Cobalt and Vitamin B12 in Dairy Cattle Nutrition: Requirements, Functions, and Interactions
Simple Summary
Abstract
1. Introduction
2. Minerals for Ruminants
3. Cobalt and Vitamin B12
4. Vitamin B12 Bioavailability
5. Vitamin B12 in Milk
6. Cobalt Requirement in Dairy Cattle
| Aspect | Details |
| Microbial requirement | 0.07–0.11 mg Co/kg feed DM for efficient ruminal function [48] |
| Efficiency of dietary Co use | Only 3–15% of dietary Co used for vitamin B12 synthesis; ~4% reported by Girard and Matte, 2005) [36] |
| Young ruminants | Require dietary vitamin B12 directly until rumen is functional (6–8 weeks of age) [40] |
| Daily requirement | 1.2–2.4 mg/day depending on weight and metabolic status [10] |
| Recommended dietary level | 0.11–0.35 mg/kg DM [7] |
| Toxicity threshold | Toxic at ≥30 mg/kg DM [27] |
| Requirement updates | Sets requirement at 0.2 mg/kg DM, with 0.1–0.2 ppm supplementation adequate [3] |
| Factors influencing B12 synthesis | Season, forage type, concentrate/forage ratio, age, species, nutrient interactions, and soil contamination [40] |
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- McGrath, J.; Duval, S.M.; Tamassia, L.F.M.; Kindermann, M.; Stemmler, R.T.; de Gouvea, V.N.; Acedo, T.S.; Immig, I.; Williams, S.N.; Celi, P. Nutritional strategies in ruminants: A lifetime approach. Res. Vet. Med. 2018, 116, 28–39. [Google Scholar] [CrossRef] [PubMed]
- Raths, R.; Rodriguez, B.; Holloway, J.W.; Waite, A.; Lawrence, T.; van de Ligt, J.L.G.; Purvis, H.; Doering-Resch, H.; Casper, D.P. Comparison of growth performance and tissue cobalt concentrations in beef cattle fed inorganic and organic cobalt sources. Transl. Anim. Sci. 2023, 7, txad120. [Google Scholar] [CrossRef]
- NASEM. Nutrient Requirements of Dairy Cattle, 8th ed.; National Academies Press: Washington, DC, USA, 2021. [Google Scholar]
- Girard, C.L.; Duplessis, M. The importance of B vitamins in enhanced precision nutrition of dairy cows: The case of folates and vitamin B12. Can. J. Anim. Sci. 2022, 102, 201–210. [Google Scholar] [CrossRef]
- McDowell, L.R. Vitamins in Animal and Human Nutrition, 2nd ed.; Wiley-Blackwell: Ames, IA, USA, 2012. [Google Scholar]
- Dryden, L.P.; Hartman, A.M. Variations in the amount and relative distribution of vitamin B12 and its analog in the bovine rumen. J. Dairy Sci. 1971, 54, 235–246. [Google Scholar] [CrossRef]
- NRC. Nutrient Requirements of Dairy Cattle, 7th ed.; National Academy Press: Washington, DC, USA, 2001. [Google Scholar]
- NRC. Nutrient Requirements of Beef Cattle, 7th ed.; National Academy Press: Washington, DC, USA, 1996. [Google Scholar]
- Underwood, E.J.; Suttle, N.F. The Mineral Nutrition of Livestock, 3rd ed.; CABI Publishing: Wallingford, UK, 2002. [Google Scholar]
- Akins, M.S.; Bertics, S.J.; Socha, M.T.; Shaver, R.D. Effects of cobalt supplementation and vitamin B12 injections on lactation performance and metabolism of Holstein dairy cows. J. Dairy Sci. 2013, 96, 1755–1768. [Google Scholar] [CrossRef]
- Miller, J.; Wentworth, J.; McCullough, M.E. Effects of Various Factors on Vitamin B12 Content of Cows’ Milk. J. Agric. Food Chem. 1966, 14, 218–221. [Google Scholar] [CrossRef]
- Stemme, K.; Lebzien, P.; Flachowsky, G.; Scholz, H. The influence of an increased cobalt supply on ruminal parameters and microbial vitamin B12 synthesis in the rumen of dairy cows. Arch. Anim. Nutr. 2008, 62, 207–218. [Google Scholar] [CrossRef]
- Stemme, K.; Meyer, U.; Flachowsky, G.; Scholz, H. The influence of an increased cobalt supply to dairy cows on the vitamin B12 status of their calves. J. Anim. Physiol. Anim. Nutr. 2006, 90, 173–176. [Google Scholar] [CrossRef]
- Goff, J.P. Determining the mineral requirement of dairy cattle. In Proceedings of the 11th Annual Florida Ruminant Nutrition Symposium, Gainesville, FL, USA, 13–14 January 2000; pp. 106–132. [Google Scholar]
- Belanche, A.; Belzecki, G.; Hernandez-Sanabria, E.; Martínez-Fernandez, G.; Ramos-Morales, E.; de la Fuente, G. Editorial: Unravelling the unknown of the rumen microbiome: Implications for animal health, productivity, and beyond. Front. Microbiol. 2025, 16, 1720795. [Google Scholar] [CrossRef]
- Wang, K.; Xiong, B.; Zhao, X. Could propionate formation be used to reduce enteric methane emission in ruminants? J. Dairy Sci. 2023, 855, 158867. [Google Scholar] [CrossRef]
- Lai, W.; Alberdi, A.; Leu, A.; de Leon, A.V.P.; Kobel, C.M.; Aho, V.T.E.; Roehe, R.; Pope, P.B.; Hvidsten, T.R. Metabolic capabilities of key rumen microbiota drive methane emissions in cattle. mSystems 2025, 10, e0060125. [Google Scholar] [CrossRef]
- Paterson, J.; Engle, T.E. Trace Mineral Nutrition in Beef Cattle; University of Tennessee: Knoxville, TN, USA, 2005; p. 22. Available online: https://www.researchgate.net/profile/Partha-Swain/post/Can-anybody-help-with-ruminant-nutrition-textbook/attachment/59d638cc79197b807799602b/AS%3A398973325070344%401472134061881/download/tracemineralproceedings.pdf (accessed on 17 November 2025).
- Goff, J.P. Pathophysiology of calcium and phosphorus disorders. Vet. Clin. N. Am. Food Anim. Pract. 2000, 16, 319–337. [Google Scholar] [CrossRef]
- Herdt, T.H.; Hoff, B. The use of blood analysis to evaluate trace mineral status in ruminant livestock. Vet. Clin. N. Am. Food Anim. Pract. 2011, 27, 255–283. [Google Scholar] [CrossRef]
- Tanner, R.S.; Wolfe, R.S. Nutritional requirements of methanomicrobium mobile. Appl. Environ. Microbiol. 1988, 54, 625–628. [Google Scholar] [CrossRef] [PubMed]
- González-Montaña, J.; Escalera-Valente, F.; Alonso, A.J.; Lomilos, J.M.; Robles, R.; Alonso, M.E. Relationship between Vitamin B12 and Cobalt Metabolism in Domestic Ruminant: An Update. Animals 2020, 10, 1855. [Google Scholar] [CrossRef] [PubMed]
- Girard, C.L.; Matte, J.J. Effects of Intramuscular Injections of Vitamin B12 on Lactation Performance of Dairy Cows Fed Dietary Supplements of Folic Acid and Rumen-Protected Methionine. J. Dairy Sci. 2005, 88, 671–676. [Google Scholar] [CrossRef]
- Brito, A.; Chiquette, J.; Stabler, S.P.; Allen, R.H.; Girard, C.L. Supplementing lactating dairy cows with a vitamin B12 precursor, 5, 6-dimethylbenzimidazole, increases the apparent ruminal synthesis of vitamin B12. Animal 2015, 9, 67–75. [Google Scholar] [CrossRef] [PubMed]
- Franco-Lopez, J.; Duplessis, M.; Bui, A.; Reymond, C.; Poisson, W.; Blais, L.; Chong, J.; Gervais, R.; Rico, D.E.; Cue, R.I. Correlations between the Composition of the Bovine Microbiota and Vitamin B12 Abundance. mSystems 2020, 5, e00107-20. [Google Scholar] [CrossRef]
- Martens, J.H.; Barg, H.; Warren, M.J.; Jahn, D. Microbial production of vitamin B12: Ruminant nutrition implications. Appl. Microbiol. Biotechnol. 2002, 58, 275–285. [Google Scholar] [CrossRef]
- Smith, S.E.; Loosli, J.K. Cobalt and Vitamin 12 in Ruminant Nutrition: A Review. J. Dairy Sci. 1957, 40, 1215–1227. [Google Scholar] [CrossRef]
- Paterson, J.E.; Macpherson, A. A Comparison of serum vitamin B12 and serum methylmalonic acid as diagnostic measures of cobalt status in cattle. Vet. Rec. 1990, 126, 329–332. [Google Scholar] [PubMed]
- Beaudet, V.; Gervais, R.; Graulet, B.; Nozière, P.; Doreau, M.; Fanchone, A.; Castagnino, D.D.S.; Girard, C.L. Effects of dietary nitrogen levels and carbohydrate sources on apparent ruminal synthesis of some B vitamins in dairy cows. J. Dairy Sci. 2016, 99, 2730–2739. [Google Scholar] [CrossRef] [PubMed]
- Degnan, P.H.; Taga, M.E.; Goodman, A.L. Vitamin B12 as a modulator of gut microbial ecology. Cell Metab. 2014, 20, 769–778. [Google Scholar] [CrossRef]
- Arce-Cordero, J.A.; Siregar, M.U.; Salas-Solis, G.K.; Silva Vicente, A.C.; Vinyard, J.R.; Sarmikasoglou, E.; Johnson, M.L.; Lobo, R.R.; Ma, S.W.; Hammond, C.; et al. Effects of novel organic sources of cobalt on ruminal fermentation, nutrient degradation and vitamin B12 synthesis in vitro. Transl. Anim. Sci. 2025, 9, txaf123. [Google Scholar] [CrossRef] [PubMed]
- McDowell, L.R. Minerals in Animal and Human Nutrition, 2nd ed.; Elsevier Science B.V.: Amsterdam, The Netherlands, 2003. [Google Scholar]
- Kawashima, T.; Henry, P.R.; Ammerman, C.B.; Littel, R.C.; Price, J. Bioavailability of cobalt sources for ruminants. 2. Estimation of the relative value of reagent-grade and feed-grade cobalt sources from tissue cobalt accumulation and vitamin B12 concentrations. Nutr. Res. 1997, 17, 957–974. [Google Scholar] [CrossRef]
- Gray, M.J.; Escalante-Semerena, J.C. The cobinamide amidohydrolase (cobyric acid-forming) CbiZ enzyme: A critical activity of the cobamide remodelling system of Rhodobacter sphaeroides. Mol. Microbiol. 2009, 74, 1198–1210. [Google Scholar] [CrossRef]
- Rutten, M.J.M.; Bouwman, A.C.; Sprong, R.C.; van Arendonk, J.A.M.; Visker, M.H.P.W. Genetic variation in vitamin B-12 content of bovine milk and its association with SNP along the bovine genome. PLoS ONE 2013, 8, e62382. [Google Scholar] [CrossRef]
- Girard, C.L.; Matte, J.J. Folic acid and vitamin B12 requirements of dairy cows: A concept to be revised. Livest. Prod. Sci. 2005, 98, 123–133. [Google Scholar] [CrossRef]
- Santschi, D.E.; Berthiaume, R.; Matte, J.J.; Mustafa, A.F.; Girard, C.L. Fate of supplementary B-vitamins in the gastrointestinal tract of dairy cows. J. Dairy Sci. 2005, 88, 2043–2054. [Google Scholar] [CrossRef]
- Duplessis, M.; Pellerin, D.; Robichaud, R.; Fadul, D.; Girard, C.L. Impact of diet management and composition on vitamin B12 concentration in milk of Holstein cows. Animal 2019, 13, 2101–2109. [Google Scholar] [CrossRef]
- Anthony, W.B.; Couch, J.R.; Rupel, I.W.; Henderson, M.B.; Brown, C. Vitamin B12 in Blood of Newborn and Colostrum-Fed Calves and in Colostrum and Normal Milk of Holstein and Jersey Cows. J. Dairy Sci. 1951, 34, 749–753. [Google Scholar] [CrossRef]
- Duplessis, M.; Pellerin, D.; Cue, R.I.; Girard, C.L. Factors affecting vitamin B12 concentration in milk of commercial dairy herds: An exploratory study. J. Dairy Sci. 2016, 99, 4886–4892. [Google Scholar] [CrossRef]
- Castagnino, D.S.; Kammes, K.L.; Allen, M.S.; Gervais, R.; Chouinard, P.Y.; Girard, C.L. High-concentrate diets based on forages harvested at different maturity stages affect ruminal synthesis of B vitamins in lactating dairy cows. Animal 2017, 11, 608–615. [Google Scholar] [CrossRef] [PubMed]
- Duplessis, M.; Lapierre, H.; Ouattara, B.; Bissonnette, N.; Pellerin, D.; Laforest, J.P.; Girard, C.L. Whole-body propionate and glucose metabolism of multiparous dairy cows receiving folic acid and vitamin B-12 supplements. J. Dairy Sci. 2017, 100, 8578–8589. [Google Scholar] [CrossRef] [PubMed]
- Mills, C.F.; Haresign, W. Cobalt deficiency and cobalt requirements of ruminants. Recent Adv. Anim. Nutr. 1981, 129–140. [Google Scholar]
- Strobel, H.J. Vitamin B12-dependent propionate production by the ruminal bacterium Prevotella ruminicola 23. Appl. Environ. Microbiol. 1992, 58, 2331–2333. [Google Scholar] [CrossRef]
- Grace, N.D.; Knowles, S.O. Lack of production response in grazing dairy cows supplemented with long-acting injectable vitamin B12. N. Z. Vet. J. 2012, 60, 95–99. [Google Scholar] [CrossRef]
- Tiffany, M.E.; Spears, J.W.; Horton, L.X. Influence of dietary cobalt source and concentration on performance, vitamin B12 status, and ruminai and plasma metabolites in growing and finishing steers. J. Anim. Sci. 2003, 81, 3151–3159. [Google Scholar] [CrossRef]
- Lopreiato, V.; Alharthi, A.S.; Liang, Y.; Elolimy, A.A.; Bucktrout, R.; Socha, M.T.; Trevisi, E.; Loor, J.J. Influence of cobalt source, folic acid, and rumen-protected methionine on performance, metabolism, and liver tissue one-carbon metabolism biomarkers in peripartal Holstein cows. Animals 2023, 13, 2107. [Google Scholar] [CrossRef]
- Spears, J.W. Overview of Mineral Nutrition in Cattle: The Dairy and Beef; NRC: Gainesville, FL, USA, 2002; pp. 113–1126. Available online: https://www.researchgate.net/profile/Jerry-Spears/publication/255593316_Overview_of_Mineral_Nutrition_in_Cattle_The_Dairy_and_Beef_NRC/links/54d3855b0cf25017918237ad/Overview-of-Mineral-Nutrition-in-Cattle-The-Dairy-and-Beef-NRC.pdf (accessed on 17 November 2025).
| Mineral | Primary Physiological Functions | Deficiency Symptoms |
|---|---|---|
| Calcium (Ca) | Bone and teeth formation; muscle contraction; blood clotting | Rickets; milk fever; reduced growth |
| Phosphorus (P) | Bone and teeth formation; energy metabolism (ATP, phosphorylation) | Poor fertility; reduced appetite; rickets |
| Magnesium (Mg) | Enzyme cofactor; nerve transmission; muscle function | Grass tetany; muscle tremors |
| Sulfur (S) | Component of sulfur-containing amino acids (methionine, cysteine); microbial protein synthesis | Reduced microbial protein synthesis; poor growth |
| Sodium (Na) | Osmotic balance; nerve impulse transmission | Reduced appetite; poor growth; pica |
| Chloride (Cl) | Osmotic balance; gastric acid (HCl) Formation | Alkalosis; poor growth |
| Potassium (K) | Osmotic balance; acid–base regulation; muscle function | Muscle weakness; poor appetite; reduced milk yield |
| Mineral | Primary Physiological Functions | Deficiency Symptoms |
|---|---|---|
| Cobalt (Co) | Required for vitamin B12 synthesis by ruminal microorganisms | Vitamin B12 deficiency; anemia; reduced appetite |
| Copper (Cu) | Enzyme cofactor; connective tissue and hemoglobin synthesis | Anemia; depigmentation; poor reproduction |
| Iodine (I) | Thyroid hormone synthesis; metabolic Regulation | Goiter; reproductive failure |
| Manganese (Mn) | Enzyme cofactor; bone formation; reproductive function | Skeletal deformities; poor reproduction |
| Selenium (Se) | Component of glutathione peroxidase; antioxidant defense | White muscle disease; retained placenta |
| Zinc (Zn) | Enzyme cofactor; wound healing; immune function | Parakeratosis; impaired wound healing; poor growth |
| Aspect | Key Findings | References |
|---|---|---|
| Requirement | Cobalt required in very small amounts (~0.2 mg/kg DM). dietary supply often insufficient | [3,8,11] |
| Function | Essential precursor for microbial synthesis of vitamin B12 (cobalamin) in the rumen | [27] |
| Efficiency | Conversion of dietary Co to vitamin B12 is low (3–13% of the dietary cobalt intake) | [18,28] |
| Threshold for synthesis | Ruminal synthesis requires >0.5 mg/L Co in ruminal fluid | [9,12,19] |
| Deficiency signs | Reduced intake, poor growth, muscle wasting, rough coat, reduced milk yield, reproductive issues | [9,20] |
| Metabolic role of B12 | Cofactor for methylmalonyl-CoA mutase (gluconeogenesis via propionate) and methionine synthase (methyl transfer, protein metabolism) | [7,22] |
| Dietary effects | High-fiber diets increase vitamin B12 synthesis (up to 3× greater vs. high-starch diets); starch depresses synthesis | [10,29] |
| Microbiome effects | Only a few microorganisms synthesize B12: Selenomonas ruminantium, Megasphaera elsdenii, Butyrivibrio fibrisolvens; greater B12 linked to Prevotella | [22,25,30] |
| Factor | Effect on Vitamin B12 in Milk | Reference(s) |
|---|---|---|
| Baseline levels | Milk contains ~0.5 µg/L vitamin B12; colostrum 4–10× greater | [39] |
| Diet composition | Affects ruminal synthesis → alters milk vitamin B12 | [40,41] |
| Genetics | Explains part of cow-to-cow variability | [35,40] |
| Folic acid and B12 supplementation | Increases folate and vitamin B12 concentrations in milk | [42] |
| Forage/concentrate ratio | 60:40 diet → greater ruminal synthesis of active vitamin B12 than 40:60 | [37] |
| Dietary fiber | Positive correlation with milk vitamin B12 concentration | [40] |
| Dietary crude protein | Negative correlation with milk vitamin B12 concentration | [40] |
| Natural cobalt sources | Legumes (alfalfa, clover) provide cobalt for rumen B12 synthesis | [10] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Siregar, M.; Salas-Solis, G.; Faciola, A.P. Cobalt and Vitamin B12 in Dairy Cattle Nutrition: Requirements, Functions, and Interactions. Animals 2025, 15, 3477. https://doi.org/10.3390/ani15233477
Siregar M, Salas-Solis G, Faciola AP. Cobalt and Vitamin B12 in Dairy Cattle Nutrition: Requirements, Functions, and Interactions. Animals. 2025; 15(23):3477. https://doi.org/10.3390/ani15233477
Chicago/Turabian StyleSiregar, Martha, Gerald Salas-Solis, and Antonio P. Faciola. 2025. "Cobalt and Vitamin B12 in Dairy Cattle Nutrition: Requirements, Functions, and Interactions" Animals 15, no. 23: 3477. https://doi.org/10.3390/ani15233477
APA StyleSiregar, M., Salas-Solis, G., & Faciola, A. P. (2025). Cobalt and Vitamin B12 in Dairy Cattle Nutrition: Requirements, Functions, and Interactions. Animals, 15(23), 3477. https://doi.org/10.3390/ani15233477

