Effects of Genetic and Production Type on Egg Cholesterol and the Yolk–Albumen Ratio in Slovenian Chicken Genotypes Under Standardised Conditions
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Chicken Genotypes, Rearing Conditions, and Egg Sampling
2.1.1. Study Populations and Crossbred Formation
2.1.2. Husbandry, Housing, and Diet
2.1.3. Overview of Production and Egg Traits
2.2. Cholesterol Extraction and Quantification
2.2.1. Sample Preparation
2.2.2. Extraction Procedure
2.2.3. Colour Reagent Preparation
2.2.4. Spectrophotometric Quantification
2.2.5. Method Validation and Quality Control
2.3. Statistical Analyses
2.3.1. Outcome Definitions
2.3.2. Data Screening and Transformations
2.3.3. Model Structure and Covariates
2.3.4. Sample Size and Power Considerations
2.4. Acknowledgement of AI Assistance
3. Results
3.1. Differences Between Layer-Type and Meat-Type Hens
3.2. Genetic-Type Differences Within Production Type
3.3. Breed-Dependent Differences Across Cholesterol Traits
4. Discussion
4.1. Mechanistic Interpretation
4.2. Breed-Level Differences
4.3. Reciprocal Crosses and Inheritance
4.4. Physiological and Evolutionary Context
4.5. Methodological Considerations
4.6. Breeding and Practical Implications
4.7. Future Directions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| AOAC | Association of Official Analytical Chemists |
| APOB | Apolipoprotein B |
| BC | Box–Cox (transformation) |
| C_Cont | Cholesterol concentration in egg content |
| C_Egg | Cholesterol concentration in whole egg |
| C_Total | Total cholesterol per egg |
| C_YDM | Cholesterol concentration in yolk dry matter |
| C_YF | Cholesterol concentration in fresh yolk |
| DM | Dry matter |
| EU | European Union |
| FeCl3 | Ferric chloride |
| F1 | First filial generation (crossbred generation) |
| GBLUP | Genomic best linear unbiased prediction |
| GLM | General linear model |
| HMGCR | 3-Hydroxy-3-methylglutaryl-CoA reductase |
| LOD | Limit of detection |
| LOQ | Limit of quantification |
| LPL | Lipoprotein lipase |
| LS-mean | Least-squares mean |
| Met + Cys | Methionine plus cysteine |
| MTTP | Microsomal triglyceride transfer protein |
| NIST | National Institute of Standards and Technology |
| PxB | Prelux Brown |
| PxBa | Prelux Barred |
| PxBl | Prelux Black |
| SBH | Slovenian Brown Hen |
| SBaH | Slovenian Barred Hen |
| SEFH | Slovenian Early Feathering Hen |
| SH | Styrian Hen |
| SLFH | Slovenian Late Feathering Hen |
| SMH | Slovenian Meat Hen |
| SSH | Slovenian Silver Hen |
| SSG | Standardised sampling group |
| VLDL | Very-low-density lipoprotein |
| VLDLy | Yolk-targeted very-low-density lipoprotein |
| wk | Week(s) |
| YA_Ratio | Yolk-to-albumen ratio |
References
- Nordic Council of Ministers. Nordic Nutrition Recommendations 2023: Towards Sustainable and Healthy Diets; Nordic Council of Ministers: Copenhagen, Denmark, 2023; Available online: https://pub.norden.org/nord2023-003 (accessed on 28 October 2025).
- Rouhani, M.H.; Rashidi-Pourfard, N.; Salehi-Abargouei, A.; Karimi, M.; Haghighatdoost, F. Effects of Egg Consumption on Blood Lipids: A Systematic Review and Meta-Analysis of Randomized Clinical Trials. J. Am. Coll. Nutr. 2018, 37, 99–110. [Google Scholar] [CrossRef]
- Drouin-Chartier, J.-P.; Chen, S.; Li, Y.; Schwab, A.L.; Stampfer, M.J.; Sacks, F.M.; Rosner, B.; Willett, W.C.; Hu, F.B.; Bhupathiraju, S.N. Egg Consumption and Risk of Cardiovascular Disease: Three Large Prospective US Cohort Studies, Systematic Review, and Updated Meta-Analysis. BMJ 2020, 368, m513. [Google Scholar] [CrossRef]
- Carter, S.; Connole, E.S.; Hill, A.M.; Buckley, J.D.; Coates, A.M. Eggs and Cardiovascular Disease Risk: An Update of Recent Evidence. Curr. Atheroscler. Rep. 2023, 25, 373–380. [Google Scholar] [CrossRef]
- Virtanen, J.K.; Larsson, S.C. Eggs—A Scoping Review for Nordic Nutrition Recommendations 2023. Food Nutr. Res. 2024, 68, 10507. [Google Scholar] [CrossRef]
- Li, M.-Y.; Chen, J.-H.; Chen, C.; Kang, Y.-N. Association between Egg Consumption and Cholesterol Concentration: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nutrients 2020, 12, 1995. [Google Scholar] [CrossRef]
- Zhao, B.; Gan, L.; Graubard, B.I.; Männistö, S.; Albanes, D.; Huang, J. Associations of Dietary Cholesterol, Serum Cholesterol, and Egg Consumption with Overall and Cause-Specific Mortality: Systematic Review and Updated Meta-Analysis. Circulation 2022, 145, 1506–1519. [Google Scholar] [CrossRef] [PubMed]
- Hermier, D. Lipoprotein Metabolism and Fattening in Poultry. J. Nutr. 1997, 127, 805S–808S. [Google Scholar] [CrossRef] [PubMed]
- Walzem, R.L.; Hansen, R.J.; Williams, D.L.; Hamilton, R.L. Estrogen Induction of VLDLy Assembly in Egg-Laying Hens. J. Nutr. 1999, 129, 467S–472S. [Google Scholar] [CrossRef]
- Nimpf, J.; Schneider, W.J. Receptor-Mediated Lipoprotein Transport in Laying Hens. J. Nutr. 1991, 121, 1471–1474. [Google Scholar] [CrossRef] [PubMed]
- Song, X.; Wang, D.; Zhou, Y.; Sun, Y.; Ao, X.; Hao, R.; Gao, M.; Xu, Y.; Li, P.; Jia, C.; et al. Yolk Precursor Synthesis and Deposition in Hierarchical Follicles and Effect on Egg Production Performance of Hens. Poult. Sci. 2023, 102, 102756. [Google Scholar] [CrossRef]
- Nangsuay, A.; Molenaar, R.; Meijerhof, R.; van den Anker, I.; Heetkamp, M.J.W.; Kemp, B.; van den Brand, H. Differences in Egg Nutrient Availability, Development, and Nutrient Metabolism of Broiler and Layer Embryos. Poult. Sci. 2015, 94, 415–423. [Google Scholar] [CrossRef]
- Carney, V.L.; Anthony, N.B.; Robinson, F.E.; Reimer, B.L.; Korver, D.R.; Zuidhof, M.J.; Afrouziyeh, M. Evolution of Maternal Feed Restriction Practices over 60 Years of Selection for Broiler Productivity. Poult. Sci. 2022, 101, 101957. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.-T.; Lin, X.; Mi, Y.-L.; Zeng, W.-D.; Zhang, C.-Q. Age-Related Changes of Yolk Precursor Formation in the Liver of Laying Hens. J. Zhejiang Univ. Sci. B 2018, 19, 390–399. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Zhu, W.; Du, Y.; Liu, X.; Geng, Z. Genetic Parameters for Yolk Cholesterol and Transcriptional Evidence Indicate a Role of Lipoprotein Lipase in the Cholesterol Metabolism of the Chinese Wenchang Chicken. Front. Genet. 2019, 10, 902. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Wang, T.; Xu, C.; Wang, D.; Ren, J.; Li, Y.; Tian, Y.; Wang, Y.; Jiao, Y.; Kang, X.; et al. Transcriptome Profile of Liver at Different Physiological Stages Reveals Potential Mode for Lipid Metabolism in Laying Hens. BMC Genom. 2015, 16, 763. [Google Scholar] [CrossRef]
- Cui, Z.; Ning, Z.; Deng, X.; Du, X.; Amevor, F.K.; Liu, L.; Kang, X.; Tian, Y.; Wang, Y.; Li, D.; et al. Integrated Proteomic and Metabolomic Analyses of Chicken Ovary Revealed the Crucial Role of Lipoprotein Lipase on Lipid Metabolism and Steroidogenesis during Sexual Maturity. Front. Physiol. 2022, 13, 885030. [Google Scholar] [CrossRef] [PubMed]
- Rizzi, C.; Chiericato, G.M. Chemical Composition of Meat and Egg Yolk of Hybrid and Italian Breed Hens Reared Using an Organic Production System. Poult. Sci. 2010, 89, 1239–1251. [Google Scholar] [CrossRef]
- Lordelo, M.; Cid, J.; Cordovil, C.M.S.; Alves, S.P.; Bessa, R.J.B.; Carolino, I. A Comparison between the Quality of Eggs from Indigenous Chicken Breeds and That from Commercial Layers. Poult. Sci. 2020, 99, 1768–1776. [Google Scholar] [CrossRef]
- Cendron, F.; Currò, S.; Rizzi, C.; Penasa, M.; Cassandro, M. Egg Quality of Italian Local Chicken Breeds: II. Composition and Predictive Ability of VIS-Near-InfraRed Spectroscopy. Animals 2023, 13, 77. [Google Scholar] [CrossRef]
- Rizzi, C. A Study on Egg Production and Quality According to the Age of Four Italian Chicken Dual-Purpose Purebred Hens Reared Outdoors. Animals 2023, 13, 3064. [Google Scholar] [CrossRef]
- Sözcü, A.; İpek, A.; Oguz, Z.; Gunnarsson, S.; Riber, A.B. Comparison of Performance, Egg Quality, and Yolk Fatty Acid Profile in Two Turkish Genotypes (Atak-S and Atabey) in a Free-Range System. Animals 2021, 11, 1458. [Google Scholar] [CrossRef]
- Krawczyk, J.; Sokołowicz, Z.; Szymczyk, B. Effect of Housing System on Cholesterol, Vitamin and Fatty Acid Content of Yolk and Physical Characteristics of Eggs from Polish Native Hens. Eur. Poult. Sci. 2011, 75, 151–157. [Google Scholar] [CrossRef]
- Zemková, Ľ.; Simeonovová, J.; Lichovníková, M.; Somerlíková, K. The Effects of Housing Systems and Age of Hens on the Weight and Cholesterol Concentration of the Egg. Czech J. Anim. Sci. 2007, 52, 110–115. [Google Scholar] [CrossRef]
- Hargis, P.S. Modifying Egg Yolk Cholesterol in the Domestic Fowl—A Review. World’s Poult. Sci. J. 1988, 44, 17–29. [Google Scholar] [CrossRef]
- AOAC INTERNATIONAL. Official Method 925.30: Solids (Total) in Eggs—Vacuum Method. In Official Methods of Analysis of AOAC INTERNATIONAL, 18th ed.; Horwitz, W., Latimer, G.W., Jr., Eds.; AOAC INTERNATIONAL: Gaithersburg, MD, USA, 2005. [Google Scholar]
- Boehringer Mannheim; R-Biopharm. Cholesterol—Colorimetric Method for the Determination of Cholesterol in Foodstuffs and Other Materials; Cat. No. 10 139 050 035. Instructions for Use. 2017. Available online: https://www.r-biopharm.com (accessed on 15 May 2025).
- ICH. Q2(R1) Validation of Analytical Procedures: Text and Methodology; International Council for Harmonisation: Geneva, Switzerland, 2005; Available online: https://database.ich.org/sites/default/files/Q2%28R1%29%20Guideline.pdf (accessed on 12 May 2025).
- National Institute of Standards and Technology (NIST). Certificate of Analysis: Standard Reference Material 1845a—Whole Egg Powder; NIST: Gaithersburg, MD, USA, 2020. Available online: https://tsapps.nist.gov/srmext/certificates/1845a.pdf (accessed on 30 March 2025).
- SAS Institute Inc. SAS/STAT® 14.2 User’s Guide; SAS Institute Inc.: Cary, NC, USA, 2016. [Google Scholar]
- Conover, W.J.; Iman, R.L. Rank Transformations as a Bridge between Parametric and Nonparametric Statistics. Am. Stat. 1981, 35, 124–129. [Google Scholar] [CrossRef]
- Tharrington, J.B.; Curtis, P.A.; Jones, F.T.; Anderson, K.E. Comparison of Physical Quality and Composition of Eggs from Historic Strains of Single Comb White Leghorn Chickens. Poult. Sci. 1999, 78, 591–594. [Google Scholar] [CrossRef]
- Lieboldt, M.-A.; Halle, I.; Frahm, J.; Schrader, L.; Baulain, U.; Henning, M.; Preisinger, R.; Weigend, S.; Dänicke, S. Phylogenic versus Selection Effects on Growth Development, Egg Laying and Egg Quality in Purebred Laying Hens. Eur. Poult. Sci. 2015, 79, 145. [Google Scholar] [CrossRef]
- Anene, D.O.; Akter, Y.; Thomson, P.C.; Groves, P.; Liu, S.; O’Shea, C.J. Hens That Exhibit Poorer Feed Efficiency Produce Eggs with Lower Albumen Quality and Are Prone to Being Overweight. Animals 2021, 11, 2986. [Google Scholar] [CrossRef]
- Sun, C.; Lu, J.; Yi, G.; Yuan, J.; Duan, Z.; Qu, L.; Xu, G.; Wang, K.; Yang, N. Promising Loci and Genes for Yolk and Ovary Weight in Chickens Revealed by a Genome-Wide Association Study. PLoS ONE 2015, 10, e0137145. [Google Scholar] [CrossRef]
- Zhou, L.; Shi, Y.; Guo, R.; Liang, M.; Zhu, X.; Wang, C. Digital Gene-Expression Profiling Analysis of the Cholesterol-Lowering Effects of Alfalfa Saponin Extract on Laying Hens. PLoS ONE 2014, 9, e98578. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Vorlová, L.; Sieglová, E.; Karpíšková, R.; Kopřiva, V. Cholesterol Content in Eggs during the Laying Period. Acta Vet. Brno 2001, 70, 387–390. [Google Scholar] [CrossRef]
- Rizzi, C.; Marangon, A. Quality of Organic Eggs of Hybrid and Italian Breed Hens. Poult. Sci. 2012, 91, 2330–2340. [Google Scholar] [CrossRef]
- Becker, W.A.; Spencer, J.V.; Verstrate, J.A.; Mirosh, L.W. Genetic Analysis of Chicken Egg Yolk Cholesterol. Poult. Sci. 1977, 56, 895–901. [Google Scholar] [CrossRef]
- Marks, H.L.; Washburn, K.W. Divergent Selection for Yolk Cholesterol in Laying Hens. Br. Poult. Sci. 1977, 18, 179–188. [Google Scholar] [CrossRef]
- Griffin, H.D. Manipulation of Egg Yolk Cholesterol: A Physiologist’s View. World’s Poult. Sci. J. 1992, 48, 101–112. [Google Scholar] [CrossRef]
- Yang, P.K.; Tian, Y.D.; Sun, G.R.; Jiang, R.R.; Han, R.L.; Kang, X.T. Deposition Rule of Yolk Cholesterol in Two Different Breeds of Laying Hens. Genet. Mol. Res. 2013, 12, 5392–5400. [Google Scholar] [CrossRef]
- Smith, C.C.; Fretwell, S.D. The Optimal Balance between Size and Number of Offspring. Am. Nat. 1974, 108, 499–506. [Google Scholar] [CrossRef]
- Martin, T.E.; Bassar, R.D.; Bassar, S.K.; Fontaine, J.J.; Lloyd, P.; Mathewson, H.A.; Niklison, A.M.; Chalfoun, A. Life-History and Ecological Correlates of Geographic Variation in Egg and Clutch Mass among Passerine Species. Evolution 2006, 60, 390–398. [Google Scholar] [CrossRef] [PubMed]
- Ko, E.-Y.; Saini, R.K.; Keum, Y.-S.; An, B.-K. Age of Laying Hens Significantly Influences the Content of Nutritionally Vital Lipophilic Compounds in Eggs. Foods 2021, 10, 22. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Gao, X.; Zheng, W.; Wang, P.; Duan, Z.; Xu, G. Dynamic Changes in Egg Quality, Heritability and Correlation of These Traits and Yolk Nutrient throughout the Entire Laying Cycle. Foods 2023, 12, 4472. [Google Scholar] [CrossRef]
- Mench, J.A. Broiler Breeders: Feed Restriction and Welfare. World’s Poult. Sci. J. 2002, 58, 23–29. [Google Scholar] [CrossRef]
- Dermane, A.; Eloh, K.; Palanga, K.K.; Adjito, D.T.; N’nanle, O.; Karou, D.S.; Kpanzou, T.A.; Caboni, P. Comparative Metabolomic Profiling of Eggs from Three Diverse Chicken Breeds Using GC–MS Analysis. Poult. Sci. 2024, 103, 103616. [Google Scholar] [CrossRef]
- Guo, H.; Zhang, X.; You, M.; Shen, Y.; Zhang, S.; Li, J.; He, X.; Zhao, X.; Ma, N. Quantitative Lipidomics Reveals the Changes of Lipids and Antioxidant Capacity in Egg Yolk from Laying Hens with Fatty Liver Hemorrhagic Syndrome. Poult. Sci. 2024, 103, 103785. [Google Scholar] [CrossRef]
- Meuwissen, T.H.E.; Hayes, B.J.; Goddard, M.E. Prediction of Total Genetic Value Using Genome-Wide Dense Marker Maps. Genetics 2001, 157, 1819–1829. [Google Scholar] [CrossRef] [PubMed]
- Wolc, A.; Kranis, A.; Arango, J.; Settar, P.; Fulton, J.E.; O’Sullivan, N.P.; Avendano, A.; Watson, K.A.; Hickey, J.M.; de los Campos, G. Implementation of Genomic Selection in the Poultry Industry. Anim. Front. 2016, 6, 23–31. [Google Scholar] [CrossRef]
- Lourenco, D.; Legarra, A.; Tsuruta, S.; Masuda, Y.; Aguilar, I.; Misztal, I. Single-Step Genomic Evaluations from Theory to Practice: Using SNP Chips and Sequence Data in BLUPF90. Genes 2020, 11, 790. [Google Scholar] [CrossRef]
- Greenfield, H.; Southgate, D.A.T. Food Composition Data: Production, Management and Use, 2nd ed.; FAO/INFOODS: Rome, Italy, 2003. [Google Scholar]
- Finglas, P.M.; Berry, R.; Astley, S. Assessing and Improving the Quality of Food Composition Databases for Nutrition and Health Applications in Europe: The Contribution of EuroFIR. Adv. Nutr. 2014, 5, 608S–614S. [Google Scholar] [CrossRef] [PubMed]




| Production Type/Genetic Type | Purebred/Crossbred | Total Hens Housed (n) | Age at 50% Egg Production (Weeks) | Average Body Weight (g ± SD) at 52 Weeks | Eggs per Live Hen to 48 Weeks 1 | Average Egg Mass (g ± SD) to 48 Weeks 2 |
|---|---|---|---|---|---|---|
| Layer-type purebreds | Slovenian Brown Hen (SBH) | 162 | 25 | 2042.4 ± 169.9 | 172.8 | 61.13 ± 6.36 |
| Layer-type purebreds | Slovenian Silver Hen (SSH) | 162 | 26 | 2272.2 ± 290.0 | 167.6 | 59.86 ± 5.58 |
| Layer-type purebreds | Slovenian Barred Hen (SBaH) | 162 | 26 | 2613.6 ± 247.4 | 134.4 | 56.55 ± 5.42 |
| Layer-type purebreds | Styrian Hen (SH) | 102 | 26 | 1916.1 ± 219.6 | 104.0 | 46.37 ± 4.91 |
| Layer-type crossbreds | Prelux Brown (PxB) | 114 | 23 | 2169.5 ± 193.1 | 171.2 | 63.18 ± 5.83 |
| Layer-type crossbreds | Prelux Barred (PxBa) | 113 | 23 | 2388.1 ± 216.3 | 170.4 | 57.17 ± 5.63 |
| Layer-type crossbreds | Prelux Black (PxBl) | 115 | 23 | 2351.1 ± 196.9 | 176.8 | 61.36 ± 6.11 |
| Meat-type purebreds | Slovenian Early Feathering Hen (SEFH) | 320 | 32 | 3868.0 ± 406.1 | 70.5 | 61.73 ± 4.19 |
| Meat-type purebreds | Slovenian Late Feathering Hen (SLFH) | 323 | 31 | 3371.2 ± 397.7 | 77.4 | 59.51 ± 3.82 |
| Meat-type purebreds | Slovenian Meat Hen (SMH) | 326 | 30 | 4188.0 ± 494.1 | 68.8 | 64.90 ± 3.15 |
| (A) Cholesterol Traits: Effect of Production Type | ||||
| Trait | Layer Type | Meat Type | p-Value | |
| Cholesterol in egg content—C_Cont (mg g−1) 1 | 4.07 a (3.97–4.17) | 5.10 b (4.92–5.29) | p < 0.0001 | |
| Cholesterol in yolk dry matter—C_YDM (mg g−1 DM) 1 | 25.28 a (24.76–25.81) | 31.06 b (30.25–31.88) | p < 0.0001 | |
| Total cholesterol per egg—C_Total (mg egg−1) 2 | 242.77 a (220.19–261.97) | 338.26 b (300.48–356.35) | p < 0.0001 | |
| Yolk-to-albumen (YA) ratio | 0.45 a (0.44–0.46) | 0.50 b (0.49–0.51) | p < 0.0001 | |
| (B) Cholesterol Traits: Effect of Genetic Type Nested Within Production Type | ||||
| Trait | Crossbred—Layer | Purebred—Layer | Purebred—Meat | p-Value |
| Cholesterol in egg content—C_Cont (mg g−1) 1 | 3.40 a (3.26–3.54) | 4.74 b (4.59–4.90) | 5.10 c (4.92–5.29) | p < 0.0001 |
| Cholesterol in yolk dry matter—C_YDM (mg g−1 DM) 1 | 22.10 a (21.31–22.89) | 28.47 b (27.78–29.15) | 31.06 c (30.25–31.88) | p < 0.0001 |
| Total cholesterol per egg—C_Total (mg egg−1) 2 | 219.06 a (203.63–230.50) | 258.46 b (242.77–268.73) | 338.26 c (300.48–365.35) | p < 0.0001 |
| Yolk to albumen (YA) ratio | 0.44 a (0.43–0.45) | 0.46 b (0.45–0.47) | 0.50 c (0.49–0.51) | p = 0.0040 |
| (C) Egg Morphological Characteristics: Effect of Genetic Type Nested Within Production Type | ||||
| Trait | Crossbred—Layer | Purebred—Layer | Purebred—Meat | p-Value |
| Egg mass (g) 1 | 72.90 a (71.99–73.82) | 64.89 b (64.11–65.68) | 71.11 c (70.17–72.06) | p < 0.0001 |
| Yolk proportion (%) 1 | 26.95 a (26.47–27.45) | 27.91 b (27.49–28.34) | 29.49 c (28.99–30.00) | p = 0.0045 |
| Albumen proportion (%) 1 | 61.28 a (60.66–61.90) | 60.32 a (59.78–60.85) | 59.26 b (58.62–59.89) | p = 0.0224 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Terčič, D.; Levart, A. Effects of Genetic and Production Type on Egg Cholesterol and the Yolk–Albumen Ratio in Slovenian Chicken Genotypes Under Standardised Conditions. Animals 2025, 15, 3588. https://doi.org/10.3390/ani15243588
Terčič D, Levart A. Effects of Genetic and Production Type on Egg Cholesterol and the Yolk–Albumen Ratio in Slovenian Chicken Genotypes Under Standardised Conditions. Animals. 2025; 15(24):3588. https://doi.org/10.3390/ani15243588
Chicago/Turabian StyleTerčič, Dušan, and Alenka Levart. 2025. "Effects of Genetic and Production Type on Egg Cholesterol and the Yolk–Albumen Ratio in Slovenian Chicken Genotypes Under Standardised Conditions" Animals 15, no. 24: 3588. https://doi.org/10.3390/ani15243588
APA StyleTerčič, D., & Levart, A. (2025). Effects of Genetic and Production Type on Egg Cholesterol and the Yolk–Albumen Ratio in Slovenian Chicken Genotypes Under Standardised Conditions. Animals, 15(24), 3588. https://doi.org/10.3390/ani15243588

