The Conserved Roles of miR-2c in the Ecdysone Signaling Pathway by Targeting EcR/RXR and Runt for Exoskeleton Formation in the Pearl Oyster Pinctada fucata martensii
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Animals
2.2. In Vivo Modulation of miR-2c Expression
2.3. qRT-PCR Validation
2.4. Seashell Damage Treatment
2.5. Dual Luciferase Reporter Assay
2.6. Sequences Collection and Target Prediction
2.7. Statistical Analysis
3. Results
3.1. Identification of miR-2c Precursor and Mature Sequence
3.2. Differential Expression Analysis of miR-2c in Tissues and Developmental Stages of P. f. martensii
3.3. Shell Damage Experiment
3.4. Effects of miR-2c Overexpression and Inhibition on Shell Formation In Vivo
3.5. Regulatory Role of miR-2c to EcR, RXR and Runt
3.6. Effects of miR-2c to Downstream Genes of Ecdysone Pathway
3.7. Conservation Analysis of miR-2c Target Sites in EcR, RXR, CHS and Runt
4. Discussion
4.1. miR-2c Modulates Shell Formation in Larval and Adult Stages
4.2. miR-2c Directly Targets Multiple Genes in the Ecdysone Signaling Pathway
4.3. Evolutionary Footprint of miRNA Regulation Evidenced by Conserved Targeting Sites of miR-2c
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Knoll, A.H. Biomineralization and evolutionary history. Rev. Miner. Geochem. 2003, 54, 329–356. [Google Scholar] [CrossRef]
- Murdock, D.J. The ‘biomineralization toolkit’ and the origin of animal skeletons. Biol. Rev. 2020, 95, 1372–1392. [Google Scholar] [CrossRef]
- Vittori, M. Structural diversity of crustacean exoskeletons and its implications for biomimetics. Interface Focus. 2024, 14, 20230075. [Google Scholar] [CrossRef]
- la Rosa, B.A.J.-D.; Quintana, P.; Ardisson, P.-L.; Yáñez-Limón, J.M.; Alvarado-Gil, J.J. Effects of thermal treatments on the structure of two black coral species chitinous exoskeleton. J. Mater. Sci. 2012, 47, 990–998. [Google Scholar] [CrossRef]
- Suzuki, M.; Sakuda, S.; Nagasawa, H. Identification of chitin in the prismatic layer of the shell and a chitin synthase gene from the Japanese pearl oyster, Pinctada fucata. Biosci. Biotechnol. Biochem. 2007, 71, 1735–1744. [Google Scholar] [CrossRef]
- Miller, A. Collagen: The organic matrix of bone. Philos. Trans. R. Soc. Lond. B Biol. Sci. 1984, 304, 455–477. [Google Scholar] [CrossRef] [PubMed]
- Roselló-Díez, A.; Joyner, A.L. Regulation of long bone growth in vertebrates; it is time to catch up. Endocr. Rev. 2015, 36, 646–680. [Google Scholar] [CrossRef]
- Reaka, M.L. Patterns of molting frequencies in coral-dwelling stomatopod Crustacea. Biol. Bull. 1979, 156, 328–342. [Google Scholar] [CrossRef]
- Nijhout, H.F. Physiological control of molting in insects. Am. Zool. 1981, 21, 631–640. [Google Scholar] [CrossRef]
- Bo, M.; Bavestrello, G.; Kurek, D.; Paasch, S.; Brunner, E.; Born, R.; Galli, R.; Stelling, A.L.; Sivkov, V.N.; Petrova, O.V.; et al. Isolation and identification of chitin in the black coral Parantipathes larix (Anthozoa: Cnidaria). Int. J. Biol. Macromol. 2012, 51, 129–137. [Google Scholar] [CrossRef]
- Du, X.; Fan, G.; Jiao, Y.; Zhang, H.; Guo, X.; Huang, R.; Zheng, Z.; Bian, C.; Deng, Y.; Wang, Q.; et al. The pearl oyster Pinctada fucata martensii genome and multi-omic analyses provide insights into biomineralization. Gigascience 2017, 6, gix059. [Google Scholar] [CrossRef]
- Fan, S.; Zheng, Z.; Hao, R.; Du, X.; Jiao, Y.; Huang, R. PmCBP, a novel poly (chitin-binding domain) gene, participates in nacreous layer formation of Pinctada fucata martensii. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2020, 240, 110374. [Google Scholar] [CrossRef]
- Zhou, Y.; Yan, Y.; Yang, D.; Zheng, G.; Xie, L.; Zhang, R. Cloning, characterization, and functional analysis of chitinase-like protein 1 in the shell of Pinctada fucata. Acta Biochim. Biophys. Sin. 2020, 52, 954–966. [Google Scholar] [CrossRef]
- Abdullah-Zawawi, M.; Afiqah-Aleng, N.; Ikhwanuddin, M.; Sung, Y.Y.; Tola, S.; Fazhan, H.; Waiho, K. Recent development in ecdysone receptor of crustaceans: Current knowledge and future applications in crustacean aquaculture. Rev. Aquac. 2021, 13, 1938–1957. [Google Scholar] [CrossRef]
- Spindler, K.D.; Hönl, C.; Tremmel, C.; Braun, S.; Ruff, H.; Spindler-Barth, M. Ecdysteroid hormone action. Cell. Mol. Life Sci. 2009, 66, 3837–3850. [Google Scholar] [CrossRef]
- Xiong, X.; Cao, Y.; Li, Z.; Huang, R.; Du, X.; Zheng, Z. Ecdysone signal pathway participates in shell formation in pearl oysters Pinctada fucata martensii. J. Steroid Biochem. Mol. Biol. 2022, 217, 106045. [Google Scholar] [CrossRef] [PubMed]
- Sedanza, M.G.; Alshaweesh, J.; Gao, Y.-L.; Yoshida, A.; Kim, H.-J.; Yamaguchi, K.; Satuito, C.G. Transcriptome Dynamics of an Oyster Larval Response to a Conspecific Cue-Mediated Settlement Induction in the Pacific Oyster Crassostrea gigas. Diversity 2022, 14, 559. [Google Scholar] [CrossRef]
- Marco, A.; Hooks, K.; Griffiths-Jones, S. Evolution and function of the extended miR-2 microRNA family. RNA Biol. 2012, 9, 242–248. [Google Scholar] [CrossRef]
- Niu, D.; Li, B.; Xie, S.; Dong, Z.; Li, J. Integrated mRNA and small RNA sequencing reveals regulatory expression of larval metamorphosis of the Razor Clam. Mar. Biotechnol. 2020, 22, 696–705. [Google Scholar] [CrossRef]
- Xu, Q.; Nie, H.; Ma, Q.; Wang, J.; Huo, Z.; Yan, X. The lgi-miR-2d is potentially involved in shell melanin synthesis by targeting mitf in Manila Clam Ruditapes philippinarum. Mar. Biotechnol. 2024, 26, 432–446. [Google Scholar] [CrossRef]
- Liu, W.-G.; Luo, J.; Ren, Q.-Y.; Qu, Z.-Q.; Lin, H.-L.; Xu, X.-F.; Ni, J.; Xiao, R.-H.; Chen, R.-G.; Rashid, M.; et al. A Novel miRNA-hlo-miR-2-Serves as a Regulatory Factor That Controls Molting Events by Targeting CPR1 in Haemaphysalis longicornis Nymphs. Front. Microbiol. 2020, 11, 1098. [Google Scholar] [CrossRef] [PubMed]
- Ren, Q.-Q.; Long, G.-Y.; Yang, H.; Zhou, C.; Yang, X.-B.; Yan, Y.; Yan, X. Conserved microRNAs miR-8-3p and miR-2a-3 targeting chitin biosynthesis to regulate the molting process of Sogatella furcifera (Horváth)(Hemiptera: Delphacidae). J. Econ. Entomol. 2024, 117, 1675–1685. [Google Scholar] [CrossRef]
- Lozano, J.; Montañez, R.; Belles, X. MiR-2 family regulates insect metamorphosis by controlling the juvenile hormone signaling pathway. Proc. Natl. Acad. Sci. USA 2015, 112, 3740–3745. [Google Scholar] [CrossRef]
- Liang, M.; Cai, C.; Ren, Z.; Li, Z.; Huang, R.; Wang, Q.; Liao, Y.; Yang, C.; Zheng, Z. LncMPEG1/miR-2c regulates exoskeleton biocalcification via engrailed in bivalve. Aquacult. Rep. 2025, 40, 102616. [Google Scholar] [CrossRef]
- Deng, Y.; Fu, S.; Du, X.; Wang, Q. Realized heritability and genetic gain estimates of larval shell length in the Chinese pearl oyster Pinctada martensii at three different salinities. N. Am. J. Aquac. 2009, 71, 302–306. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Pfaffl, M.W. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001, 29, e45. [Google Scholar] [CrossRef]
- Furuhashi, T.; Schwarzinger, C.; Miksik, I.; Smrz, M.; Beran, A. Molluscan shell evolution with review of shell calcification hypothesis. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2009, 154, 351–371. [Google Scholar] [CrossRef]
- Carini, A.; Koudelka, T.; Tholey, A.; Appel, E.; Gorb, S.N.; Melzner, F.; Ramesh, K. Proteomic investigation of the blue mussel larval shell organic matrix. J. Struct. Biol. 2019, 208, 107385. [Google Scholar] [CrossRef]
- Zheng, Z.; Hao, R.; Xiong, X.; Jiao, Y.; Deng, Y.; Du, X. Developmental characteristics of pearl oyster Pinctada fucata martensii: Insight into key molecular events related to shell formation, settlement and metamorphosis. BMC Genom. 2019, 20, 11. [Google Scholar] [CrossRef] [PubMed]
- Yao, T.-P.; Segraves, W.A.; Oro, A.E.; McKeown, M.; Evans, R.M. Drosophila ultraspiracle modulates ecdysone receptor function via heterodimer formation. Cell 1993, 75, 307–320. [Google Scholar] [CrossRef]
- Hu, S.; Wang, Y.; Zhou, Y.; Cao, J.; Zhang, H.; Zhou, J. MicroRNA-34-5p regulates the expression of ecdysteroid receptor (ECR) in the process of salivary gland degeneration of ticks. Parasit. Vectors 2025, 18, 187. [Google Scholar] [CrossRef]
- Luo, W.; Huang, L.; Qin, S.; Zhang, X.; Feng, Q.; Gu, J.; Huang, L. Multiple microRNAs control ecdysone signaling in the midgut of Spodoptera litura. Insect Sci. 2020, 27, 1208–1223. [Google Scholar] [CrossRef]
- Chen, J.; Liang, Z.; Liang, Y.; Pang, R.; Zhang, W. Conserved microRNAs miR-8-5p and miR-2a-3p modulate chitin biosynthesis in response to 20-hydroxyecdysone signaling in the brown planthopper, Nilaparvata lugens. Insect Biochem. Mol. Biol. 2013, 43, 839–848. [Google Scholar] [CrossRef]
- Yang, M.; Wang, Y.; Jiang, F.; Song, T.; Wang, H.; Liu, Q.; Zhang, J.; Zhang, J.; Kang, L. miR-71 and miR-263 jointly regulate target genes chitin synthase and chitinase to control locust molting. PLoS Genet. 2016, 12, e1006257. [Google Scholar] [CrossRef]
- Bai, S.; Kopan, R.; Zou, W.; Hilton, M.J.; Ong, C.-T.; Long, F.; Ross, F.P.; Teitelbaum, S.L. NOTCH1 regulates osteoclastogenesis directly in osteoclast precursors and indirectly via osteoblast lineage cells. J. Biol. Chem. 2008, 283, 6509–6518. [Google Scholar] [CrossRef]
- Guo, Y.; Tang, C.; Man, X.; Tang, H.; Tang, J.; Zhou, C.; Tan, S.; Wang, M.; Feng, Y.; Zhou, H. Insulin-like growth factor-1 promotes osteogenic differentiation and collagen I alpha 2 synthesis via induction of mRNA-binding protein LARP6 expression. Dev. Growth Differ. 2017, 59, 94–103. [Google Scholar] [CrossRef]
- Komori, T. Runx2, a multifunctional transcription factor in skeletal development. J. Cell Biochem. 2002, 87, 1–8. [Google Scholar] [CrossRef]
- Zheng, Z.; Hao, R.; Yang, C.; Jiao, Y.; Wang, Q.; Huang, R.; Liao, Y.; Jian, J.; Ming, Y.; Yin, L.; et al. Genome-wide association study analysis to resolve the key regulatory mechanism of biomineralization in Pinctada fucata martensii. Mol. Ecol. Resour. 2023, 23, 680–693. [Google Scholar] [CrossRef] [PubMed]
- Quach, H.; Barreiro, L.B.; Laval, G.; Zidane, N.; Patin, E.; Kidd, K.K.; Kidd, J.R.; Bouchier, C.; Veuille, M.; Antoniewski, C.; et al. Signatures of purifying and local positive selection in human miRNAs. Am. J. Hum. Genet. 2009, 84, 316–327. [Google Scholar] [CrossRef] [PubMed]
- Moss, E.G.; Tang, L. Conservation of the heterochronic regulator Lin-28, its developmental expression and microRNA complementary sites. Dev. Biol. 2003, 258, 432–442. [Google Scholar] [CrossRef] [PubMed]
- Naidoo, D.; Brennan, R.; de Lencastre, A. Conservation and Targets of MiR-71: A Systematic Review and Meta-Analysis. Non-Coding RNA 2023, 9, 41. [Google Scholar] [CrossRef]
- Chen, K.; Rajewsky, N. The evolution of gene regulation by transcription factors and microRNAs. Nat. Rev. Genet. 2007, 8, 93–103. [Google Scholar] [CrossRef] [PubMed]
- Bertrand, S.; Brunet, F.G.; Escriva, H.; Parmentier, G.; Laudet, V.; Robinson-Rechavi, M. Evolutionary genomics of nuclear receptors: From twenty-five ancestral genes to derived endocrine systems. Mol. Biol. Evol. 2004, 21, 1923–1937. [Google Scholar] [CrossRef] [PubMed]






Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, Z.; Gao, W.; Xu, Y.; Yang, H.; Lu, M.; Liang, M.; Yang, C.; Zhang, J. The Conserved Roles of miR-2c in the Ecdysone Signaling Pathway by Targeting EcR/RXR and Runt for Exoskeleton Formation in the Pearl Oyster Pinctada fucata martensii. Animals 2025, 15, 3488. https://doi.org/10.3390/ani15233488
Zheng Z, Gao W, Xu Y, Yang H, Lu M, Liang M, Yang C, Zhang J. The Conserved Roles of miR-2c in the Ecdysone Signaling Pathway by Targeting EcR/RXR and Runt for Exoskeleton Formation in the Pearl Oyster Pinctada fucata martensii. Animals. 2025; 15(23):3488. https://doi.org/10.3390/ani15233488
Chicago/Turabian StyleZheng, Zhe, Weilin Gao, Yalin Xu, Hongmei Yang, Meichen Lu, Minxin Liang, Chuangye Yang, and Jiawei Zhang. 2025. "The Conserved Roles of miR-2c in the Ecdysone Signaling Pathway by Targeting EcR/RXR and Runt for Exoskeleton Formation in the Pearl Oyster Pinctada fucata martensii" Animals 15, no. 23: 3488. https://doi.org/10.3390/ani15233488
APA StyleZheng, Z., Gao, W., Xu, Y., Yang, H., Lu, M., Liang, M., Yang, C., & Zhang, J. (2025). The Conserved Roles of miR-2c in the Ecdysone Signaling Pathway by Targeting EcR/RXR and Runt for Exoskeleton Formation in the Pearl Oyster Pinctada fucata martensii. Animals, 15(23), 3488. https://doi.org/10.3390/ani15233488

