Dietary Fagopyrum dibotrys Extract Supplementation: Impacts on Growth Performance, Immune Response, Intestinal Morphology, and Microbial Community in Broiler Chickens Infected with Escherichia coli O157
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design, Diets, and Animal Management
2.2. Escherichia coli O157 Challenge
2.3. Growth Performance
2.4. Sample Collection
2.5. ELISA for the Measurement of Cytokines
2.6. Real-Time Quantitative PCR Analysis
2.7. Quantitative Analysis of E. coli in the Cecal Contents
2.8. Cecum Microflora
2.9. Statistical Analysis
3. Results
3.1. Growth Performance
3.2. Inflammatory Cytokines Concentrations in Serum
3.3. Duodenum and Jejunum Morphology
3.4. Intestinal Barrier-Related Gene Expression
3.5. Toll-like Receptor Signaling Pathway-Related Gene Expression in the Jejunum
3.6. Absolute Quantification of Escherichia coli in the Cecal Contents
3.7. Diversity and Composition of Cecal Microbiota
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kathayat, D.; Lokesh, D.; Ranjit, S.; Rajashekara, G. Avian Pathogenic Escherichia coli (Apec): An Overview of Virulence and Pathogenesis Factors, Zoonotic Potential, and Control Strategies. Pathogens 2021, 10, 467. [Google Scholar] [CrossRef] [PubMed]
- Nawaz, S.; Wang, Z.; Zhang, Y.; Jia, Y.; Jiang, W.; Chen, Z.; Yin, H.; Huang, C.; Han, X. Avian Pathogenic Escherichia coli (Apec): Current Insights and Future Challenges. Poult. Sci. 2024, 103, 104359. [Google Scholar] [CrossRef]
- Ghunaim, H.; Abu-Madi, M.A.; Kariyawasam, S. Advances in Vaccination against Avian Pathogenic Escherichia coli Respiratory Disease: Potentials and Limitations. Vet. Microbiol. 2014, 172, 13–22. [Google Scholar] [CrossRef]
- Joseph, J.; Zhang, L.; Adhikari, P.; Evans, J.D.; Ramachandran, R. Avian Pathogenic Escherichia coli (Apec) in Broiler Breeders: An Overview. Pathogens 2023, 12, 1280. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Meng, J.; Zhang, L.; Bao, J.; Shi, W.; Li, Q.; Wang, X. Shudi Erzi San Relieves Ovary Aging in Laying Hens. Poult. Sci. 2022, 101, 102033. [Google Scholar] [CrossRef]
- Wang, J.; Deng, L.; Chen, M.; Che, Y.; Li, L.; Zhu, L.; Chen, G.; Feng, T. Phytogenic Feed Additives as Natural Antibiotic Alternatives in Animal Health and Production: A Review of the Literature of the Last Decade. Anim. Nutr. 2024, 17, 244–264. [Google Scholar] [CrossRef] [PubMed]
- Tang, Q.; Chen, T.; Chen, X.; Wang, C.; Kuang, L.; Hao, Z. Supplementation with Xinjiang Licorice Extract in Diets Enhanced the Growth Performance and Intestinal Immunity of Broilers. Anim. Nutr. 2025, 23, 341–352. [Google Scholar] [CrossRef]
- Shanmugam, S.; Park, J.H.; Cho, S.; Kim, I.H. Silymarin Seed Extract Supplementation En-hances the Growth Performance, Meat Quality, and Nutrients Digestibility, and Reduces Gas Emission in Broilers. Anim. Biosci. 2022, 35, 1215–1222. [Google Scholar] [CrossRef]
- Parham, S.; Kharazi, A.Z.; Bakhsheshi-Rad, H.R.; Nur, H.; Ismail, A.F.; Sharif, S.; RamaKrishna, S.; Berto, F. Antioxidant, Antimicrobial and Antiviral Properties of Herbal Materials. Antioxidants 2020, 9, 1309. [Google Scholar] [CrossRef]
- Ogunkunle, F.; Alade, O.; Ogunkunle, N. Pslbi-8 Effect of Sunflower (Tithonic Diversifolia) Extract on Growth Performance and Serum Antioxidant Enzymes of Broiler Chickens. J. Anim. Sci. 2024, 102, 627. [Google Scholar] [CrossRef]
- Zhang, L.-L.; He, Y.; Sheng, F.; Hu, Y.-F.; Song, Y.; Li, W.; Chen, J.; Zhang, J.; Zou, L. Towards a Better Understanding of Fagopyrum dibotrys: A Systematic Review. Chin. Med. 2021, 16, 89. [Google Scholar] [CrossRef] [PubMed]
- Hu, T.; Zhang, S.; Li, K.; Guo, Y. Selenium Nanoparticles Regulate Antioxidant Enzymes and Flavonoid Compounds in Fagopyrum dibotrys. Plants 2024, 13, 3098. [Google Scholar] [CrossRef]
- Jing, R.; Li, H.-Q.; Hu, C.-L.; Jiang, Y.-P.; Qin, L.-P.; Zheng, C.-J. Phytochemical and Pharmacological Profiles of Three Fagopyrum Buckwheats. Int. J. Mol. Sci. 2016, 17, 589. [Google Scholar] [CrossRef]
- Yang, J.-Y.; Chen, S.-Y.; Wu, Y.-H.; Liao, Y.-L.; Yen, G.-C. Ameliorative Effect of Buckwheat Polysaccharides on Colitis Via Regulation of the Gut Microbiota. Int. J. Biol. Macromol. 2023, 227, 872–883. [Google Scholar] [CrossRef]
- Hu, Y.; Liu, X.; Song, Y.; Zhang, Y.; Li, W.; Zhang, L.; Wang, A.; Su, Q.; Yang, Z.; Zou, L. Exploring the Anti-Inflammatory Ingredients and Potential of Golden Buckwheat (Fagopyrum dibotrys) on the Tlr4/Nlrp3 Pathway in Acute Lung Injury. Food Sci. Nutr. 2024, 12, 5426–5441. [Google Scholar] [CrossRef] [PubMed]
- Jha, R.; Zhang, K.; He, Y.; Mendler-Drienyovszki, N.; Magyar-Tábori, K.; Quinet, M.; Germ, M.; Kreft, I.; Meglič, V.; Ikeda, K.; et al. Global Nutritional Challenges and Opportunities: Buckwheat, a Potential Bridge between Nutrient Deficiency and Food Security. Trends Food Sci. Technol. 2024, 145, 104365. [Google Scholar] [CrossRef]
- Xiong, P.; Ai, G.; Chen, J.; Song, W.; Su, W.; Yu, D.; Song, Q.; Xu, C.; Zou, Z.; Wei, Q.; et al. Effects of Fagopyrum dibotrys Rhizoma Meal Supplementation on Productive Performance, Egg Quality, Egg Nutritional Value, and Serum Biochemical Parameters of Shanma Laying Ducks. Front. Vet. Sci. 2025, 12, 1654416. [Google Scholar] [CrossRef]
- Liu, L.; Cai, X.; Yan, J.; Luo, Y.; Shao, M.; Lu, Y.; Sun, Z.; Cao, P. In Vivo and In Vitro Antinociceptive Effect of Fagopyrum cymosum (Trev.) Meisn Extracts: A Possible Action by Recovering Intestinal Barrier Dysfunction. Evid. Based Complement. Altern. Med. 2012, 2012, 983801. [Google Scholar] [CrossRef]
- Chen, Z.; Dai, G.; Wu, X.; Li, L.; Tian, Y.; Tan, L. Protective Effects of Fagopyrum dibotrys on Oxidized Oil-Induced Oxidative Stress, Intestinal Barrier Impairment, and Altered Cecal Microbiota in Broiler Chickens. Poult. Sci. 2023, 102, 102472. [Google Scholar] [CrossRef]
- NY/T33-2004; Feeding Standard of Chicken. Ministry of Agriculture of the People’s Republic of China: Beijing, China, 2004.
- Mirsalami, S.M.; Mirsalami, M. Effects of Duo-Strain Probiotics on Growth, Digestion, and Gut Health in Broiler Chickens. Vet. Anim. Sci. 2024, 24, 100343. [Google Scholar] [CrossRef]
- Kim, E.; Choct, M.; Fickler, A.; Pasquali, G.A.M.; Hall, L.; Crowley, T.M.; Sharma, N.K. Supplementation of Β-Mannanase Alone or in Combination with Xylanase and Β-Glucanase Enhanced Growth Perfor-mance, Non-Starch Polysaccharide Degradation, and Gastrointestinal Environment of Broilers Offered Wheat-Based Diets. Anim. Nutr. 2025, 23, 429–437. [Google Scholar] [CrossRef]
- Wu, Z.; Yang, K.; Zhang, A.; Chang, W.; Zheng, A.; Chen, Z.; Cai, H.; Liu, G. Effects of Lactobacillus Acidophilus on the Growth Performance, Immune Response, and Intestinal Barrier Function of Broiler Chickens Challenged with Escherichia coli O157. Poult. Sci. 2021, 100, 101323. [Google Scholar] [CrossRef]
- Pham, V.H.; Abbas, W.; Huang, J.; Guo, F.; Zhang, K.; Kong, L.; Zhen, W.; Guo, Y.; Wang, Z. Dietary Coated Essential Oil and Organic Acid Mixture Supplementation Improves Health of Broilers Infected with Avian Pathogenic Escherichia coli. Anim. Nutr. 2023, 12, 245–262. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative Pcr and the 2−Δδct Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Kalendar, R.; Hoorzook, K.B.; Barnard, T.G. Absolute Quantification of E. Coli Virulence and Housekeeping Genes to Determine Pathogen Loads in Enumerated Environmental Samples. PLoS ONE 2021, 16, e0260082. [Google Scholar] [CrossRef]
- Wang, Q.; Cai, R.; Huang, A.; Wang, X.; Qu, W.; Shi, L.; Li, C.; Yan, H. Comparison of Oropharyngeal Microbiota in Healthy Piglets and Piglets with Respiratory Disease. Front. Microbiol. 2018, 9, 3218. [Google Scholar] [CrossRef] [PubMed]
- Liang, H.; Cai, R.; Li, C.; Glendon, O.H.M.; Chengcheng, H.; Yan, H. High-Throughput Sequencing of 16s Rrna Gene Analysis Reveals Novel Taxonomic Diversity among Vaginal Microbiota in Healthy and Affected Sows with Endometritis. Res. Vet. Sci. 2022, 143, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Ren, Y.; Yu, G.; Shi, C.; Liu, L.; Guo, Q.; Han, C.; Zhang, D.; Zhang, L.; Liu, B.; Gao, H.; et al. Majorbio Cloud: A One-Stop, Comprehensive Bioinformatic Platform for Multiomics Analyses. iMeta 2022, 1, e12. [Google Scholar] [CrossRef]
- Lebda, M.A.; Mansour, A.A.; Elieba, E.M.; Hassoubah, S.A.; AlMalki, F.; El-Magd, M.A.; Othman, S.I.; Allam, A.M.; Tellez-Isaias, G.; Taha, A.E. Leverage of Salvadora Persica and Pulicaria Undulata Extracts in Escherichia coli-Challenged Broiler Chickens. Poult. Sci. 2024, 103, 103472. [Google Scholar] [CrossRef]
- Zha, P.; Liu, X.; Zhang, B.; Chen, Y.; Zhou, Y. Zinc-Loaded Aluminosilicate Minerals Improve Growth Performance and Alleviate Inflammatory Response in Broiler Chickens Challenged with Avian Pathogenic Escherichia coli. Poult. Sci. 2025, 104, 105534. [Google Scholar] [CrossRef] [PubMed]
- Meijer, M.M.Y.; van den Brand, H.; Navarro, M.; Roura, E. The Inflammatory Response to Escherichia coli Lipopolysaccharide Is Mitigated by in Ovo Delivery of Carvacrol in Broiler Chicks. Poult. Sci. 2025, 104, 104881. [Google Scholar] [CrossRef]
- Watts, A.; Wigley, P. Avian Pathogenic Escherichia coli: An Overview of Infection Biology, Antimicrobial Resistance and Vaccination. Antibiotics 2024, 13, 809. [Google Scholar] [CrossRef]
- Wei, L.; Liu, X.; Tan, Z.; Zhang, B.; Wen, C.; Tang, Z.; Zhou, Y.; Zhang, H.; Chen, Y. Chlorogenic Acid Mitigates Avian Pathogenic Escherichia coli-Induced Intestinal Barrier Damage in Broiler Chickens Via Anti-Inflammatory and Antioxidant Effects. Poult. Sci. 2025, 104, 105005. [Google Scholar] [CrossRef]
- Yu, L.; Wang, H.; Zhang, X.; Xue, T. Oxidative Stress Response in Avian Pathogenic Escherichia coli. Res. Vet. Sci. 2024, 180, 105426. [Google Scholar] [CrossRef] [PubMed]
- Zheng, A.; Bryden, W.; Chen, X.; Chen, Z.; Yang, P.; Meng, K.; Liu, G. Lipopolysaccharide-Induced Intestinal Mucosal Injury Disrupts Proteostasis in Broiler Chickens. Ital. J. Anim. Sci. 2025, 24, 1542–1556. [Google Scholar] [CrossRef]
- Venkitanarayanan, K.; Ding, S.; Wang, Y.; Yan, W.; Li, A.; Jiang, H.; Fang, J. Effects of Lactobacillus Plantarum 15-1 and Fructooligosaccharides on the Response of Broilers to Pathogenic Escherichia coli O78 Challenge. PLoS ONE 2019, 14, e0212079. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Q.; Liu, H.; Niu, J.i.; Jiao, N.; Huang, L.; Jiang, S.; Guan, Q.; Yang, W.; Li, Y. Effects of Dietary Bopu Powder Supplementation on Intestinal Development and Microbiota in Broiler Chickens. Front. Microbiol. 2022, 13, 1019130. [Google Scholar] [CrossRef]
- Mohammad, S.; Thiemermann, C. Role of Metabolic Endotoxemia in Systemic Inflammation and Potential. Front. Immunol. 2021, 11, 594150. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, X.; Pei, J.; Guo, B.; Zhang, G.; Li, M.; Huang, L. Identification of Phytochemical Compounds of Fagopyrum dibotrys and Their Targets by Metabolomics, Network Pharmacology and Molecular Docking Studies. Heliyon 2023, 9, e14029. [Google Scholar] [CrossRef]
- Zhu, J.-h.; Wang, L.; Xu, H.-t.; Ma, Z.-x.; Tao, J.-h. Fagopyrum Cymosum Alleviates Dss-Induced Colitis Via Ameliorating Intestinal Barrier Function and Remolding Gut Microbiota. J. Funct. Foods 2024, 112, 105996. [Google Scholar] [CrossRef]
- Zhang, H.; Pan, S.; Zhang, K.; Michiels, J.; Zeng, Q.; Ding, X.; Wang, J.; Peng, H.; Bai, J.; Xuan, Y.; et al. Impact of Dietary Manganese on Intestinal Barrier and Inflammatory Response in Broilers Challenged with Salmonella Typhimurium. Microorganisms 2020, 8, 757. [Google Scholar] [CrossRef]
- Shang, Q. Inulin Alleviates Inflammatory Response and Gut Barrier Dysfunction Via Modulating Microbiota in Lipopolysaccharide-Challenged Broilers. Int. J. Biol. Macromol. 2024, 282, 137208. [Google Scholar] [CrossRef]
- Celi, P.; Cowieson, A.; Fru-Nji, F.; Steinert, R.; Kluenter, A.-M.; Verlhac, V. Gastrointestinal Functionality in Animal Nutrition and Health: New Opportunities for Sustainable Animal Production. Anim. Feed Sci. Technol. 2017, 234, 88–100. [Google Scholar] [CrossRef]
- Awad, W.; Hess, C.; Hess, M. Enteric Pathogens and Their Toxin-Induced Disruption of the Intestinal Barrier through Alteration of Tight Junctions in Chickens. Toxins 2017, 9, 60. [Google Scholar] [CrossRef]
- Lee, B.; Moon, K.M.; Kim, C.Y. Tight Junction in the Intestinal Epithelium: Its Association with Diseases and Regulation by Phytochemicals. J. Immunol. Res. 2018, 2018, 2645465. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Xu, Y.; Chen, H.; Wang, D.; Geng, Z.; Chen, Y.; Chen, Y.; Xiong, D.; Yang, R.; Liu, X.; et al. Fagopyrum dibotrys Extract Alleviates Hepatic Steatosis and Insulin Resistance, and Alters Autophagy and Gut Microbiota Diversity in Mouse Models of High-Fat Diet-Induced Non-Alcoholic Fatty Liver Disease. Front. Nutr. 2022, 9, 993501. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Zhang, D.; Zhu, Z.; Zhang, Y.; Wan, Y.; Chen, H.; Liu, J.; Ma, L. Fagopyrum dibotrys Extract Improves Nonalcoholic Fatty Liver Disease Via Inhibition of Lipogenesis and Endoplasmic Reticulum Stress in High-Fat Diet-Fed Mice. BMC Res. Notes 2024, 17, 310. [Google Scholar] [CrossRef] [PubMed]






| Items | Ingredient (%) |
|---|---|
| Corn | 53.38 |
| Soybean meal (43%) | 33.87 |
| Soybean oil | 4.30 |
| Rapeseed meal | 3.85 |
| L-Lys·HCl (79%) | 0.21 |
| DL-Met (99%) | 0.27 |
| L-Threonine (98.5%) | 0.10 |
| Limestone | 1.34 |
| CaHPO4 | 1.69 |
| Premix 1 | 1.00 |
| Total | 100 |
| Nutrient levels 2, % | |
| Metabolizable energy (Mcal/kg) | 3.0 |
| CP | 20.50 |
| Lys | 1.25 |
| Met | 0.58 |
| Met + cys | 0.92 |
| Thr | 0.80 |
| Trp | 0.24 |
| Arg | 1.33 |
| Ile | 0.77 |
| Val | 1.01 |
| Ca | 0.92 |
| Available p | 0.80 |
| Total p | 1.00 |
| Gene Target | Primer Sequence (5′ to 3′) | Accession No. | Amplicon Size (bp) |
|---|---|---|---|
| ACTB | F: GAGAAATTGTGCGTGACATCA | NM_205518.1 | 152 |
| R: CCTGAACCTCTCATTGCCA | |||
| MYD88 | F:CCTGGCTGTGCCTTCGGA | NM_001030962 | 198 |
| R:TCACCAAGTGCTGGATGCTA | |||
| iNOS | F: GCCACTTCTGAAACCCAGGTA | NM_204961.1 | 116 |
| R: ATGGCCCTTGTCCATCTCTTG | |||
| TLR4 | F: AGGCACCTGAGCTTTTCCTC | NM_001030693.1 | 96 |
| R: TACCAACGTGAGGTTGAGCC | |||
| IL-1β | F: ACTGGGCATCAAGGGCTA | XM_015297469.2 | 131 |
| R: GGTAGAAGATGAAGCGGGTC | |||
| IL-10 | F:CAGACCAGCACCAGTCATCA | NM_012854.2 | 96 |
| R:TCCCGTTCTCATCCATCTTCTC | |||
| NF-κB | F: GTGTGAAGAAACGGGAACTG | NM_001396038.1 | 203 |
| R: GGCACGGTTGTCATAGATGG | |||
| CLDN1 | F:GGTGAAGAAGATGCGGATGG | NM_001013611 | 139 |
| R:TCTGGTGTTAACGGGTGTGA | |||
| OCLN | F:GATGGACAGCATCAACGACC | NM_205128 | 142 |
| R:CTTGCTTTGGTAGTCTGGGC | |||
| ZO-1 | F:GCCAACTGATGCTGAACCAA | XM_015278975 | 141 |
| R:GGGAGAGACAGGACAGGACT |
| Items | Experimental Groups | Main Effect | p-Value | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| CON | COLI | FDE | FDEC | SEM | 0 | 500 | Non-Challenge | Challenge | FDE | COLI | Interaction | |
| 1–14 d | ||||||||||||
| BW | 511.98 | 510.75 | 535.95 | 518.92 | 3.26 | 511.37 b | 528.21 a | 526.36 | 514.84 | 0.01 | 0.09 | 0.16 |
| ADG (g/d) | 33.64 | 31.85 | 35.28 | 33.97 | 0.01 | 33.29 b | 34.68 a | 34.53 a | 33.47 b | 0.03 | 0.02 | 0.52 |
| ADFI (g/d) | 41.64 | 39.91 | 42.40 | 41.25 | 0.32 | 40.86 | 41.88 | 42.02 a | 40.58 b | 0.07 | 0.02 | 0.60 |
| FCR (g/g) | 1.23 | 1.28 | 1.20 | 1.21 | 0.28 | 1.25 a | 1.21 b | 1.22 b | 1.24 a | 0.03 | 0.04 | 0.22 |
| 15–21 d | ||||||||||||
| ADG (g/d) | 66.57 | 60.96 | 72.18 | 67.42 | 1.55 | 63.78 b | 70.06 a | 69.69 | 64.18 | 0.04 | 0.06 | 0.87 |
| ADFI (g/d) | 92.67 | 91.29 | 93.49 | 90.94 | 1.1 | 91.98 | 93.25 | 93.12 | 91.12 | 0.42 | 0.93 | 0.88 |
| FCR | 1.40 | 1.50 | 1.30 | 1.35 | 0.025 | 1.45 a | 1.32 b | 1.34 | 1.42 | 0.005 | 0.07 | 0.81 |
| Items | Experimental Groups | Main Effect | p-Value | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| CON | COLI | FDE | FDEC | SEM | 0 | 500 | Non-Challenge | Challenge | FDE | COLI | Interaction | |
| IL-1β (pg/mL) | 320.42 b | 427.18 a | 325.82 b | 337.38 b | 11.48 | 380.10 a | 331.26 b | 323.66 b | 387.27 a | 0.023 | 0.002 | 0.013 |
| TNF-α (pg/mL) | 36.83 b | 57.52 a | 38.36 b | 41.81 b | 2.18 | 47.18 a | 40.43 b | 37.27 b | 51.63 a | 0.032 | 0.001 | 0.01 |
| IL-10 (pg/mL) | 48.09 | 39.95 | 44.25 | 48.29 | 1.36 | 44.21 | 46.38 | 46.36 | 44.12 | 0.392 | 0.435 | 0.075 |
| DAO (ng/mL) | 10.42 b | 16.08 a | 12.55 b | 11.09 b | 0.46 | 13.11 a | 11.82 b | 11.25 b | 14.03 a | 0.009 | <0.01 | <0.01 |
| Endotoxin (EU/L) | 31.45 b | 53.8 a | 36.27 b | 31.87 b | 1.76 | 42.09 a | 37.32 b | 36.27 b | 44.05 a | <0.01 | <0.01 | <0.01 |
| Experimental Groups | Main Effect | p-Value | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Items | CON | COLI | FDE | FDEC | SEM | 0 | 500 | Non-Challenge | Challenge | FDE | COLI | Interaction |
| Duodenum | ||||||||||||
| VH, μm | 1923.81 | 1562.36 | 2196.86 | 1913.78 | 76.12 | 1706.94 b | 2039.59 a | 2060.34 a | 1722.10 b | 0.02 | 0.02 | 0.75 |
| CD, μm | 212.74 | 231.66 | 205.11 | 206.47 | 7.63 | 222.20 | 205.79 | 209.27 | 220.21 | 0.31 | 0.53 | 0.58 |
| VH/CD | 9.04 | 6.74 | 10.57 | 9.27 | 0.47 | 7.87 b | 10.58 a | 10.06 a | 8.62 b | 0.00 | 0.01 | 0.53 |
| Jejunum | ||||||||||||
| VH, μm | 1574.98 | 1364.99 | 1713.52 | 1414.80 | 46.22 | 1458.32 | 1547.57 | 1644.25 a | 1389.90 b | 0.21 | 0.00 | 0.55 |
| CD, μm | 205.30 | 258.35 | 192.76 | 215.17 | 9.18 | 234.77 | 205.21 | 199.03 b | 236.76 a | 0.09 | 0.03 | 0.33 |
| VH/CD | 7.67 | 5.54 | 8.88 | 6.57 | 0.38 | 6.75 b | 8.09 a | 8.74 a | 6.36 b | 0.01 | 0.00 | 0.41 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, J.; Ai, G.; Xiong, P.; Song, W.; Liu, G.; Wei, Q.; Chen, X.; Zou, Z.; Song, Q. Dietary Fagopyrum dibotrys Extract Supplementation: Impacts on Growth Performance, Immune Response, Intestinal Morphology, and Microbial Community in Broiler Chickens Infected with Escherichia coli O157. Animals 2025, 15, 3515. https://doi.org/10.3390/ani15243515
Chen J, Ai G, Xiong P, Song W, Liu G, Wei Q, Chen X, Zou Z, Song Q. Dietary Fagopyrum dibotrys Extract Supplementation: Impacts on Growth Performance, Immune Response, Intestinal Morphology, and Microbial Community in Broiler Chickens Infected with Escherichia coli O157. Animals. 2025; 15(24):3515. https://doi.org/10.3390/ani15243515
Chicago/Turabian StyleChen, Jiang, Gaoxiang Ai, Pingwen Xiong, Wenjing Song, Guohua Liu, Qipeng Wei, Xiaolian Chen, Zhiheng Zou, and Qiongli Song. 2025. "Dietary Fagopyrum dibotrys Extract Supplementation: Impacts on Growth Performance, Immune Response, Intestinal Morphology, and Microbial Community in Broiler Chickens Infected with Escherichia coli O157" Animals 15, no. 24: 3515. https://doi.org/10.3390/ani15243515
APA StyleChen, J., Ai, G., Xiong, P., Song, W., Liu, G., Wei, Q., Chen, X., Zou, Z., & Song, Q. (2025). Dietary Fagopyrum dibotrys Extract Supplementation: Impacts on Growth Performance, Immune Response, Intestinal Morphology, and Microbial Community in Broiler Chickens Infected with Escherichia coli O157. Animals, 15(24), 3515. https://doi.org/10.3390/ani15243515

