Comparison of Sampling Methods for mtDNA Analysis for Identification of Predator Species Causing Wounds in Veterinary Forensic Cases
Simple Summary
Abstract
1. Introduction
2. Cases
3. mtDNA Analysis
3.1. Sampling
3.2. Selection of Target Animal Species for mtDNA Analysis
3.3. DNA Extraction
3.4. Polymerase Chain Reaction (PCR) Amplification and Electrophoresis
4. Results of mtDNA Analysis
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| mtDNA | Mitochondria DNA |
| PCR | Polymerase Chain Reaction |
| UV | Ultraviolet |
References
- Parry, N.M.A.; Stoll, A. The rise of veterinary forensics. Forensic Sci. Int. 2020, 306, 110069. [Google Scholar] [CrossRef]
- Mores, C.M.; de Castro, M.B.; de Melo, C.B. Forensic examinations in the investigations of crimes involving animals: A review. Cienc. Rural 2025, 55, e20240071. [Google Scholar] [CrossRef]
- Nakamura, S.I. A concise review of veterinary forensic medicine in Japan: Current status and perspectives. J. Toxicol. Pathol. 2025, 38, 131–137. [Google Scholar] [CrossRef]
- Cardinali, I.; Tancredi, D.; Lancioni, H. The Revolution of Animal Genomics in Forensic Sciences. Int. J. Mol. Sci. 2023, 24, 8821. [Google Scholar] [CrossRef] [PubMed]
- Schulz, I.; Schneider, P.M.; Olek, K.; Rothschild, M.A.; Tsokos, M. Examination of postmortem animal interference to human remains using cross-species multiplex PCR. Forensic Sci. Med. Pathol. 2006, 2, 95–101. [Google Scholar] [CrossRef] [PubMed]
- Indra, L.; Errickson, D.; Young, A.; Losch, S. Uncovering Forensic Taphonomic Agents: Animal Scavenging in the European Context. Biology 2022, 11, 601. [Google Scholar] [CrossRef]
- Willey, P.; Snyder, L.M. Canid modification of human remains: Implications for time-since-death estimations. J. Forensic Sci. 1989, 34, 894–901. [Google Scholar] [CrossRef]
- Linacre, A. Animal Forensic Genetics. Genes 2021, 12, 515. [Google Scholar] [CrossRef]
- Bellis, C.; Ashton, K.J.; Freney, L.; Blair, B.; Griffiths, L.R. A molecular genetic approach for forensic animal species identification. Forensic Sci. Int. 2003, 134, 99–108. [Google Scholar] [CrossRef]
- Caniglia, R.; Fabbri, E.; Mastrogiuseppe, L.; Randi, E. Who is who? Identification of livestock predators using forensic genetic approaches. Forensic Sci. Int. Genet. 2013, 7, 397–404. [Google Scholar] [CrossRef]
- Blejwas, K.M.; Williams, C.L.; Shin, G.T.; McCullough, D.R.; Jaeger, M.M. Salivary DNA Evidence Convicts Breeding Male Coyotes of Killing Sheep. J. Wildl. Manag. 2006, 70, 1087–1093. [Google Scholar] [CrossRef]
- Hopken, M.W.; Orning, E.K.; Young, J.K.; Piaggio, A.J. Molecular forensics in avian conservation: A DNA-based approach for identifying mammalian predators of ground-nesting birds and eggs. BMC Res. Notes 2016, 9, 14. [Google Scholar] [CrossRef]
- Mumma, M.A.; Soulliere, C.E.; Mahoney, S.P.; Waits, L.P. Enhanced understanding of predator-prey relationships using molecular methods to identify predator species, individual and sex. Mol. Ecol. Resour. 2014, 14, 100–108. [Google Scholar] [CrossRef]
- Meredith, E.P.; Adkins, J.K.; Rodzen, J.A. UrsaPlex: An STR multiplex for forensic identification of North American black bear (Ursus americanus). Forensic Sci. Int. Genet. 2020, 44, 102161. [Google Scholar] [CrossRef]
- Eichmann, C.; Berger, B.; Reinhold, M.; Lutz, M.; Parson, W. Canine-specific STR typing of saliva traces on dog bite wounds. Int. J. Legal Med. 2004, 118, 337–342. [Google Scholar] [CrossRef]
- Woinarski, J.; Murphy, B.; Legge, S.; Garnett, S.; Lawes, M.; Comer, S.; Dickman, C.; Doherty, T.; Edwards, G.; Nankivell, A.; et al. How many birds are killed by cats in Australia? Biol. Conserv. 2017, 214, 76–87. [Google Scholar] [CrossRef]
- Huxoll, C.M.; Messmer, T.A.; Conover, M. Raccoons. In Wildlife Damage Management Series; All Archived Publications (Utah State University Extension): Logan, UT, USA, 1998; Volume 2, pp. 1–5. [Google Scholar]
- Ono, K.; Satoh, M.; Yoshida, T.; Ozawa, Y.; Kohara, A.; Takeuchi, M.; Mizusawa, H.; Sawada, H. Species identification of animal cells by nested PCR targeted to mitochondrial DNA. Vitr. Cell Dev. Biol. Anim. 2007, 43, 168–175. [Google Scholar] [CrossRef] [PubMed]
- Frantz, A.C.; Heddergott, M.; Lang, J.; Schulze, C.; Ansorge, H.; Runge, M.; Braune, S.; Michler, F.U.; Wittstatt, U.; Hoffmann, L.; et al. Limited mitochondrial DNA diversity is indicative of a small number of founders of the German raccoon (Procyon lotor) population. Eur. J. Wildl. Res. 2013, 59, 665–674. [Google Scholar] [CrossRef]
- Holt, D.E.; Griffin, G. Bite wounds in dogs and cats. Vet. Clin. North. Am. Small Anim. Pract. 2000, 30, 669–679. [Google Scholar] [CrossRef]
- Hsiou, C.L.; Hsu, C.C.; Liao, P.W.; Yang, F.H.; Lee, A.N.; Huang, W.H. Forensic Death Investigations of Dog Bite Injuries in 31 Cats. Animals 2022, 12, 2404. [Google Scholar] [CrossRef] [PubMed]
- Bruijns, B. What Are the Limitations and Challenges of Swab-Based DNA Sampling? Forensic Sci. 2024, 4, 76–95. [Google Scholar] [CrossRef]


| Case 1 | Case 2 | Case 3 | |
|---|---|---|---|
| Animal species | Cat | Cat | Duck |
| Scene of Discovery | Yard inside the dormitory | On Residential Premises | Within the driveway of a private residence |
| Main missing part | From the left forelimb to the left thoracic region of skin | Right forelimb | Head |
| Bloodstains at the scene | No | No | Yes |
| Identification of the missing part near the carcass discovery site | No | Bone fragments | No |
| Characteristics around missing part | Left thoracic region missing (16 cm × 12 cm), rib exposure, fracture, and hemorrhage | Right thoracic region missing (5 cm × 10 cm), rib fracture, hemorrhage | Neck region missing (4 cm × 4 cm), missing from the Head to the 8th cervical vertebra, hemorrhage |
| Skin and soft tissue morphology | Irregular | Irregular | Irregular |
| Other major injuries | Perforation of the thigh, injuries to thoracic and abdominal cavities | Abdominal perforation, injuries to thoracic and abdominal cavities | Fractures of both wings and femurs, injuries to thoracic and abdominal Cavities |
| Presumed cause of death | Exsanguination | Exsanguination | Exsanguination |
| Presumed mechanism of injury | Bite trauma, scavenging | Bite trauma, scavenging | High-energy trauma, scavenging of the neck |
| Animal species presumed to be involved by necropsy findings | Dog | Dog | Unknown |
| Scientific Name | Forward | Sequence (5′–3′) | Reverse | Sequence (5′–3′) | Size Range (Base Pair, bp) |
|---|---|---|---|---|---|
| Canis lupus familiaris | S19_Dog_F | GCCCAACTAACCCCAAACTTA [18] | S20_Dog_R | GGTTAACAATGGGGTGGATAAG | 755 |
| Procyon lotor | PLO-L15997 | CCATCAGCACCCAAAGCT [19] | PLO-CRL1 | CGCTTAAACTTATGTCCTGTAACC | 608 |
| Paguma larvata | hakubisinF | CCAACATTCGAAAATCTCACCCACTCGCTAAAATT (designed at out laboratory) | hakubisinR | CCAATGTTTCATGTCTCTGAAAAGGTATATGAACC | 343 |
| Felis catus | S39_Cat_F2 | TTATCACACCCACAAGAGGA [18] | S40_Cat_R2 | GTAGTACTTTCGACTGGTTAG | 1391 |
| Case | Wound Site | Sample | Electrophoresis Results | Positive Species |
|---|---|---|---|---|
| 1 | Left thoracic region | Muscle | Positive | Dog |
| Swab | Negative | Dog | ||
| 2 | Right thoracic region | Muscle | Negative | |
| Swab | Positive | Dog | ||
| 3 | Neck | Muscle | Positive | Cat |
| Swab | Negative |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ueda, R.; Kihara, Y.; Tanaka, A. Comparison of Sampling Methods for mtDNA Analysis for Identification of Predator Species Causing Wounds in Veterinary Forensic Cases. Animals 2025, 15, 3560. https://doi.org/10.3390/ani15243560
Ueda R, Kihara Y, Tanaka A. Comparison of Sampling Methods for mtDNA Analysis for Identification of Predator Species Causing Wounds in Veterinary Forensic Cases. Animals. 2025; 15(24):3560. https://doi.org/10.3390/ani15243560
Chicago/Turabian StyleUeda, Reina, Yuko Kihara, and Aki Tanaka. 2025. "Comparison of Sampling Methods for mtDNA Analysis for Identification of Predator Species Causing Wounds in Veterinary Forensic Cases" Animals 15, no. 24: 3560. https://doi.org/10.3390/ani15243560
APA StyleUeda, R., Kihara, Y., & Tanaka, A. (2025). Comparison of Sampling Methods for mtDNA Analysis for Identification of Predator Species Causing Wounds in Veterinary Forensic Cases. Animals, 15(24), 3560. https://doi.org/10.3390/ani15243560

