Screening of Piglets for Signs of Inflammation and Necrosis as Early Life Indicators of Animal Health and Welfare Hazards
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Prevalence of SINS
3.2. Distribution of Clinical Signs of SINS on Individual Farms Potentially Related to Housing Conditions
3.3. Distribution of Clinical Signs of SINS Attributable to Systemic Inflammation on Individual Farms
3.4. Age Dependency of Clinical Signs of SINS in Piglets
3.5. Gender Distribution of Clinical Signs of SINS in Piglets
3.6. Correlation Between Clinical Signs of SINS in Piglets and Observation in the Sow
4. Discussion
4.1. Scoring for SINS
4.2. Clinical Scores for SINS Under Field Conditions
4.3. Environmental Factors Associated with High SINS Scores
4.4. Sex Differences
4.5. Sow Factors Correlated with the Prevalence of SINS Symptoms in Piglets
4.6. SINS Scores as an Indicator of Animal Health and Welfare
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ABM | Animal-based measure |
CI | Confidence interval, 95% |
IGR | Intrauterine growth retardation |
LPS | Lipopolysaccharide |
n.s. | Not significant |
p | Significance |
PPDS | Postpartum Dysgalactia Syndrome |
R2 | Coefficient of determination |
RBM | Resource-based measure |
SD | Standard deviation |
SINS | Swine Inflammation and Necrosis Syndrome |
SINS−LL | SINS, excluding lower leg lesions (coronary bands and heels) |
SINS+LL | SINS, including coronary bands and heels |
ZEL | Zearalenol |
References
- Mellor, D.J. Updating Animal Welfare Thinking: Moving beyond the “Five Freedoms” towards “A Life Worth Living”. Animals 2016, 6, 21. [Google Scholar] [CrossRef] [PubMed]
- Zuliani, A.; Romanzin, A.; Corazzin, M.; Salvador, S.; Abrahantes, J.; Bovolenta, S. Welfare assessment in traditional mountain dairy farms: Above and beyond resource-based measures. Anim. Welf. 2017, 26, 203–211. [Google Scholar] [CrossRef]
- EFSA. Panel on Animal Health and Welfare (AHAW); Statement on the use of animal-based measures to assess the welfare of animals. EFSA J. 2012, 10, 2767. [Google Scholar] [CrossRef]
- EFSA. Welfare of pigs on farm. EFSA J. 2022, 20, e07421. [Google Scholar] [CrossRef]
- Whay, H.R.; Main, D.C.J.; Green, L.E.; Webster, A.J.F. Animal-Based Measures for the Assessment of Welfare State of Dairy Cattle, Pigs and Laying Hens: Consensus of Expert Opinion. Anim. Welf. 2003, 12, 205–217. [Google Scholar] [CrossRef]
- Mouttotou, N.; Hatchell, F.; Green, L. The prevalence and risk factors associated with forelimb skin abrasions and sole bruising in preweaning piglets. Prev. Vet. Med. 1999, 39, 231–245. [Google Scholar] [CrossRef]
- KilBride, A.L.; Gillman, C.E.; Ossent, P.; Green, L.E. A cross sectional study of prevalence, risk factors, population attributable fractions and pathology for foot and limb lesions in preweaning piglets on commercial farms in England. BMC Vet. Res. 2009, 5, 31. [Google Scholar] [CrossRef] [PubMed]
- Kuehling, J.; Loewenstein, F.; Wenisch, S.; Kressin, M.; Herden, C.; Lechner, M.; Reiner, G. An in-depth diagnostic exploration of an inflammation and necrosis syndrome in a population of newborn piglets. Animals 2021, 15, 100078. [Google Scholar] [CrossRef] [PubMed]
- Berchieri-Ronchi, C.B.; Kim, S.W.; Zhao, Y.; Correa, C.R.; Yeum, K.-J.; Ferreira, A.L.A. Oxidative stress status of highly prolific sows during gestation and lactation. Animal 2011, 5, 1774–1779. [Google Scholar] [CrossRef]
- Pearce, S.C.; Mani, V.; Boddicker, R.L.; Johnson, J.S.; Weber, T.E.; Ross, J.W.; Baumgard, L.H.; Gabler, N.K. Heat stress reduces barrier function and alters intestinal metabolism in growing pigs. J. Anim. Sci. 2012, 90, 257–259. [Google Scholar] [CrossRef]
- Pearce, C.S.; Mani, V.; Boddicker, R.L.; Johnson, J.S.; Weber, T.E.; Ross, J.W.; Rhoads, R.P.; Baumgard, L.H.; Gabler, N.K. Heat stress reduces intestinal barrier integrity and favors intestinal glucose transport in growing pigs. PLoS ONE 2013, 8, e70215. [Google Scholar] [CrossRef] [PubMed]
- Pearce, S.C.; Sanz-Fernandez, M.V.; Hollis, J.H.; Baumgard, L.H.; Gabler, N.K. Short-term exposure to heat stress attenuates appetite and intestinal integrity in growing pigs. J. Anim. Sci. 2014, 92, 5444–5454. [Google Scholar] [CrossRef] [PubMed]
- Sanz Fernandez, M.V.; Stoakes, S.K.; Abuajamieh, M.; Seibert, J.T.; Johnson, J.S.; Horst, E.A.; Rhoads, R.P.; Baumgard, L.H. Heat stress increases insulin sensitivity in pigs. Physiol. Rep. 2015, 3, e1247. [Google Scholar] [CrossRef]
- Chae, Y.R.; Lee, Y.R.; Kim, Y.S.; Park, H.Y. Diet-Induced Gut Dysbiosis and Leaky Gut Syndrome. J. Microbiol. Biotechnol. 2024, 34, 747–756. [Google Scholar] [CrossRef]
- Schrauwen, E.; Thoonen, H.; Hoorens, J.; Houvenaghel, A. Pathophysiological effects of endotoxin infusion in young piglets. Br. Vet. J. 1986, 142, 364–370. [Google Scholar] [CrossRef]
- Guillou, D.; Demey, V.; Chacheyras-Durand, F.; Le Treut, Y. Mise en evidence du transfer des endotoxines de la truie vers sa portée dans le context du syndrome de dysgalactie post-partum. Journées Rech. Porc. 2013, 45, 269–270. [Google Scholar]
- Pinton, P.; Nougayrede, J.P.; Del Rio, J.C.; Moreno, C.; Marin, D.E.; Ferrier, L.; Bracarense, A.P.; Kolf-Clauw, M.; Oswald, J.P. The food contaminant deoxynivalenol decreases intestinal barrier permeability and reduces claudin expression. Toxicol. Appl. Pharmacol. 2009, 237, 41–48. [Google Scholar] [CrossRef]
- Kullik, K.; Brosig, B.; Kersten, S.; Valenta, H.; Diesing, A.K.; Panther, P.; Reinhardt, N.; Kluess, J.; Rothkötter, H.J.; Breves, G.; et al. Interactions between the Fusarium toxin deoxynivaleno and lipopolysaccharides on the in vivo protein synthesis of acute phase proteins, cytokines and metabolic activity of peripheral blood mononuclear cells in pigs. Food Chem. Toxicol. 2013, 57, 11–20. [Google Scholar] [CrossRef]
- Dänicke, S.; Valenta, H.; Ganter, M.; Brosig, B.; Kersten, S.; Diesing, A.K.; Kahlert, S.; Kluess, J.; Rothkötter, H.J. Lipopolysaccharides (LPS) modulate the metabolism of deoxynivalenol (DON) in the pig. Mycotoxin Res. 2014, 30, 161–170. [Google Scholar] [CrossRef]
- Pestka, J.J.; Zhou, H.R.; Moon, Y.; Chung, Y.J. Cellular and molecular mechanisms for immune modulation by deoxynivalenol and other trichothecenes: Unravelling a paradoxon. Toxicol. Lett. 2004, 153, 61–73. [Google Scholar] [CrossRef]
- Pierron, A.; Alassane-Kpembi, I.; Oswald, I.P. Impact of two mycotoxins deoxynivalenol and fumonisin on pig intestinal health. Porc. Health Manag. 2016, 2, 21. [Google Scholar] [CrossRef] [PubMed]
- Reiner, G.; Kuehling, J.; Loewenstein, F.; Lechner, M.; Becker, S. Swine Inflammation and Necrosis Syndrome (SINS). Animals 2021, 11, 1670. [Google Scholar] [CrossRef] [PubMed]
- Reiner, G.; Lechner, M. Inflammation and necrosis syndrome (SINS) in swine. CABI Rev. 2019, 14, 1–8. [Google Scholar] [CrossRef]
- Reiner, G.; Kuehling, J.; Lechner, M.; Schrade, H.J.; Saltzmann, J.; Muelling, C.; Dänicke, S.; Löwenstein, F. Inflammation and necrosis syndrome is influenced by husbandry and quality of sow in suckling piglets weaners and fattening pigs. Porc. Health Manag. 2020, 6, 32. [Google Scholar] [CrossRef]
- Nordgreen, J.; Edwards, S.A.; Boyle, L.A.; Bolhuis, J.E.; Veit, C.; Sayyari, A.; Marin, D.M.; Dimitrov, I.; Janczak, A.M.; Valros, A. A proposed role for proinflammatory cytokines in damaging behavior in pigs. Front. Vet. Sci. 2020, 7, 646. [Google Scholar] [CrossRef]
- Reiner, G.; Lechner, M.; Eisenack, A.; Kallenbach, K.; Rau, K.; Müller, S.; Fink-Gremmels, J. Prevalence of an inflammation and necrosis syndrome in suckling piglets. Animal 2019, 13, 2007–2017. [Google Scholar] [CrossRef]
- Leite, N.G.; Knol, E.K.; Nuphaus, S.; Vogelzang, R.; Tsuruta, S.; Wittmann, M.; Lourenco, D. The genetic basis of swine inflammation and necrosis syndrome and its genetic association with post-weaning skin damage and production traits. J. Anim. Sci. 2023, 101, skad067. [Google Scholar] [CrossRef]
- Fortune, H.; Micout, S.; Monjuste, A. Evaluation de la prevalence du syndrome inflammatoire et nécrotique porcin dans les troupeaux francais. J. Rech. Porc. 2024, 56, 301–302. [Google Scholar]
- Zupan, M.; Janczak, A.M.; Framstad, T.; Zanella, A.J. The effect of biting tails and having tails bitten in pigs. Physiol. Behav. 2012, 106, 638–644. [Google Scholar] [CrossRef]
- Betz, P. Histological and enzyme histochemical parameters for estimating the age of human skin wounds. Int. J. Forens. Med. 1994, 107, 60–68. [Google Scholar]
- Loewenstein, F.; Becker, S.; Kuehling, J.; Schrade, H.; Lechner, M.; Ringseis, R.; Eder, K.; Moritz, A.; Reiner, G. Inflammation and necrosis syndrome is associated with alterations in blood and metabolism in pigs. BMC Vet. Res. 2022, 18, 50. [Google Scholar] [CrossRef] [PubMed]
- Ringseis, R.; Gessner, D.; Löwenstein, F.; Kuehling, J.; Becker, S.; Willems, H.; Lechner, M.; Eder, K.; Reiner, G. Swine inflammation and necrosis syndrome is associated with plasma metabolites and liver transcriptome in affected piglets. Animals 2021, 11, 772. [Google Scholar] [CrossRef]
- Gerhards, K.; Becker, S.; Kuehling, J.; Lechner, M.; Willems, H.; Ringseis, R.; Reiner, G. Screening for transcriptomic associations with Swine Inflammation and Necrosis Syndrome. BMC Vet. Res. 2025, 21, 26. [Google Scholar] [CrossRef] [PubMed]
- Blowey, R.; Done, S.H. Tail necrosis in pigs. Pig J. 2003, 5, 155–163. [Google Scholar]
- EFSA. Risks for animal health related to the presence of zearalenone and its modified forms in feed. EFSA J. 2017, 15, e04851. [Google Scholar] [CrossRef]
- Marin, D.E.; Pistol, G.C.; Neagoe, I.V.; Calin, L.; Taranu, I. Effects of zearalenone on oxidative stress and inflammation in weanling piglets. Food Chem. Toxicol. 2013, 58, 408–415. [Google Scholar] [CrossRef]
- Reiner, G.; Hertrampf, B.; Richard, H.R. Postpartales Dysgalaktiesyndrom der Sau—Eine Übersicht mit besonderer Berücksichtigung der Pathogenese. Tierärztl. Prax. 2009, 5, 305–318. [Google Scholar]
- Hirsch, A.C.; Philipp, H.; Kleemann, R. Investigation on the efficacy of meloxicam in sows with mastitis-metritis-agalactia syndrome. J. Vet. Pharmocol. Ther. 2003, 26, 355–360. [Google Scholar] [CrossRef]
- Smith, B.B.; Wagner, W.C. Effect of dopamine agonists or antagonists, TRH, stress and piglet removal on plasma prolactin concentrations in lactating gilts. Theriogenology 1985, 3, 283–296. [Google Scholar] [CrossRef]
- Smith, B.B.; Wagner, W.C. Effect of Escherichia coli endotoxin and thyrotropin releasing hormone on prolactin in lactating sows. Am. J. Vet. Res. 1985, 46, 175–180. [Google Scholar]
- Pritts, T.; Hungness, E.; Wang, Q.; Robb, B.; Hershko, D.; Hasselgren, P.O. Mucosal and enterocyte IL-6 production during sepsis and endotoxemia—Role of transcription factors and regulation by the stress response. Am. J. Surg. 2002, 183, 372–383. [Google Scholar] [CrossRef] [PubMed]
- Cheng, C.; Wei, H.; Yu, H.; Xu, C.; Jiang, S.; Peng, J. Metabolic syndrome during perinatal period in sows and the link with gut microbiota and metabolites. Front. Microbiol. 2018, 9, 1989. [Google Scholar] [CrossRef] [PubMed]
- Sahasrabudhe, N.; Beukema, M.; Tian, L.; Troost, B.; Scholte, J.; Bruininx, E.; Bruggeman, G.; van den Berg, M.; Scheurink, A.; Schols, H.; et al. Dietary fiber pectin directly blocks Toll-like receptor 2-1 and prevents doxorubicin-induced ileitis. Front. Immunol. 2018, 9, 383. [Google Scholar] [CrossRef] [PubMed]
- Luu, M.; Monning, H.; Visekruna, A. Exploring the molecular mecha nisms underlying the protective effects of microbial SCFAs on intestinal tolerance and food allergy. Front. Immunol. 2020, 11, 1225. [Google Scholar] [CrossRef]
- Liu, B.; Zhu, X.; Cui, Y.; Wang, W.; Liu, H.; Li, Z.; Guo, Z.; Ma, S.; Li, D.; Wang, C.; et al. Consumption of Dietary Fiber from Different Sources during Pregnancy Alters Sow Gut Microbiota and Improves Performance and Reduces Inflammation in Sows and Piglets. mSystems 2021, 6, e00591-20. [Google Scholar] [CrossRef]
- Jabbour, H.N.; Sales, K.J.; Catalano, R.D.; Norman, J.E. Inflammatory pathways in female reproductive health and disease. Reproduction 2009, 138, 903–919. [Google Scholar] [CrossRef]
- Agarwal, A.; Aponte-Mellado, A.; Premkumar, B.J.; Shaman, A.; Gupta, S. The effects of oxidative stress on female reproduction: A review. Reprod. Biol. Endocrinol. 2012, 10, 49. [Google Scholar] [CrossRef]
- Van Limbergen, T.; Devreese, M.; Croubels, S.; Broekaert, N.; Michiels, A.; DeSaeger, S.; Maes, D. Role of mycotoxins in herds with and without problems with tail necrosis in neonatal pigs. Vet. Rec. 2017, 181, 539. [Google Scholar] [CrossRef]
- Ortega, A.D.S.V.; Szabó, C. Adverse Effects of Heat Stress on the Intestinal Integrity and Function of Pigs and the Mitigation Capacity of Dietary Antioxidants: A Review. Animals 2021, 11, 1135. [Google Scholar] [CrossRef]
- Lian, P.; Braber, S.; Garssen, J.; Wichers, H.J.; Folkerts, G.; Fink-Gremmels, J.; Varasteh, S. Beyond Heat Stress: Intestinal Integrity Disruption and Mechanism-Based Intervention Strategies. Nutrients 2020, 12, 734. [Google Scholar] [CrossRef]
- Zundler, S.; Günther, C.; Kremer, A.E.; Zaiss, M.M.; Rothammer, V.; Neurath, M.F. Gut immune cell trafficking: Inter-organ communication and immune-mediated inflammation. Nat. Rev. Gastroenterol. Hepatol. 2023, 20, 50–64. [Google Scholar] [CrossRef]
Parameter | Score 0: No Lesions | Score 1: Lesions | Score 2: Severe Lesions |
---|---|---|---|
Tail base | No lesions | Oedema, swelling, redness, hairless | Ring constriction and necrotic lesions * |
Tail tip | No lesions | Redness, bleeding | Necrosis |
Ear base | No lesions | Hairless, shiny skin, erosion, exudate | Necrotic lesions |
Teats | No lesions | Redness, swelling | Necrotic lesions |
Face | No lesions | Swelling, oedema around eyes and snout, damaged skin, erosions, exudate | Multiple necrotic lesions |
Claw coronary bands | No lesions | Redness, exudate, damaged skin | Necrotic lesions |
Heels | No lesions | Bleeding | Necrotic lesions |
Vulva | No lesions | Redness, swelling | Necrotic lesions |
Visit | Herd | Tail Base | Tail Tip | Necrosis | Ears | Face | Teats | Umbilicus | Vulva | Coronary Bands | Heels | SINS−LL | SINS+LL |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
19 | 10 | 2 | 2 | 0 | 0 | 0 | 6 | 0 | 1 | 38 | 10 | 9 | 46.5 |
9 | 1 | 1 | 3 | 0 | 2 | 4 | 1 | 0 | 0 | 0 | 57 | 11 | 63.2 |
17 | 12 | 2 | 5 | 1 | 9 | 1 | 10 | 0 | 0 | 38 | 91 | 24 | 93.0 |
14 | 3 | 1 | 4 | 1 | 7 | 1 | 15 | 0 | 1 | 22 | 49 | 25 | 65.2 |
15 | 12 | 3 | 1 | 1 | 10 | 0 | 18 | 0 | 0 | 44 | 93 | 28 | 95.0 |
8 | 6 | 6 | 4 | 0 | 2 | 0 | 16 | 0 | 8 | 4 | 10 | 29 | 40.8 |
16 | 13 | 4 | 6 | 1 | 9 | 2 | 21 | 0 | 2 | 42 | 84 | 34 | 93.6 |
18 | 13 | 5 | 16 | 0 | 1 | 4 | 17 | 0 | 4 | 48 | 55 | 37 | 77.2 |
12 | 7 | 1 | 2 | 0 | 25 | 0 | 20 | 2 | 0 | 67 | 97 | 40 | 98.8 |
13 | 6 | 20 | 1 | 0 | 2 | 0 | 20 | 1 | 1 | 41 | 92 | 41 | 96.2 |
11 | 5 | 25 | 3 | 1 | 17 | 3 | 20 | 0 | 2 | 52 | 54 | 51 | 81.7 |
10 | 13 | 4 | 16 | 3 | 35 | 0 | 18 | 3 | 0 | 49 | 97 | 54 | 98.7 |
1 | 9 | 37 | 51 | 0 | 9 | 16 | 21 | 10 | 2 | 54 | 79 | 71 | 94.9 |
2.1 | 8 | 69 | 8 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 51 | 71 | 82.9 |
2 | 8 | 7 | 51 | 0 | 13 | 24 | 0 | 20 | 3 | 19 | 70 | 74 | 90.6 |
6 | 5 | 64 | 3 | 0 | 14 | 1 | 33 | 1 | 1 | 41 | 61 | 77 | 92.0 |
7 | 13 | 56 | 12 | 0 | 54 | 42 | 31 | 0 | 2 | 33 | 43 | 77 | 82.8 |
5 | 2 | 54 | 69 | 0 | 44 | 7 | 16 | 0 | 7 | 0 | 0 | 88 | 87.9 |
4 | 11 | 85 | 33 | 2 | 7 | 4 | 16 | 0 | 1 | 34 | 63 | 91 | 95.4 |
3 | 4 | 84 | 50 | 2 | 22 | 14 | 22 | 3 | 0 | 48 | 73 | 93 | 97.7 |
SINS-Status in Herds | |||
---|---|---|---|
Piglets with signs at | low | high | p-value |
Tail base (%) | 1.4 | 67.0 | <0.001 |
Tail Base (severe) (%) | 0.2 | 0.9 | n.s. * |
Tail tip (%) | 3.0 | 28.7 | <0.001 |
Tail tip (severe) (%) | 0.1 | 0.3 | n.s. |
Tail ring formation (%) | 0.4 | 0.9 | n.s. |
Ears (%) | 2.9 | 32.4 | <0.001 |
Ears (severe) (%) | 0.1 | 0.3 | n.s. |
Face (%) | 1.2 | 19.9 | <0.001 |
Teats (%) | 8.2 | 24.9 | <0.001 |
Teats (severe) (%) | 3.6 | 2.3 | n.s. |
Umbilicus (%) | 0.0 | 0.7 | 0.008 |
Vulva (%) | 1.2 | 2.2 | n.s. |
Vulva (severe) (%) | 0.0 | 0.2 | n.s. |
Coronary bands (%) | 22.4 | 32.9 | <0.001 |
Heels (%) | 34.1 | 49.3 | <0.001 |
SINS+LL (%) | 56.3 | 89.8 | <0.001 |
SINS−LL (%) | 15.0 | 82.7 | <0.001 |
Days of Life of Piglets a at Scoring | r SINS+LL/ SINS−LL | r SINS+LL01 (%)/ SINS−LL01 (%) | Sensitivity (%) |
---|---|---|---|
1 | 0.875 | 0.835 | 88 |
2 | 0.811 | 0.527 | 61 |
3 | 0.798 | 0.303 | 49 |
4 | 0.838 | 0.281 | 54 |
5 | 0.884 | 0.133 | 37 |
6 | 0.835 | 0.228 | 38 |
7 | 0.866 | 0.226 | 31 |
1–7 | 0.815 | 0.381 | 53 |
Herds with | Herds with | p | ||
---|---|---|---|---|
Lowest SINS Scores | Highest SINS Scores | |||
Body temperature (sow) | Mean | 38.81 | 39.04 | <0.001 |
SD | 0.59 | 0.49 | ||
CI | 38.9–38.8 | 39.0–39.1 | ||
Coprostasis (sow) | Mean | 0.01 | 0.65 | <0.001 |
SD | 0.12 | 0.49 | ||
CI | 0.01–0.02 | 0.46–0.85 | ||
Average water intake | Mean | 11.3 | 9.05 | <0.001 |
(sow) | SD | 2.50 | 1.59 | |
CI | 11.16–11.53 | 8.92–9.19 | ||
Uterine discharge (sow) | Mean | 0.26 | 0.22 | n.s. |
SD | 0.44 | 0.41 | ||
CI | 0.23–0.29 | 0.18–0.25 | ||
Parity (sow) | Mean | 4.03 | 4.03 | n.s. |
SD | 2.17 | 2.59 | ||
CI | 3.89–4.16 | 3.87–4.18 | ||
Preweaning piglet losses | Mean | 0.79 | 2.62 | <0.001 |
SD | 0.87 | 1.55 | ||
CI | 0.73–0.84 | 2.53–2.71 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koenders-van Gog, K.; Wijnands, T.; Lechner, M.; Reiner, G.; Fink-Gremmels, J. Screening of Piglets for Signs of Inflammation and Necrosis as Early Life Indicators of Animal Health and Welfare Hazards. Animals 2025, 15, 378. https://doi.org/10.3390/ani15030378
Koenders-van Gog K, Wijnands T, Lechner M, Reiner G, Fink-Gremmels J. Screening of Piglets for Signs of Inflammation and Necrosis as Early Life Indicators of Animal Health and Welfare Hazards. Animals. 2025; 15(3):378. https://doi.org/10.3390/ani15030378
Chicago/Turabian StyleKoenders-van Gog, Karien, Thomas Wijnands, Mirjam Lechner, Gerald Reiner, and Johanna Fink-Gremmels. 2025. "Screening of Piglets for Signs of Inflammation and Necrosis as Early Life Indicators of Animal Health and Welfare Hazards" Animals 15, no. 3: 378. https://doi.org/10.3390/ani15030378
APA StyleKoenders-van Gog, K., Wijnands, T., Lechner, M., Reiner, G., & Fink-Gremmels, J. (2025). Screening of Piglets for Signs of Inflammation and Necrosis as Early Life Indicators of Animal Health and Welfare Hazards. Animals, 15(3), 378. https://doi.org/10.3390/ani15030378