Low-Coverage Whole-Genome Sequencing (lcWGS) in Cattle: Analysis of Potential and Prospects for Application
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. lcWGS as an Efficient Alternative to Traditional Genotyping Methods
3.2. Genotype Imputation from lcWGS Data
3.3. Ability of lcWGS to Detect Genetic Variability
3.4. Application of lcWGS in Genomic Selection
3.5. Economic Efficiency of lcWGS
3.6. Challenges, Limitations, and Open Questions
4. Discussion
4.1. Principles and Technological Background of lcWGS
4.2. Applications Beyond Genomic Selection (The Detection of Recessive Disorders, Analysis of Rare Variants, Assessment of Genetic Diversity, and Use in GWAS or Population Structure Studies)
4.3. Recent Technological and Bioinformatic Advances
4.4. Future Perspectives
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Schenkel, F.S. Genome Wide Imputation in Canadian Beef Cattle. In Proceedings of the 10th World Congress of Genetics Applied to Livestock Production, Vancouver, BC, Canada, 17–22 August 2014; p. 259. Available online: https://www.asas.org/docs/default-source/wcgalp-proceedings-oral/259_paper_10342_manuscript_1326_0b.pdf?sfvrsn=2 (accessed on 15 September 2025).
- Jiang, Y.; Song, H.; Gao, H.; Zhang, Q.; Ding, X. Exploring the Optimal Strategy of Imputation from SNP Array to Whole-Genome Sequencing Data in Farm Animals. Front. Genet. 2022, 13, 963654. [Google Scholar] [CrossRef] [PubMed]
- Hayes, B. Overview of Statistical Methods for Genome-Wide Association Studies (GWAS). Methods Mol. Biol. 2013, 1019, 149–169. [Google Scholar] [CrossRef] [PubMed]
- VanRaden, P.M.; Tooker, M.E.; O’Connell, J.R.; Cole, J.B.; Bickhart, D.M. Selecting Sequence Variants to Improve Genomic Predictions for Dairy Cattle. Genet. Sel. Evol. 2017, 49, 32. [Google Scholar] [CrossRef]
- Snelling, W.M.; Bennett, G.L.; Keele, J.W.; Kuehn, L.A.; McDaneld, T.G.; Smith, T.P.; Thallman, R.M.; Kalbfleisch, T.S.; Pollak, E.J. A Survey of Polymorphisms Detected from Sequences of Popular Beef Breeds. J. Anim. Sci. 2015, 93, 5128–5143. [Google Scholar] [CrossRef] [PubMed]
- Snelling, W.M.; Hoff, J.L.; Li, J.H.; Kuehn, L.A.; Keel, B.N.; Lindholm-Perry, A.K.; Pickrell, J.K. Assessment of Imputation from Low-Pass Sequencing to Predict Merit of Beef Steers. Genes 2020, 11, 1312. [Google Scholar] [CrossRef]
- Zhou, Y.; Yang, L.; Han, X.; Han, J.; Hu, Y.; Li, F.; Xia, H.; Peng, L.; Boschiero, C.; Rosen, B.D.; et al. Assembly of a Pangenome for Global Cattle Reveals Missing Sequences and Novel Structural Variations, Providing New Insights into Their Diversity and Evolutionary History. Genome Res. 2022, 32, 1585–1601. [Google Scholar] [CrossRef]
- van Binsbergen, R.; Bink, M.C.A.M.; Calus, M.P.L.; van Eeuwijk, F.A.; Hayes, B.J.; Hulsegge, I.; Veerkamp, R.F. Accuracy of Imputation to Whole-Genome Sequence Data in Holstein Friesian Cattle. Genet. Sel. Evol. 2014, 46, 41. [Google Scholar] [CrossRef]
- Druet, T.; Macleod, I.M.; Hayes, B.J. Toward Genomic Prediction from Whole-Genome Sequence Data: Impact of Sequencing Design on Genotype Imputation and Accuracy of Predictions. Heredity 2014, 112, 39–47. [Google Scholar] [CrossRef]
- van Binsbergen, R.; Calus, M.P.; Bink, M.C.; van Eeuwijk, F.A.; Schrooten, C.; Veerkamp, R.F. Genomic Prediction Using Imputed Whole-Genome Sequence Data in Holstein Friesian Cattle. Genet. Sel. Evol. 2015, 47, 71. [Google Scholar] [CrossRef]
- Pedrosa, V.B.; Schenkel, F.S.; Chen, S.Y.; Oliveira, H.R.; Casey, T.M.; Melka, M.G.; Brito, L.F. Genome-Wide Association Analyses of Lactation Persistency and Milk Production Traits in Holstein Cattle Based on Imputed Whole-Genome Sequence Data. Genes 2021, 12, 1830. [Google Scholar] [CrossRef]
- Lloret-Villas, A.; Pausch, H.; Leonard, A.S. The Size and Composition of Haplotype Reference Panels Impact the Accuracy of Imputation from Low-Pass Sequencing in Cattle. Genet. Sel. Evol. 2023, 55, 33. [Google Scholar] [CrossRef]
- Rowan, T.N.; Hoff, J.L.; Crum, T.E.; Taylor, J.F.; Schnabel, R.D.; Decker, J.E. A Multi-Breed Reference Panel and Additional Rare Variants Maximize Imputation Accuracy in Cattle. Genet. Sel. Evol. 2019, 51, 77. [Google Scholar] [CrossRef] [PubMed]
- Ros-Freixedes, R.; Whalen, A.; Gorjanc, G.; Mileham, A.J.; Hickey, J.M. Evaluation of Sequencing Strategies for Whole-Genome Imputation with Hybrid Peeling. Genet. Sel. Evol. 2020, 52, 18. [Google Scholar] [CrossRef] [PubMed]
- Davies, R.W.; Kucka, M.; Su, D.; Shi, S.; Flanagan, M.; Cunniff, C.M.; Chan, Y.F.; Myers, S. Rapid Genotype Imputation from Sequence with Reference Panels. Nat. Genet. 2021, 53, 1104–1111. [Google Scholar] [CrossRef]
- Teng, J.; Zhao, C.; Wang, D.; Chen, Z.; Tang, H.; Li, J.; Mei, C.; Yang, Z.; Ning, C.; Zhang, Q. Assessment of the Performance of Different Imputation Methods for Low-Coverage Sequencing in Holstein Cattle. J. Dairy Sci. 2022, 105, 3355–3366. [Google Scholar] [CrossRef]
- Lamb, H.J.; Nguyen, L.T.; Copley, J.P.; Engle, B.N.; Hayes, B.J.; Ross, E.M. Imputation Strategies for Genomic Prediction Using Nanopore Sequencing. BMC Biol. 2023, 21, 286. [Google Scholar] [CrossRef] [PubMed]
- González-Recio, O.; López-Catalina, A.; Peiró-Pastor, R.; Nieto-Valle, A.; Castro, M.; Fernández, A. Evaluating the Potential of (Epi)Genotype-by-Low Pass Nanopore Sequencing in Dairy Cattle: A Study on Direct Genomic Value and Methylation Analysis. J. Anim. Sci. Biotechnol. 2023, 14, 98. [Google Scholar] [CrossRef]
- Daetwyler, H.D.; Li, J.; Vander Jagt, C.J.; MacLeod, I.M.; Pickrell, J.; Vasquez, M.; Hoff, J.; Chamberlain, A.J. Genotyping Dairy Cattle with Skim-Whole-Genome Sequencing and Imputation. Assoc. Adv. Anim. Breed. Genet. 2021, 24, 78–81. [Google Scholar]
- Zhang, Z.; Wang, A.; Hu, H.; Wang, L.; Gong, M.; Yang, Q.; Liu, A.; Li, R.; Zhang, H.; Zhang, Q.; et al. The Efficient Phasing and Imputation Pipeline of Low-Coverage Whole Genome Sequencing Data Using a High-Quality and Publicly Available Reference Panel in Cattle. Anim. Res. One Health 2023, 1, 4–16. [Google Scholar] [CrossRef]
- Zheng, W.; Ma, W.; Chen, Z.; Wang, C.; Sun, T.; Dong, W.; Zhang, W.; Zhang, S.; Tang, Z.; Li, K.; et al. DPImpute: A Genotype Imputation Framework for Ultra-Low Coverage Whole-Genome Sequencing and Its Application in Genomic Selection. Adv. Sci. 2025, 12, e2412482. [Google Scholar] [CrossRef]
- Mowlaei, M.E.; Li, C.; Jamialahmadi, O.; Dias, R.; Chen, J.; Jamialahmadi, B.; Rebbeck, T.R.; Carnevale, V.; Kumar, S.; Shi, X. STICI: Split-Transformer with Integrated Convolutions for Genotype Imputation. Nat. Commun. 2025, 16, 1218. [Google Scholar] [CrossRef]
- Johnsson, M. The Big Challenge for Livestock Genomics Is to Make Sequence Data Pay. Peer Community J. 2023, 3, e67. [Google Scholar] [CrossRef]
- Treccani, M.; Locatelli, E.; Patuzzo, C.; Malerba, G. A Broad Overview of Genotype Imputation: Standard Guidelines, Approaches, and Future Investigations in Genomic Association Studies. Biocell 2023, 47, 1225–1241. [Google Scholar] [CrossRef]
- Russell, C.A.; Kuehn, L.A.; Snelling, W.M.; Kachman, S.D.; Spangler, M.L. Variance Component Estimates for Growth Traits in Beef Cattle Using Selected Variants from Imputed Low-Pass Sequence Data. J. Anim. Sci. 2023, 101, skad274. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Forer, L.; Schönherr, S.; Sidore, C.; Locke, A.E.; Kwong, A.; Vrieze, S.I.; Chew, E.Y.; Levy, S.; McGue, M.; et al. Next-Generation Genotype Imputation Service and Methods. Nat. Genet. 2016, 48, 1284–1287. [Google Scholar] [CrossRef]
- Shi, S.; Yuan, N.; Yang, M.; Du, Z.; Wang, J.; Sheng, X.; Wu, J.; Xiao, J. Comprehensive Assessment of Genotype Imputation Performance. Hum. Hered. 2018, 83, 107–116. [Google Scholar] [CrossRef]
- Kamprasert, N.; Aliloo, H.; van der Werf, J.H.J.; Clark, S.A. Short Communication: Accuracy of Whole-Genome Sequence Imputation in Angus Cattle Using Within-Breed and Multibreed Reference Populations. Animals 2024, 18, 101087. [Google Scholar] [CrossRef]
- Browning, B.L.; Browning, S.R. A Unified Approach to Genotype Imputation and Haplotype-Phase Inference for Large Data Sets of Trios and Unrelated Individuals. Am. J. Hum. Genet. 2009, 84, 210–223. [Google Scholar] [CrossRef]
- Rubinacci, S.; Ribeiro, D.M.; Hofmeister, R.J.; Delaneau, O. Efficient Phasing and Imputation of Low-Coverage Sequencing Data Using Large Reference Panels. Nat. Genet. 2021, 53, 120–126. [Google Scholar] [CrossRef]
- Déru, V.; Tiezzi, F.; VanRaden, P.M.; Lozada-Soto, E.A.; Toghiani, S.; Maltecca, C. Imputation Accuracy from Low- to Medium-Density SNP Chips for US Crossbred Dairy Cattle. J. Dairy Sci. 2024, 107, 398–411. [Google Scholar] [CrossRef] [PubMed]
- Chud, T.C.; Ventura, R.V.; Schenkel, F.S.; Carvalheiro, R.; Buzanskas, M.E.; Rosa, J.O.; Mudadu, M.A.; da Silva, M.V.; Mokry, F.B.; Marcondes, C.R.; et al. Strategies for Genotype Imputation in Composite Beef Cattle. BMC Genet. 2015, 16, 99. [Google Scholar] [CrossRef]
- Rubinacci, S.; Delaneau, O.; Marchini, J. Genotype Imputation Using the Positional Burrows Wheeler Transform. PLoS Genet. 2020, 16, e1009049. [Google Scholar] [CrossRef]
- Zhang, K.; Liang, J.; Fu, Y.; Chu, J.; Fu, L.; Wang, Y.; Li, W.; Zhou, Y.; Li, J.; Yin, X.; et al. AGIDB: A Versatile Database for Genotype Imputation and Variant Decoding across Species. Nucleic Acids Res. 2024, 52, D835–D849. [Google Scholar] [CrossRef]
- Beagle. Available online: https://faculty.washington.edu/browning/beagle/beagle.html (accessed on 26 November 2025).
- GLIMPSE. Available online: https://odelaneau.github.io/GLIMPSE/ (accessed on 26 November 2025).
- QUILT. Available online: https://github.com/rwdavies/QUILT (accessed on 26 November 2025).
- loimpute (Gencove). Available online: https://gitlab.com/gencove/loimpute-public (accessed on 26 November 2025).
- STITCH. Available online: https://github.com/rwdavies/STITCH (accessed on 26 November 2025).
- STICI. Available online: https://github.com/shilab/STICI (accessed on 26 November 2025).
- Liu, Q.; Xie, B.; Gao, Y.; Xu, S.; Lu, Y. A protocol for applying low-coverage whole-genome sequencing data in structural variation studies. STAR Protoc. 2023, 4, 102248. [Google Scholar] [CrossRef]
- Zan, Y.; Payen, T.; Lillie, M.; Honaker, C.F.; Siegel, P.B.; Carlborg, Ö. Stripes: Accurate detection and genotyping of structural variants using low-coverage sequencing data. Genet. Sel. Evol. 2019, 51, 62. [Google Scholar] [CrossRef]
- Zhu, B.; Zhang, Z.; Niu, Y.; Li, Y.; Zhang, L.; Wu, H.; Cai, G.; Wu, Z.; Wang, Y.; Hu, X. Comparison of genomic prediction accuracy between low-coverage sequencing and SNP array in Duroc pigs. Genet. Sel. Evol. 2023, 55, 72. [Google Scholar] [CrossRef]
- MacLeod, I.M.; Daetwyler, H.D.; Hayes, B.J.; Chamberlain, A.J. Whole-genome sequence imputation outperforms array-based imputation in cattle. Nat. Commun. 2022, 13, 910. [Google Scholar] [CrossRef]
- Erven, J.A.M.; Scheu, A.; Verdugo, M.P.; Cassidy, L.; Chen, N.; Gehlen, B.; Street, M.; Madsen, O.; Mullin, V.E. A high-coverage Mesolithic aurochs genome and effective leveraging of ancient cattle genomes using whole genome imputation. Mol. Biol. Evol. 2024, 41, msae076. [Google Scholar] [CrossRef] [PubMed]
- Lou, R.N.Y.; Jacobs, A.; Wilder, A.P.; Therkildsen, N.O. A beginner’s guide to low-coverage whole genome sequencing for population genomics. Mol. Ecol. 2021, 30, 4443–4466. [Google Scholar] [CrossRef]
- DeSaix, M.G.; Anderson, E.C.; Bossu, C.M.; Rayne, C.E.; Schweizer, T.M.; Bayly, N.J.; Narang, D.S.; Hagelin, J.C.; Lisle Gibbs, H.; Saracco, J.F.; et al. Low-coverage whole genome sequencing for highly accurate population assignment: Mapping migratory connectivity in the American Redstart (Setophaga ruticilla). Mol. Ecol. 2023, 32, 5528–5541. [Google Scholar] [CrossRef] [PubMed]
- Casellas, J.; Martín de Hijas-Villalba, M.; Vázquez-Gómez, M.; Id-Lahoucine, S. Low-coverage whole-genome sequencing in livestock species for individual traceability and parentage testing. Livest. Sci. 2021, 251, 104629. [Google Scholar] [CrossRef]
- Casellas, J.; de Hijas-Villalba, M.M.; Vázquez-Gómez, M.; Lahoucine, S.I. 353 ASAS-EAAP Talk: Low-coverage whole-genome sequencing in local livestock breeds. J. Anim. Sci. 2020, 98 (Suppl. 4), 81–82. [Google Scholar] [CrossRef]
- Widmayer, S.J.; Wooldridge, L.K.; Swanzey, E.; Barter, M.; Snow, C.; Saul, M.; Meng, Q.; Dumont, B.; Reinholdt, L.; Gatti, D.M. Low-coverage whole-genome sequencing facilitates accurate and cost-effective haplotype reconstruction in complex mouse crosses. Mamm. Genome 2025, 36, 4, 1063–1080. [Google Scholar] [CrossRef] [PubMed]
- Chat, V.; Ferguson, R.; Morales, L.; Kirchhoff, T. Ultra Low-Coverage Whole-Genome Sequencing as an Alternative to Genotyping Arrays in Genome-Wide Association Studies. Front. Genet. 2021, 12, 790445. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.V.; Vander Jagt, C.J.; Wang, J.; Daetwyler, H.D.; Xiang, R.; Goddard, M.E.; Nguyen, L.T.; Ross, E.M.; Hayes, B.J.; Chamberlain, A.J.; et al. Correction: In it for the long run: Perspectives on exploiting long-read sequencing in livestock for population scale studies of structural variants. Genet. Sel. Evol. 2023, 55, 25. [Google Scholar] [CrossRef]
- Thallman, R.M.; Borgert, J.E.; Engle, B.N.; Keele, J.W.; Snelling, W.M.; Gondro, C.; Kuehn, L.A. A vision of how low-coverage sequence data should contribute to genetic evaluation in the future. J. Anim. Sci. 2025, 103, skaf294. [Google Scholar] [CrossRef]

| Sequencing Depth | Sample Size /Breed | Imputation Software | Reference Panel (Animals) | Applicable Scenarios | Accuracy Metric | Reported Accuracy | Source |
|---|---|---|---|---|---|---|---|
| 1× | n = 77 crossbred beef cattle | loimpute | 946 (multi-breed) | Genomic prediction in crossbred beef cattle using a multi-breed reference panel | r (vs. HD SNP array) | 0.99 | [6] |
| 0.5×, 1× | n = 31 Holstein; n = 55 Jersey; n = 39 Holstein × Jersey crossbred bulls | loimpute, Beagle v5.1 | 4109 (incl. 1200 Holstein, 120 Jersey, 1000 Bull Genomes Run 8); Gencove reference panel—946 animals (incl. 184 Holstein, 15 Jersey) | Genomic selection in dairy cattle and their crosses using large, breed-representative reference panels | Concordance | loimpute: 0.96–0.98 (0.5×), 0.95–0.96 (1×); Beagle: 0.87–0.89 (0.5×), 0.91–0.92 (1×) | [19] |
| 0.1×–1× | n = 62 Holstein; n = 66 Simmental | Beagle v5.4 + GLIMPSE2 | 2976 (multi-breed) | Large-scale genomic prediction in mainstream dairy and beef breeds using a public multi-breed reference panel | Concordance | Holstein: 99.6% (1×), 99.6% (0.5×), 99.5% (0.1×); Simmental: 98.8% (1×) | [20] |
| 0.25× | n = 24 Brown Swiss | GLIMPSE v1.1.1 | 150 (multi-breed) | Cost-effective genotyping for population studies in minor or underrepresented breeds when large within-breed panels are unavailable | F1-score | >0.9 | [12] |
| 1× | n = 800 Holstein | Beagle v4.1, GeneImp v1.3, GLIMPSE v1.1.0, QUILT v1.0.0, Reveel, STITCH v1.6.5 | 1059 (1000 Bull Genomes Project Run 8) | Benchmarking and high-accuracy genomic prediction in intensively selected purebred populations with large breed-specific reference panels | r2 | Beagle: 0.94; GeneImp: 0.95; GLIMPSE: 0.96; QUILT: 0.97; Reveel: 0.53; STITCH_REF: 0.98; STITCH: 0.98 | [16] |
| Software | Advantages (Based on Articles) | Features/Considerations (According to Literature) | Applicable Scenarios | Sources |
|---|---|---|---|---|
| Beagle v.4.1, v.5.1, v.5.4 [35] | Widely used; high accuracy with correct Ne settings | Can be slower than specialized tools; Ne tuning is crucial for cattle | Legacy genomic prediction pipelines using SNP-array-based imputation or when high-quality called genotypes (not raw BAMs) are available for lcWGS data | [2,12,20] |
| GLIMPSE v1.1.0/GLIMPSE2 [36] | Good accuracy, works with genotype probabilities, robust to MAF | Can be slower than Beagle for phasing (unless used in combination) | Large-scale lcWGS studies (0.1–1×) in purebred or well-represented breeds with sufficiently large (≥75–150 animals) within-breed reference panels | [16,17,20] |
| QUILT v1.0.0, v1.0.1 [37] | Very high accuracy for lcWGS (especially ONT) | Can be slow with high coverage and large SNP reference panels | High-accuracy imputation for research applications (e.g., rare variant discovery) when a large (≥1000), breed-specific reference panel is available | [16,17] |
| loimpute (Gencove) [38] | Specialized for lcWGS, high accuracy, robust to MAF | Commercial software (Gencove) | Practical implementation in breeding programs using low-coverage data (0.25–1×), particularly for cross-bred cattle | [6,19] |
| STITCH v1.6.5 [39] | Can operate without a reference panel of animals | Fewer imputed SNPs; accuracy highly dependent on coverage depth and number of samples | Reference-free imputation in large cohorts (≥400 animals, ≥0.4× coverage) when no suitable reference panel is available | [16] |
| STICI [40] | Potential for SVs and multi-allelic variants; no traditional reference panel required | New method; requires validation for lcWGS in cattle | Experimental applications, particularly for structural variation detection and analysis in crossbred or less-characterized breeds | [22] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kostyunina, O.; Koldichev, N.; Nemkovskiy, G.; Traspov, A.; Ermilov, A.; Bakoev, F.; Chesnokov, D.; Panova, A.; Antonovskaia, K.; Kusnetzov, A.; et al. Low-Coverage Whole-Genome Sequencing (lcWGS) in Cattle: Analysis of Potential and Prospects for Application. Animals 2025, 15, 3538. https://doi.org/10.3390/ani15243538
Kostyunina O, Koldichev N, Nemkovskiy G, Traspov A, Ermilov A, Bakoev F, Chesnokov D, Panova A, Antonovskaia K, Kusnetzov A, et al. Low-Coverage Whole-Genome Sequencing (lcWGS) in Cattle: Analysis of Potential and Prospects for Application. Animals. 2025; 15(24):3538. https://doi.org/10.3390/ani15243538
Chicago/Turabian StyleKostyunina, Olga, Nikita Koldichev, Gleb Nemkovskiy, Alexey Traspov, Anton Ermilov, Faridun Bakoev, Dmitriy Chesnokov, Anna Panova, Kseniia Antonovskaia, Alexander Kusnetzov, and et al. 2025. "Low-Coverage Whole-Genome Sequencing (lcWGS) in Cattle: Analysis of Potential and Prospects for Application" Animals 15, no. 24: 3538. https://doi.org/10.3390/ani15243538
APA StyleKostyunina, O., Koldichev, N., Nemkovskiy, G., Traspov, A., Ermilov, A., Bakoev, F., Chesnokov, D., Panova, A., Antonovskaia, K., Kusnetzov, A., & Belyakov, V. (2025). Low-Coverage Whole-Genome Sequencing (lcWGS) in Cattle: Analysis of Potential and Prospects for Application. Animals, 15(24), 3538. https://doi.org/10.3390/ani15243538

