E.; Maini, P.K.; Maxson, R.; Chuong, C.-M. Cyclic Dermal BMP Signalling Regulates Stem Cell Activation during Hair Regeneration. Nature 2008, 451, 340–344. [Google Scholar] [CrossRef]
- Liu, K.; Zhang, L.; Qi, Q.; Li, J.; Yan, F.; Hou, J. Growth Hormone Treatment Improves the Development of Follicles and Oocytes in Prepubertal Lambs. J. Ovarian Res. 2023, 16, 132. [Google Scholar] [CrossRef]
- Jin, J.; Yaegashi, T.; Hashizume, T. Effects of Photoperiod on the Secretion of Growth Hormone and Prolactin during Nighttime in Female Goats. Anim. Sci. J. 2013, 84, 130–135. [Google Scholar] [CrossRef]
- Mabjeesh, S.J.; Gal-Garber, O.; Shamay, A. Effect of Photoperiod in the Third Trimester of Gestation on Milk Production and Circulating Hormones in Dairy Goats. J. Dairy Sci. 2007, 90, 699–705. [Google Scholar] [CrossRef] [PubMed]
- Logan, K.J.; Leury, B.J.; Russo, V.M.; Cameron, A.W.N.S.; Tilbrook, A.J.; Dunshea, F.R. An Extended Photoperiod Increases Milk Yield and Decreases Ovulatory Activity in Dairy Goats. Animals 2020, 10, 1879. [Google Scholar] [CrossRef] [PubMed]
Physiological Stage | Photoperiod | Effects | References |
---|---|---|---|
Lactation | 16L:8D to 18L:6D | Milk yield ↑, PRL and MEL ↑ | [21,22,23] |
Dry period | 8L:16D | Milk yield of next lactation ↑, mammary gland development ↑ | [23,26,27,28,31] |
Calves | 18L:6D | ADG ↑ | [46,47] |
Broiler Type | Days of Age 1 | Photoperiod | Results | References |
---|---|---|---|---|
Arbor Acres | 5 to 26 d | 23L:1D | Intestinal injury ↑, imbalance of intestinal flora | [69] |
Cobb 500 | 1 to 42 d | 22L:2D | FBW and BWG ↑, FCR ↑, immunity and oxidative status ↓ | [61] |
AA | 20 to 42 d | 23L:1D | Altering the structure of the intestinal flora, feed-to-meat ratios ↓ | [70] |
Ross 308 | 6 to 36 d | 23L:1D | H/L ratio ↑, welfare status ↓ | [71] |
Ross 308 | 8 to 35 d | 24L:0D | H/T ratios ↑, AST ↑, IL-6 ↑, CORT ↑ | [60] |
Ross 308 | 15 to 45 d | 20L:4D | H/L ratio ↑, stress reaction ↑ | [48] |
Breed | Photoperiod | Effects | References |
---|---|---|---|
Broilers | Intermittent illumination: 2L:2D, 4L:2D, 4L:4D, 3L:1D | Production performance ↑, FCR ↑ | [58,59,60,61] |
continuous illumination: 12L:12D to 18L:6D | Production performance ↑, leg bone health ↑, stress reaction ↓, FBW and AWG ↑, welfare status ↑, hatching traits ↑, post-hatch performance ↑, feed consumption ↓ | [48,60,67,88] | |
Laying hens | 12L:12D to 16L:8D | Reproduction performance ↑ | [79,85] |
Laying ducks | 12L:12D to 18L:6D, 24L:0D, 20L:4D | Reproduction performance ↑, FCR ↑, H/L ratio ↓, corticosterone level ↓ | [81,93,94,96] |
Geese | 11L:13D to 14L:10D | Reproductive activity ↑ | [101,102] |
Turkey | 16L:8D | MEL ↑ | [91] |
Physiological Stage or Sex | Photoperiod | Effects | References |
---|---|---|---|
Weaned piglets | 16L:8D | ADG ↑, immunological performance ↑ | [113] |
Growing and fattening pigs | 16L:8D | Production performance ↑ | [114] |
Replacement gilts | 12.5L:11.5D | The time to first estrus ↓ | [116] |
Boar | 8L:16D | Quality of semen ↑ | [122] |
Animals | Breed or Physiological Stage | Photoperiod | Effects | References |
---|---|---|---|---|
Rabbits | ||||
Female | 16L:8D | FSH and LH ↑ | [125] | |
Male | 14L:10D to 16L:8D | Quality of semen ↑, sexual activity ↑ | [127] | |
Goats | ||||
Cashmere goats | 8L:16D | Wool performance ↑, immunological performance ↑, antioxidant status ↑ | [128,129,130] | |
Horses | ||||
Young horses and fillies | 14.5L:9.5D | Accelerated shed winter coats | [131,132] | |
Young horses | 14.5L:9.5D | Fat-free mass | [133] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, C.; Shu, H.; Gu, X. Photoperiod Management in Farm Animal Husbandry: A Review. Animals 2025, 15, 591. https://doi.org/10.3390/ani15040591
Li C, Shu H, Gu X. Photoperiod Management in Farm Animal Husbandry: A Review. Animals. 2025; 15(4):591. https://doi.org/10.3390/ani15040591
Chicago/Turabian StyleLi, Chenyang, Hang Shu, and Xianhong Gu. 2025. "Photoperiod Management in Farm Animal Husbandry: A Review" Animals 15, no. 4: 591. https://doi.org/10.3390/ani15040591
APA StyleLi, C., Shu, H., & Gu, X. (2025). Photoperiod Management in Farm Animal Husbandry: A Review. Animals, 15(4), 591. https://doi.org/10.3390/ani15040591