Performance Comparison of Argos and Iridium Tracking Technologies for Sea Turtle Movement Ecology Studies
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Data Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hays, G.C.; Hawkes, L.A. Satellite Tracking Sea Turtles: Opportunities and Challenges to Address Key Questions. Front. Mar. Sci. 2018, 5, 432. [Google Scholar] [CrossRef]
- Godley, B.J.; Blumenthal, J.M.; Broderick, A.C.; Coyne, M.S.; Godfrey, M.H.; Hawkes, L.A.; Witt, M.J. Satellite tracking of sea turtles: Where have we been and where do we go next? Endang. Species Res. 2008, 4, 3–22. [Google Scholar] [CrossRef]
- Schofield, G.; Dimadi, A.; Fossette, S.; Katselidis, K.A.; Koutsoubas, D.; Lilley, M.K.S.; Luckman, A.; Pantis, J.D.; Karagouni, A.D.; Hays, G.C. Satellite tracking large numbers of individuals to infer population level dispersal and core areas for the protection of an endangered species. Divers. Distrib. 2013, 19, 834–844. [Google Scholar] [CrossRef]
- Mettler, E.K.; Clyde-Brockway, C.E.; Sinclair, E.M.; Paladino, F.V.; Honarvar, S. Determining critical inter-nesting, migratory, and foraging habitats for the conservation of East Atlantic green turtles (Chelonia mydas). Mar. Biol. 2020, 167, 106. [Google Scholar] [CrossRef]
- Plotkin, P.T.; Rostal, D.C.; Byles, R.A.; Owens, D.W. Reproductive and developmental synchrony in female Lepidochelys olivacea. J. Herpetol. 1997, 31, 17–22. [Google Scholar] [CrossRef]
- Plotkin, P.T.; Owens, D.W.; Byles, R.A.; Patterson, R. Departure of male olive ridley turtles (Lepidochelys olivacea) from a nearshore breeding ground. Herpetologica 1996, 52, 1–7. [Google Scholar]
- Plotkin, P.T.; Byles, R.A.; Rostal, D.C.; Owens, D.W. Independent versus socially facilitated oceanic migrations of the olive ridley, Lepidochelys olivacea. Mar. Biol. 1995, 122, 137–143. [Google Scholar] [CrossRef]
- Snape, R.T.; Beton, D.; Davey, S.; Godley, B.J.; Haywood, J.; Omeyer, L.C.; Ozkan, M.; Broderick, A.C. Mediterranean green turtle population recovery increasingly depends on Lake Bardawil, Egypt. Glob. Ecol. Conserv. 2022, 40, e02336. [Google Scholar] [CrossRef]
- Kot, C.Y.; Åkesson, S.; Alfaro-Shigueto, J.; Amorocho Llanos, D.F.; Antonopoulou, M.; Balazs, G.H.; Baverstock, W.R.; Blumenthal, J.M.; Broderick, A.C.; Bruno, I.; et al. Network analysis of sea turtle movements and connectivity: A tool for conservation prioritization. Divers. Distrib. 2022, 28, 810–829. [Google Scholar] [CrossRef]
- Stokes, K.L.; Broderick, A.C.; Canbolat, A.F.; Candan, O.; Fuller, W.J.; Glen, F.; Levy, Y.; Rees, A.F.; Rilov, G.; Snape, R.T.; et al. Migratory corridors and foraging hotspots: Critical habitats identified for Mediterranean green turtles. Divers. Distrib. 2015, 21, 665–674. [Google Scholar] [CrossRef]
- Baudouin, M.; de Thoisy, B.; Chambault, P.; Berzins, R.; Entraygues, M.; Kelle, L.; Turny, A.; Le Maho, Y.; Chevallier, D. Identification of key marine areas for conservation based on satellite tracking of post-nesting migrating green turtles (Chelonia mydas). Biol. Conserv. 2015, 184, 36–41. [Google Scholar] [CrossRef]
- Schofield, G.; Scott, R.; Dimadi, A.; Fossette, S.; Katselidis, K.A.; Koutsoubas, D.; Lilley, M.K.S.; Pantis, J.D.; Karagouni, A.D.; Hays, G.C. Evidence-based marine protected area planning for a highly mobile endangered marine vertebrate. Biol. Conserv. 2013, 161, 101–109. [Google Scholar] [CrossRef]
- Pikesley, S.K.; Maxwell, S.M.; Pendoley, K.; Costa, D.P.; Coyne, M.S.; Formia, A.; Godley, B.J.; Klein, W.; Makanga-Bahouna, J.; Maruca, S.; et al. On the front line: Integrated habitat mapping for olive ridley sea turtles in the Southeast Atlantic. Divers. Distrib. 2013, 19, 1518–1530. [Google Scholar] [CrossRef]
- Hays, G.C.; Bailey, H.; Bograd, S.J.; Bowen, W.D.; Campagna, C.; Carmichael, R.H.; Casale, P.; Chiaradia, A.; Costa, D.P.; Cuevas, E.; et al. Translating Marine Animal Tracking Data into Conservation Policy and Management. Trends Ecol. Evol. 2019, 35, 459–473. [Google Scholar] [CrossRef]
- Fuentes, M.M.P.B.; Gillis, A.J.; Ceriani, S.A.; Guttridge, T.L.; Van Zinnicq Bergmann, M.P.M.; Smukall, M.; Gruber, S.H.; Wildermann, N. Informing marine protected areas in Bimini, Bahamas by considering hotspots for green turtles (Chelonia mydas). Biodivers. Conserv. 2019, 28, 197–211. [Google Scholar] [CrossRef]
- Figgener, C.; Bernardo, J.; Plotkin, P.T. Delineating and characterizing critical habitat for the Eastern Pacific olive ridley turtle (Lepidochelys olivacea): Individual differences in migratory routes present challenges for conservation measures. Front. Ecol. Evol. 2022, 10, 933424. [Google Scholar] [CrossRef]
- Weber, N.; Weber, S.B.; Godley, B.J.; Ellick, J.; Witt, M.; Broderick, A.C. Telemetry as a tool for improving estimates of marine turtle abundance. Biol. Conserv. 2013, 167, 90–96. [Google Scholar] [CrossRef]
- Hays, G.C.; Fossette, S.; Katselidis, K.A.; Schofield, G.; Gravenor, M.B. Breeding periodicity for male sea turtles, operational sex ratios, and implications in the face of climate change. Conserv. Biol. 2010, 24, 1636–1643. [Google Scholar] [CrossRef] [PubMed]
- Casale, P.; Freggi, D.; Cinà, A.; Rocco, M. Spatio-temporal distribution and migration of adult male loggerhead sea turtles (Caretta caretta) in the Mediterranean Sea: Further evidence of the importance of neritic habitats off North Africa. Mar. Biol. 2013, 160, 703–718. [Google Scholar] [CrossRef]
- Mingozzi, T.; Mencacci, R.; Cerritelli, G.; Giunchi, D.; Luschi, P. Living between widely separated areas: Long-term monitoring of Mediterranean loggerhead turtles sheds light on cryptic aspects of females spatial ecology. J. Exp. Mar. Biol. Ecol. 2016, 485, 8–17. [Google Scholar] [CrossRef]
- Bailey, H.; Fossette, S.; Bograd, S.J.; Shillinger, G.L.; Swithenbank, A.M.; Georges, J.Y.; Gaspar, P.; Stromberg, K.H.P.; Paladino, F.V.; Spotila, J.R.; et al. Movement Patterns for a Critically Endangered Species, the Leatherback Turtle (Dermochelys coriacea), Linked to Foraging Success and Population Status. PLoS ONE 2012, 7, e36401. [Google Scholar] [CrossRef]
- Galli, S.; Gaspar, P.; Fossette, S.; Calmettes, B.; Hays, G.C.; Lutjeharms, J.R.E.; Luschi, P. Orientation of migrating leatherback turtles in relation to ocean currents. Anim. Behav. 2012, 84, 1491–1500. [Google Scholar] [CrossRef]
- Evans, D.R.; Carthy, R.R.; Ceriani, S.A. Migration routes, foraging behavior, and site fidelity of loggerhead sea turtles (Caretta caretta) satellite tracked from a globally important rookery. Mar. Biol. 2019, 166, 134. [Google Scholar] [CrossRef]
- Cerritelli, G.; Casale, P.; Sozbilen, D.; Hochscheid, S.; Luschi, P.; Kaska, Y. Multidirectional migrations from a major nesting area in Turkey support the widespread distribution of foraging sites for loggerhead turtles in the Mediterranean. Mar. Ecol. Prog. Ser. 2022, 683, 169–177. [Google Scholar] [CrossRef]
- Dodge, K.L.; Galuardi, B.; Miller, T.J.; Lutcavage, M.E. Leatherback turtle movements, dive behavior, and habitat characteristics in ecoregions of the Northwest Atlantic Ocean. PLoS ONE 2014, 9, e91726. [Google Scholar] [CrossRef] [PubMed]
- Plotkin, P.T. Interaction between behavior of marine organisms and the performance of satellite transmitters: A marine turtle case study. Mar. Technol. Soc. J. 1998, 32, 5–10. [Google Scholar]
- Witt, M.J.; Åkesson, S.; Broderick, A.C.; Coyne, M.S.; Ellick, J.; Formia, A.; Hays, G.C.; Luschi, P.; Stroud, S.; Godley, B.J. Assessing accuracy and utility of satellite-tracking data using Argos-linked Fastloc-GPS. Anim. Behav. 2010, 80, 571–581. [Google Scholar] [CrossRef]
- Costa, D.P.; Robinson, P.W.; Arnould, J.P.; Harrison, A.-L.; Simmons, S.E.; Hassrick, J.L.; Hoskins, A.J.; Kirkman, S.P.; Oosthuizen, H.; Villegas-Amtmann, S. Accuracy of ARGOS locations of pinnipeds at-sea estimated using Fastloc GPS. PLoS ONE 2010, 5, e8677. [Google Scholar] [CrossRef]
- Shimada, T.; Jones, R.; Limpus, C.; Hamann, M. Improving data retention and home range estimates by data-driven screening. Mar. Ecol. Prog. Ser. 2012, 457, 171–180. [Google Scholar] [CrossRef]
- Snape, R.T.E.; Bradshaw, P.J.; Broderick, A.C.; Fuller, W.J.; Stokes, K.L.; Godley, B.J. Off-the-shelf GPS technology to inform marine protected areas for marine turtles. Biol. Conserv. 2018, 227, 301–309. [Google Scholar] [CrossRef]
- Dujon, A.M.; Lindstrom, R.T.; Hays, G.C. The accuracy of Fastloc-GPS locations and implications for animal tracking. Methods Ecol. Evol. 2014, 5, 1162–1169. [Google Scholar] [CrossRef]
- Thomson, J.A.; Börger, L.; Christianen, M.J.A.; Esteban, N.; Laloë, J.O.; Hays, G.C. Implications of location accuracy and data volume for home range estimation and fine-scale movement analysis: Comparing Argos and Fastloc-GPS tracking data. Mar. Biol. 2017, 164, 204. [Google Scholar] [CrossRef]
- Dujon, A.M.; Schofield, G.; Lester, R.E.; Papafitsoros, K.; Hays, G.C. Complex movement patterns by foraging loggerhead sea turtles outside the breeding season identified using Argos-linked Fastloc-Global Positioning System. Mar. Ecol. 2018, 39, e12489. [Google Scholar] [CrossRef]
- Dujon, A.M.; Schofield, G.; Lester, R.E.; Esteban, N.; Hays, G.C. Fastloc-GPS reveals daytime departure and arrival during long-distance migration and the use of different resting strategies in sea turtles. Mar. Biol. 2017, 164, 187. [Google Scholar] [CrossRef]
- Quattrocchi, G.; Cucco, A.; Cerritelli, G.; Mencacci, R.; Comparetto, G.; Sammartano, D.; Ribotti, A.; Luschi, P. Testing a Novel Aggregated Methodology to Assess Hydrodynamic Impacts on a High-Resolution Marine Turtle Trajectory. Front. Mar. Sci. 2021, 8, 699580. [Google Scholar] [CrossRef]
- Luschi, P.; Sözbilen, D.; Cerritelli, G.; Ruffier, F.; Başkale, E.; Casale, P. A biphasic navigational strategy in loggerhead sea turtles. Sci. Rep. 2020, 10, 18130. [Google Scholar] [CrossRef]
- Bürkner, P.-C. brms: An R Package for Bayesian Multilevel Models Using Stan. J. Stat. Softw. 2017, 80, 1–28. [Google Scholar] [CrossRef]
- R Development Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2024. [Google Scholar]
- Gelman, A.; Meng, X.-L.; Stern, H. Posterior predictive assessment of model fitness via realized discrepancies. Stat. Sin. 1996, 6, 733–760. [Google Scholar]
- Hays, G.C.; Cerritelli, G.; Esteban, N.; Rattray, A.; Luschi, P. Open Ocean Reorientation and Challenges of Island Finding by Sea Turtles during Long-Distance Migration. Curr. Biol. 2020, 30, 3236–3242.e3233. [Google Scholar] [CrossRef] [PubMed]
- Hart, K.M.; Guzy, J.C.; Smith, B.J. Drivers of realized satellite tracking duration in marine turtles. Mov. Ecol. 2021, 9, 1. [Google Scholar] [CrossRef] [PubMed]





| Resp Variable | Categorical Predictors (Reference Level) | Numerical Predictors | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|
| Dataset | Type (Iridium) | Species (Cc) | Activity (F) | LAT | MPD | IMTI | Family | N | Bayes p | |
| ARGOS °, ARGOS-GPS, Iridium * | DP | uncertain | Cm+ | I+ M+ | + | n/a | n/a | Binomial | 13,581 | 0.40 |
| ARGOS °, ARGOS-GPS, Iridium * | ZPI | ARGOS > ARGOS-GPS | Lk− | I− | − | n/a | n/a | Neg Binomial | 1094 | 0.51 |
| ARGOS, ARGOS-GPS, Iridium * (NPD > 0 only) | NPDcorr | uncertain | uncertain | M+ | − | n/a | n/a | Neg Binomial | 10,147 | 0.48 |
| Iridium | DP | n/a | Cm− Ei+ Lo+ | M− I− | − | + | uncertain | Binomial | 6327 | 0.62 |
| Iridium | ZPI | n/a | uncertain | I+ | uncertain | − | + | Neg Binomial | 206 | 0.56 |
| Iridium (NPD > 0 only) | NPD | n/a | Cm− | M− I− | − | + | uncertain | Neg Binomial | 5000 | 0.62 |
| N Positions (Days) | |||||
|---|---|---|---|---|---|
| Area | Species | Foraging | Internesting | Migration | Total |
| Caribbean | Ei | 8436 (761) | 80 (13) | 816 (115) | 9332 (889) |
| Gulf of Mexico | Cc | 10,982 (1838) | 4890 (166) | 1028 (47) | 16,900 (2051) |
| Cm | 9227 (1311) | - | - | 9227 (1311) | |
| Indian | Cm | 804 (169) | 4307 (223) | 231 (40) | 5342 (432) |
| Mediterranean | Cc | 45,223 (7057) | 483 (272) | 2547 (302) | 48,253 (7631) |
| NE Pacific | Lo | 2080 (173) | 1839 (255) | - | 3919 (428) |
| NW Atlantic | Cc | 8762 (3971) | 3484 (702) | 2745 (862) | 14,991 (5535) |
| Cm | 2089 (313) | - | - | 2089 (313) | |
| Lk | 6021 (445) | - | - | 6021 (445) | |
| Type | Species | Activity | Days | Positions (N) | NPD | N Turtles |
|---|---|---|---|---|---|---|
| ARGOS | Cc | Foraging | 4676 | 16,705 | 3.57 | 10 |
| ARGOS | Cc | Internesting | 308 | 1117 | 3.63 | 4 |
| ARGOS | Cc | Migration | 467 | 1897 | 4.06 | 6 |
| ARGOS | Cm | Foraging | 821 | 9398 | 11.45 | 6 |
| ARGOS | Lk | Foraging | 200 | 1214 | 6.07 | 2 |
| ARGOS | Lo | Foraging | 72 | 84 | 1.17 | 1 |
| ARGOS | Lo | Internesting | 180 | 310 | 1.72 | 3 |
| ARGOS-GPS | Cc | Foraging | 4668 | 21,487 | 4.60 | 10 |
| ARGOS-GPS | Cc | Internesting | 325 | 1335 | 4.11 | 4 |
| ARGOS-GPS | Cc | Migration | 428 | 1602 | 3.74 | 6 |
| ARGOS-GPS | Cm | Foraging | 563 | 1729 | 3.07 | 5 |
| IRIDIUM-GPS | Cc | Foraging | 3522 | 26,775 | 7.60 | 13 |
| IRIDIUM-GPS | Cc | Internesting | 507 | 6405 | 12.63 | 10 |
| IRIDIUM-GPS | Cc | Migration | 316 | 2821 | 8.93 | 13 |
| IRIDIUM-GPS | Cm | Foraging | 409 | 993 | 2.43 | 6 |
| IRIDIUM-GPS | Cm | Internesting | 223 | 4307 | 19.31 | 3 |
| IRIDIUM-GPS | Cm | Migration | 40 | 231 | 5.78 | 3 |
| IRIDIUM-GPS | Ei | Foraging | 761 | 8436 | 11.09 | 3 |
| IRIDIUM-GPS | Ei | Internesting | 13 | 80 | 6.15 | 1 |
| IRIDIUM-GPS | Ei | Migration | 115 | 816 | 7.10 | 3 |
| IRIDIUM-GPS | Lk | Foraging | 245 | 4807 | 19.62 | 2 |
| IRIDIUM-GPS | Lo | Foraging | 101 | 1996 | 19.76 | 2 |
| IRIDIUM-GPS | Lo | Internesting | 75 | 1529 | 20.39 | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Casale, P.; Figgener, C.; Arendt, M.; Broderick, A.C.; Ceriani, S.A.; Kaska, Y.; Plotkin, P.; Sanchez, C.L.; Schwenter, J.; Snape, R.; et al. Performance Comparison of Argos and Iridium Tracking Technologies for Sea Turtle Movement Ecology Studies. Animals 2025, 15, 3605. https://doi.org/10.3390/ani15243605
Casale P, Figgener C, Arendt M, Broderick AC, Ceriani SA, Kaska Y, Plotkin P, Sanchez CL, Schwenter J, Snape R, et al. Performance Comparison of Argos and Iridium Tracking Technologies for Sea Turtle Movement Ecology Studies. Animals. 2025; 15(24):3605. https://doi.org/10.3390/ani15243605
Chicago/Turabian StyleCasale, Paolo, Christine Figgener, Michael Arendt, Annette C. Broderick, Simona A. Ceriani, Yakup Kaska, Pamela Plotkin, Cheryl L. Sanchez, Jeffrey Schwenter, Robin Snape, and et al. 2025. "Performance Comparison of Argos and Iridium Tracking Technologies for Sea Turtle Movement Ecology Studies" Animals 15, no. 24: 3605. https://doi.org/10.3390/ani15243605
APA StyleCasale, P., Figgener, C., Arendt, M., Broderick, A. C., Ceriani, S. A., Kaska, Y., Plotkin, P., Sanchez, C. L., Schwenter, J., Snape, R., Sözbilen, D., Wildermann, N. E., & Luschi, P. (2025). Performance Comparison of Argos and Iridium Tracking Technologies for Sea Turtle Movement Ecology Studies. Animals, 15(24), 3605. https://doi.org/10.3390/ani15243605

