Spatiotemporal Niche Differentiation of Ungulates in the Southwest Mountains, China
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Camera Trap Deployment
2.3. Data Analysis
2.3.1. Nocturnality Index (β)
2.3.2. Kernel Density Analysis
2.3.3. Spatial Co-Occurrence Analysis
3. Results
3.1. Camera Monitoring Results
3.2. Temporal Niche Differentiation Among Ungulate Species
3.3. Seasonal Differentiation Among Ungulate Species
3.4. Spatial Niche Differentiation Among Ungulate Species
4. Discussion
4.1. Daily Activity Rhythms
4.2. Seasonal Differences in Daily Activity Rhythms
4.3. Spatial Co-Occurrence Patterns
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hardin, G. The competitive exclusion principle. Science 1960, 131, 1292–1297. [Google Scholar] [CrossRef]
- Ji, Y.; Liu, F.; Li, D.; Chen, Z.; Chen, P. Spatial–Temporal Patterns of Sympatric Asiatic Black Bears (Ursus thibetanus) and Brown Bears (Ursus arctos) in Northeastern China. Animals 2022, 12, 1262. [Google Scholar] [CrossRef]
- MacArthur, R.; Levins, R. The Limiting Similarity, Convergence, and Divergence of Coexisting Species. Am. Nat. 1967, 101, 377–385. [Google Scholar] [CrossRef]
- Abrams, P. The Theory of Limiting Similarity. Annu. Rev. Ecol. Syst. 1983, 14, 359–376. [Google Scholar] [CrossRef]
- Schoener, T.W. Resource Partitioning in Ecological Communities. Science 1974, 185, 27–39. [Google Scholar] [CrossRef] [PubMed]
- Tracy, C.R.; Christian, K.A. Ecological Relations Among Space, Time, and Thermal Niche Axes. Ecology 1986, 67, 609–615. [Google Scholar] [CrossRef]
- Letten, A.D.; Ke, P.; Fukami, T. Linking modern coexistence theory and contemporary niche theory. Ecol. Monogr. 2017, 87, 161–177. [Google Scholar] [CrossRef]
- Costa-Pereira, R.; Araújo, M.S.; Souza, F.L.; Ingram, T. Competition and resource breadth shape niche variation and overlap in multiple trophic dimensions. Proc. R. Soc. B 2019, 286, 20190369. [Google Scholar] [CrossRef]
- Pastore, A.I.; Barabás, G.; Bimler, M.D.; Mayfield, M.M.; Miller, T.E. The evolution of niche overlap and competitive differences. Nat. Ecol. Evol. 2021, 5, 330–337. [Google Scholar] [CrossRef]
- Croose, E.; Bled, F.; Fowler, N.L.; Beyer, D.E., Jr.; Belant, J.L. American marten and fisher do not segregate in space and time during winter in a mixed-forest system. Ecol. Evol. 2019, 9, 4906–4916. [Google Scholar] [CrossRef]
- Cusack, J.J.; Dickman, A.J.; Kalyahe, M.; Rowcliffe, J.M.; Carbone, C.; Macdonald, D.W.; Coulson, T. Revealing kleptoparasitic and predatory tendencies in an African mammal community using camera traps: A comparison of spatiotemporal approaches. Oikos 2017, 126, 812–822. [Google Scholar] [CrossRef]
- Tahtinen, B.E.; Murray, B.D.; Webster, C.; Tarasoff, C.; Burton, A. Does Ungulate Foraging Behavior in Forest Canopy Gaps Produce a Spatial Subsidy with Cascading Effects on Vegetation. For. Sci. 2014, 60, 819–829. [Google Scholar] [CrossRef]
- Woodward, A.; Jenkins, K.J.; Harmon, M.E. Plant community succession following ungulate exclusion in a temperate rainforest. Ecosphere 2021, 12, e03876. [Google Scholar] [CrossRef]
- Lillian, S.; Redak, R.A.; Daugherty, M.P. Assessing the Role of Differential Herbivore Performance Among Plant Species in Associational Effects Involving the Invasive Stink Bug Bagrada hilaris (Hemiptera: Pentatomidae). Environ. Entomol. 2019, 48, 114–121. [Google Scholar] [CrossRef]
- Rooney, T.P. High white-tailed deer densities benefit graminoids and contribute to biotic homogenization of forest ground-layer vegetation. Plant Ecol. 2009, 202, 103–111. [Google Scholar] [CrossRef]
- Schulze, E.D.; Bouriaud, O.B.; Wäldchen, J.; Eisenhauer, N.; Walentowski, H.; Seele, C.; Heinze, E.; Pruschitzki, U.; Dănilă, G.; Marin, G.; et al. Ungulate browsing causes species loss in deciduous forests independent of community dynamics and silvicultural management in Central and Southeastern Europe. Ann. For. Res. 2014, 57, 267–288. [Google Scholar] [CrossRef]
- Kasahara, M.; Fujii, S.; Tanikawa, T.; Mori, A.S. Ungulates decelerate litter decomposition by altering litter quality above and below ground. Eur. J. For. Res. 2016, 135, 849–856. [Google Scholar] [CrossRef]
- Mamo, Y.; Asefa, A.; Mengesha, G. Habitat use of ungulates in Bale Mountains National Park, Ethiopia. Afr. J. Ecol. 2015, 53, 512–520. [Google Scholar] [CrossRef]
- Viana, D.S.; Granados, J.E.; Fandos, P.; Pérez, J.M.; Cano-Manuel, F.J.; Burón, D.; Fandos, G.; Párraga Aguado, M.Á.; Figuerola, J.; Soriguer, R.C. Linking seasonal home range size with habitat selection and movement in a mountain ungulate. Mov. Ecol. 2018, 6, 1. [Google Scholar] [CrossRef]
- Semenzato, P.; Cagnacci, F.; Ossi, F.; Eccel, E.; Morellet, N.; Hewison, A.J.M.; Sturaro, E.; Ramanzin, M. Behavioural heat-stress compensation in a cold-adapted ungulate: Forage-mediated responses to warming Alpine summers. Ecol. Lett. 2020, 24, 1556–1568. [Google Scholar] [CrossRef]
- Spitzer, R.; Felton, A.; Landman, M.; Singh, N.J.; Widemo, F.; Cromsigt, J.P.G.M. Fifty years of European ungulate dietary studies: A synthesis. Oikos 2020, 129, 1668–1680. [Google Scholar] [CrossRef]
- Ikeda, T.; Nakamori, S.; Ando, M.; Shirakawa, T.; Okamoto, T.; Suzuki, M. Seasonal Diel Activity Patterns of Three Sympatric Ungulates in Forested Area in Central Japan. Mamm. Study 2021, 47, 47–56. [Google Scholar] [CrossRef]
- Shakeri, Y.N.; White, K.S.; Waite, J.N. Staying close to home: Ecological constraints on space use and range fidelity in a mountain ungulate. Ecol. Evol. 2021, 11, 11051–11064. [Google Scholar] [CrossRef] [PubMed]
- You, Z.; Lu, B.; Du, B.; Liu, W.; Jiang, Y.; Ruan, G.; Yang, N. Spatio-Temporal Niche of Sympatric Tufted Deer (Elaphodus cephalophus) and Sambar (Rusa unicolor) Based on Camera Traps in the Gongga Mountain National Nature Reserve, China. Animals 2022, 12, 2694. [Google Scholar] [CrossRef]
- Karanth, K.K. Wildlife in the Matrix: Spatio-Temporal Patterns of Herbivore Occurrence in Karnataka, India. Environ. Manag. 2015, 57, 189–206. [Google Scholar] [CrossRef]
- Li, J.; Xue, Y.; Liao, M.; Dong, W.; Wu, B.; Li, D. Temporal and Spatial Activity Patterns of Sympatric Wild Ungulates in Qinling Mountains, China. Animals 2022, 12, 1666. [Google Scholar] [CrossRef]
- Frey, S.; Fisher, J.T.; Burton, A.C.; Volpe, J.P. Investigating animal activity patterns and temporal niche partitioning using camera-trap data: Challenges and opportunities. Remote Sens. Ecol. Conserv. 2017, 3, 123–132. [Google Scholar] [CrossRef]
- Zhang, D.; An, B.; Chen, L.; Sun, Z.; Mao, R.; Zhao, C.; Zhang, L. Camera Trapping Reveals Spatiotemporal Partitioning Patterns and Conservation Implications for Two Sympatric Pheasant Species in the Qilian Mountains, Northwestern China. Animals 2022, 12, 1657. [Google Scholar] [CrossRef]
- Feng, J.; Sun, Y.; Li, H.; Xiao, Y.; Zhang, D.; Smith, J.L.D.; Ge, J.; Wang, T. Assessing mammal species richness and occupancy in a Northeast Asian temperate forest shared by cattle. Divers. Distrib. 2021, 27, 857–872. [Google Scholar] [CrossRef]
- O’Brien, T.G.; Kinnaird, M.F.; Wibisono, H.T. Crouching tigers, hidden prey: Sumatran tiger and prey populations in a tropical forest landscape. Anim. Conserv. 2003, 6, 131–139. [Google Scholar] [CrossRef]
- Ridout, M.S.; Linkie, M. Estimating overlap of daily activity patterns from camera trap data. J. Agric. Biol. Environ. Stat. 2009, 14, 322–337. [Google Scholar] [CrossRef]
- Nouvellet, P.; Rasmussen, G.S.A.; Macdonald, D.W.; Courchamp, F. Noisy clocks and silent sunrises: Measurement methods of daily activity pattern. J. Zool. 2011, 286, 179–184. [Google Scholar] [CrossRef]
- Rowcliffe, J.M.; Kays, R.; Kranstauber, B.; Carbone, C.; Jansen, P.A. Quantifying levels of animal activity using camera trap data. Methods Ecol. Evol. 2014, 5, 1170–1179. [Google Scholar] [CrossRef]
- Tian, C.; Zhang, Y.; Liu, Z.; Dayananda, B.; Fu, X.; Yuan, D.; Tu, Z.; Luo, C.; Li, J. Temporal niche patterns of large mammals in Wanglang National Nature Reserve, China. Glob. Ecol. Conserv. 2020, 22, e01015. [Google Scholar] [CrossRef]
- Pianka, E.R. Niche Overlap and Diffuse Competition. Proc. Natl. Acad. Sci. USA 1974, 71, 2141–2145. [Google Scholar] [CrossRef]
- Tokarz, R.; Novak, R.J. Spatial–temporal distribution of Anopheles larval habitats in Uganda using GIS/remote sensing technologies. Malar. J. 2018, 17, 420. [Google Scholar] [CrossRef]
- Kouris, A.D.; Christopoulos, A.; Vlachopoulos, K.; Christopoulou, A.; Dimitrakopoulos, P.G.; Zevgolis, Y.G. Spatiotemporal Patterns of Reptile and Amphibian Road Fatalities in a Natura 2000 Area: A 12-Year Monitoring of the Lake Karla Mediterranean Wetland. Animals 2024, 14, 708. [Google Scholar] [CrossRef]
- Broekhuis, F.; Cozzi, G.; Valeix, M.; McNutt, J.W.; Macdonald, D.W. Risk avoidance in sympatric large carnivores: Reactive or predictive? J. Anim. Ecol. 2013, 82, 1098–1105. [Google Scholar] [CrossRef]
- Kronfeld-Schor, N.; Dayan, T. Partitioning of Time as an Ecological Resource. Annu. Rev. Ecol. Syst. 2003, 34, 153–181. [Google Scholar] [CrossRef]
- Kang, D.; Lv, J.; Li, S.; Chen, X.; Wang, X.; Li, J. Integrating indices to evaluate the effect of artificial restoration based on different comparisons in the Wanglang Nature Reserve. Ecol. Indic. 2018, 91, 423–428. [Google Scholar] [CrossRef]
- Davies, A.B.; Tambling, C.J.; Marneweck, D.G.; Ranc, N.; Druce, D.J.; Cromsigt, J.P.G.M.; Le Roux, E.; Asner, G.P. Spatial heterogeneity facilitates carnivore coexistence. Ecology 2021, 102, e03319. [Google Scholar] [CrossRef] [PubMed]
- Xiang, D.; Meng, B.; Xie, B.; Huang, X.; Wang, C.; Ran, J.; Su, H.; Zhang, M. Daily activity rhythm of sympatric ungulate species in Fanjingshan Reserve, China. Glob. Ecol. Conserv. 2024, 56, e03271. [Google Scholar] [CrossRef]
- Li, Q.; Zhang, Q.; Jiang, Q.; Zhou, H.; Zhang, Z.; Zhou, H.; Wei, W.; Hong, M. Daily Activity Rhythms of Animals in the Southwest Mountains, China: Influences of Interspecific Relationships and Seasons. Animals 2024, 14, 2842. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Bleisch, W.V.; Jiang, X. Unveiling a wildlife haven: Occupancy and activity patterns of mammals at a Tibetan sacred mountain. Eur. J. Wildl. Res. 2018, 64, 64. [Google Scholar] [CrossRef]
- Chen, Y.; Xiao, Z.; Zhang, L.; Wang, X.; Li, M.; Xiang, Z. Activity Rhythms of Coexisting Red Serow and Chinese Serow at Mt. Gaoligong as Identified by Camera Traps. Animals 2019, 9, 1071. [Google Scholar] [CrossRef]
- Brivio, F.; Grignolio, S.; Brogi, R.; Benazzi, M.; Bertolucci, C.; Apollonio, M. An analysis of intrinsic and extrinsic factors affecting the activity of a nocturnal species: The wild boar. Mamm. Biol. 2017, 84, 73–81. [Google Scholar] [CrossRef]
- Yildiz, F.; Uzun, A. Daily Activity Patterns and Overlap Activity of Medium–Large Mammals in Sülüklü Lake Nature Park, Western Black Sea Region, Türkiye. Ecol. Evol. 2024, 14, e70654. [Google Scholar] [CrossRef]
- Rossa, M.; Lovari, S.; Ferretti, F. Spatiotemporal patterns of wolf, mesocarnivores and prey in a Mediterranean area. Behav. Ecol. Sociobiol. 2021, 75, 32. [Google Scholar] [CrossRef]
- Noor, A.; Mir, Z.R.; Veeraswami, G.G.; Habib, B. Activity patterns and spatial co-occurrence of sympatric mammals in the moist temperate forest of the Kashmir Himalaya, India. Folia Zool. 2017, 66, 231–241. [Google Scholar] [CrossRef]
- Gordigiani, L.; Viviano, A.; Brivio, F.; Grignolio, S.; Lazzeri, L.; Marcon, A.; Mori, E. Carried away by a moonlight shadow: Activity of wild boar in relation to nocturnal light intensity. Mamm. Res. 2021, 67, 39–49. [Google Scholar] [CrossRef]
- Mason, T.H.E.; Stephens, P.A.; Apollonio, M.; Willis, S.G. Predicting potential responses to future climate in an alpine ungulate: Interspecific interactions exceed climate effects. Glob. Chang. Biol. 2014, 20, 3872–3882. [Google Scholar] [CrossRef] [PubMed]
- Vallejo-Vargas, A.F.; Sheil, D.; Semper-Pascual, A.; Beaudrot, L.; Ahumada, J.A.; Akampurira, E.; Bitariho, R.; Espinosa, S.; Estienne, V.; Jansen, P.A.; et al. Consistent diel activity patterns of forest mammals among tropical regions. Nat. Commun. 2022, 13, 7102. [Google Scholar] [CrossRef] [PubMed]
- Salvatori, M.; Oberosler, V.; Augugliaro, C.; Krofel, M.; Rovero, F. Effects of free-ranging livestock on occurrence and interspecific interactions of a mammalian community. Ecol. Appl. 2022, 32, e2644. [Google Scholar] [CrossRef] [PubMed]
- Monterroso, P.; Alves, P.C.; Ferreras, P. Plasticity in circadian activity patterns of mesocarnivores in Southwestern Europe: Implications for species coexistence. Behav. Ecol. Sociobiol. 2014, 68, 1403–1417. [Google Scholar] [CrossRef]
- Ikeda, T.; Uchida, K.; Matsuura, Y.; Takahashi, H.; Yoshida, T.; Kaji, K.; Koizumi, I. Seasonal and Diel Activity Patterns of Eight Sympatric Mammals in Northern Japan Revealed by an Intensive Camera-Trap Survey. PLoS ONE 2016, 11, e0163602. [Google Scholar] [CrossRef]
- Bogdan, V.; Jůnek, T.; Vymyslická, P.J. Temporal overlaps of feral cats with prey and competitors in primary and human-altered habitats on Bohol Island, Philippines. PeerJ 2016, 4, e2288. [Google Scholar] [CrossRef]
- O’Kane, C.A.J.; Macdonald, D.W. Seasonal influences on ungulate movement within a fenced South African reserve. J. Trop. Ecol. 2018, 34, 200–203. [Google Scholar] [CrossRef]
- Mori, E.; Bagnato, S.; Serroni, P.; Sangiuliano, A.; Rotondaro, F.; Marchianò, V.; Cascini, V.; Poerio, L.; Ferretti, F. Spatiotemporal mechanisms of coexistence in an European mammal community in a protected area of southern Italy. J. Zool. 2019, 310, 232–245. [Google Scholar] [CrossRef]
- Wolfson, D.W.; Schlichting, P.E.; Boughton, R.K.; Miller, R.S.; Vercauteren, K.C.; Lewis, J.S. Comparison of daily activity patterns across seasons using GPS telemetry and camera trap data for a widespread mammal. Ecosphere 2023, 14, e4728. [Google Scholar] [CrossRef]
- Schoener, T.W. The Anolis Lizards of Bimini: Resource Partitioning in a Complex Fauna. Ecology 1968, 49, 704–726. [Google Scholar] [CrossRef]
- Matsuo, R.; Ochiai, K. Dietary Overlap Among Two Introduced and One Native Sympatric Carnivore Species, the Raccoon, the Masked Palm Civet, and the Raccoon Dog, in Chiba Prefecture, Japan. Mamm. Study 2009, 34, 187–194. [Google Scholar] [CrossRef]
- Chesson, P. Mechanisms of Maintenance of Species Diversity. Annu. Rev. Ecol. Syst. 2000, 31, 343–366. [Google Scholar] [CrossRef]
- Parra, G.J. Resource partitioning in sympatric delphinids: Space use and habitat preferences of Australian snubfin and Indo-Pacific humpback dolphins. J. Anim. Ecol. 2006, 75, 862–874. [Google Scholar] [CrossRef]
- Liu, X.; Wu, P.; Shao, X.; Songer, M.; Cai, Q.; He, X.; Zhu, Y. Diversity and activity patterns of sympatric animals among four types of forest habitat in Guanyinshan Nature Reserve in the Qinling Mountains, China. Environ. Sci. Pollut. Res. 2017, 24, 16465–16477. [Google Scholar] [CrossRef]






| Species | The Number of Independent Detections | ||
|---|---|---|---|
| Cold Season | Warm Season | Total | |
| Tufted deer (Elaphodus cephalophus) | 888 | 1072 | 1960 |
| Alpine musk deer (Moschus chrysogaster) | 235 | 114 | 349 |
| Chinese serow (Capricornis milneedwardsii) | 169 | 179 | 348 |
| Wild boar (Sus scrofa) | 174 | 129 | 303 |
| Sambar (Rusa unicolor) | 199 | 96 | 296 |
| Forest musk deer (Moschus berezovskii) | 23 | 6 | 29 |
| Chinese goral (Naemorhedus griseus) | 1 | 5 | 6 |
| Period | Species | Tufted Deer | Alpine Musk Deer | Chinese Serow | Wild Boar | Sambar |
|---|---|---|---|---|---|---|
| Cold season | Tufted deer | — | p < 0.01 | p = 0.027 | p < 0.01 | p < 0.01 |
| Alpine musk deer | Δ = 0.83 | — | p < 0.01 | p < 0.01 | p = 0.018 | |
| Chinese serow | Δ = 0.85 | Δ = 0.83 | — | p < 0.01 | p = 0.447 | |
| Wild boar | Δ = 0.62 | Δ = 0.63 | Δ = 0.66 | — | p < 0.01 | |
| Sambar | Δ = 0.83 | Δ = 0.84 | Δ = 0.91 | Δ = 0.64 | — | |
| Warm season | Tufted deer | — | p = 0.199 | p < 0.01 | p < 0.01 | p < 0.01 |
| Alpine musk deer | Δ = 0.87 | — | p < 0.01 | p < 0.01 | p < 0.01 | |
| Chinese serow | Δ = 0.72 | Δ = 0.69 | — | p < 0.01 | p = 0.491 | |
| Wild boar | Δ = 0.78 | Δ = 0.70 | Δ = 0.61 | — | p < 0.01 | |
| Sambar | Δ = 0.65 | Δ = 0.64 | Δ = 0.88 | Δ = 0.52 | — |
| Species | Spatial Autocorrelation Analysis | Cluster Analysis | ||||
|---|---|---|---|---|---|---|
| Moran’s I | Z-Value | p-Value | General G | Z-Value | p-Value | |
| Tufted deer | 0.3055 | 2.4347 | 0.0149 | 0.0296 | 2.3760 | 0.0175 |
| Chinese serow | 0.1124 | 1.5684 | 0.1168 | 0.0003 | 1.3452 | 0.1786 |
| Wild boar | 0.0784 | 1.5256 | 0.1271 | 0.0492 | 1.7648 | 0.0622 |
| Sambar | −0.1215 | −0.7603 | 0.4471 | 0.0235 | −0.7767 | 0.4374 |
| Alpine musk deer | −0.0275 | 0.0789 | 0.9373 | 0.0382 | 0.4370 | 0.6621 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, Q.; Xiao, H.; Zhou, H.; Li, Y.; Fu, J.; Meshach, A.; Li, Q.; Kang, L.; Yan, L.; Shu, Y.; et al. Spatiotemporal Niche Differentiation of Ungulates in the Southwest Mountains, China. Animals 2025, 15, 3490. https://doi.org/10.3390/ani15233490
Jiang Q, Xiao H, Zhou H, Li Y, Fu J, Meshach A, Li Q, Kang L, Yan L, Shu Y, et al. Spatiotemporal Niche Differentiation of Ungulates in the Southwest Mountains, China. Animals. 2025; 15(23):3490. https://doi.org/10.3390/ani15233490
Chicago/Turabian StyleJiang, Qingsong, Hangshu Xiao, Huaqiang Zhou, Ying Li, Jinghui Fu, Assan Meshach, Qiuxian Li, Liwen Kang, Li Yan, Yixin Shu, and et al. 2025. "Spatiotemporal Niche Differentiation of Ungulates in the Southwest Mountains, China" Animals 15, no. 23: 3490. https://doi.org/10.3390/ani15233490
APA StyleJiang, Q., Xiao, H., Zhou, H., Li, Y., Fu, J., Meshach, A., Li, Q., Kang, L., Yan, L., Shu, Y., Zhang, J., Zhang, Z., Hong, M., & Xie, J. (2025). Spatiotemporal Niche Differentiation of Ungulates in the Southwest Mountains, China. Animals, 15(23), 3490. https://doi.org/10.3390/ani15233490

