Role of Dietary Saccharomyces boulardii in Innate Immune Responses of Broiler Chickens Fed Diets Containing Different Nutrient Densities
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animal Care
2.2. Animals, Diets, and Experimental Design
2.3. Growth Performance and Sample Collection
2.4. Meat Quality of Breast and Leg Meat
2.5. Gut Health Assay for Volatile Fatty Acid (VFA) and Jejunal Immunoglobulin a Contents
2.6. Serum Physiology for Antioxidant and Immune Parameters
2.7. Serum Biochemical Parameters
2.8. Statistical Analysis
3. Results
3.1. Growth Performance
3.2. Meat Quality
3.3. Cecal Volatile Fatty Acid (VFA) Concentrations
3.4. Antioxidant Activity, Immune Parameters, and Serum Immunoglobulin Levels
3.5. Serum Parameters
4. Discussion
4.1. Effects of Nutrient Density
4.2. Effect of Yeast Probiotic (S. boulardii)
4.3. Interaction Between Yeast Probiotic (S. boulardii) and Nutrient Density
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Brickett, K.E.; Dahiya, J.P.; Classen, H.L.; Gomis, S. Influence of Dietary Nutrient Density, Feed Form, and Lighting on Growth and Meat Yield of Broiler Chickens. Poult. Sci. 2007, 86, 2172–2181. [Google Scholar] [CrossRef]
- Zhao, J.P.; Chen, J.L.; Zhao, G.P.; Zheng, M.Q.; Jiang, R.R.; Wen, J. Live Performance, Carcass Composition, and Blood Metabolite Responses to Dietary Nutrient Density in Two Distinct Broiler Breeds of Male Chickens. Poult. Sci. 2009, 88, 2575–2584. [Google Scholar] [CrossRef] [PubMed]
- Nabizadeh, A.; Golian, A.; Hassanabadi, A.; Zerehdaran, S. Effects of Nutrient Density and Exogenous Enzymes in Starter Diet on Performance, Intestinal Microflora, Gut Morphology and Immune Response of Broiler Chickens. Braz. J. Poult. Sci. 2017, 19, 509–518. [Google Scholar] [CrossRef]
- Wang, X.; Peebles, E.D.; Zhai, W. Effects of Protein Source and Nutrient Density in the Diets of Male Broilers from 8 to 21 Days of Age on Their Subsequent Growth, Blood Constituents, and Carcass Compositions. Poult. Sci. 2014, 93, 1463–1474. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.-Q.; Jiang, W.; Tan, H.-Z.; Zhang, D.-X.; Zhang, H.-j.; Wei, S.; Yan, H.-C. Effects of Breed and Dietary Nutrient Density on the Growth Performance, Blood Metabolite, and Genes Expression of Target of Rapamycin (TOR) Signaling Pathway of Female Broiler Chickens. Anim. Physiol. Nutr. 2013, 97, 797–806. [Google Scholar] [CrossRef]
- Mirshekar, R.; Dastar, B.; Shabanpour, B.; Hassani, S. Effect of Dietary Nutrient Density and Vitamin Premix Withdrawal on Performance and Meat Quality of Broiler Chickens. J. Sci. Food Agric. 2013, 93, 2979–2985. [Google Scholar] [CrossRef]
- Li, W.; Guo, Y.; Chen, J.; Wang, R.; He, Y.; Su, D. Influence of Lighting Schedule and Nutrient Density in Broiler Chickens: Effect on Growth Performance, Carcass Traits and Meat Quality. Asian-Australas. J. Anim. Sci. 2010, 23, 1510–1518. [Google Scholar] [CrossRef]
- Zhou, Y.; Cao, D.; Liu, J.; Li, F.; Han, H.; Lei, Q.; Liu, W.; Li, D.; Wang, J. Chicken Adaptive Response to Nutrient Density: Immune Function Change Revealed by Transcriptomic Analysis of Spleen. Front. Immunol. 2023, 14, 1188940. [Google Scholar] [CrossRef]
- Surai, P.F.; Kochish, I.I.; Fisinin, V.I.; Kidd, M.T. Antioxidant Defence Systems and Oxidative Stress in Poultry Biology: An Update. Antioxidants 2019, 8, 235. [Google Scholar] [CrossRef]
- Oke, O.E.; Akosile, O.A.; Oni, A.I.; Opowoye, I.O.; Ishola, C.A.; Adebiyi, J.O.; Odeyemi, A.J.; Adjei-Mensah, B.; Uyanga, V.A.; Abioja, M.O. Oxidative Stress in Poultry Production. Poult. Sci. 2024, 103, 104003. [Google Scholar] [CrossRef]
- Ayalew, H.; Zhang, H.; Wang, J.; Wu, S.; Qiu, K.; Qi, G.; Tekeste, A.; Wassie, T.; Chanie, D. Potential Feed Additives as Antibiotic Alternatives in Broiler Production. Front. Vet. Sci. 2022, 9, 916473. [Google Scholar] [CrossRef] [PubMed]
- Zanella, I.; Sakomura, N.; Silversides, F.; Fiqueirdo, A.; Pack, M. Effect of Enzyme Supplementation of Broiler Diets Based on Corn and Soybeans. Poult. Sci. 1999, 78, 561–568. [Google Scholar] [CrossRef] [PubMed]
- Selim, S.; Abdel-Megeid, N.S.; Khalifa, H.K.; Fakiha, K.G.; Majrashi, K.A.; Hussein, E. Efficacy of Various Feed Additives on Performance, Nutrient Digestibility, Bone Quality, Blood Constituents, and Phosphorus Absorption and Utilization of Broiler Chickens Fed Low Phosphorus Diet. Animals 2022, 12, 1742. [Google Scholar] [CrossRef]
- Pang, Y.; Zhang, H.; Wen, H.; Wan, H.; Wu, H.; Chen, Y.; Li, S.; Zhang, L.; Sun, X.; Li, B.; et al. Yeast Probiotic and Yeast Products in Enhancing Livestock Feeds Utilization and Performance: An Overview. J. Fungi 2022, 8, 1191. [Google Scholar] [CrossRef]
- Onifade, A.A.; Odunsi, A.A.; Babatunde, G.M.; Olorede, B.R.; Muma, E. Comparison of the Supplemental Effects of Saccharomyces cerevisiae and Antibiotics in Low-Protein and High-Fibre Diets Fed to Broiler Chickens. Arch. Tierernahr. 1999, 52, 29–39. [Google Scholar] [CrossRef]
- Mumy, K.L.; Chen, X.; Kelly, C.P.; McCormick, B.A. Saccharomyces boulardii Interferes with Shigella Pathogenesis by Postinvasion Signaling Events. Am. J. Physiol. Gastrointest. Liver Physiol. 2008, 294, G599–G609. [Google Scholar] [CrossRef]
- Zhang, A.W.; Lee, B.D.; Lee, S.K.; Lee, K.W.; An, G.H.; Song, K.B.; Lee, C.H. Effects of Yeast (Saccharomyces cerevisiae) Cell Components on Growth Performance, Meat Quality, and Ileal Mucosa Development of Broiler Chicks. Poult. Sci. 2005, 84, 1015–1021. [Google Scholar] [CrossRef]
- Rajput, I.R.; Li, L.Y.; Xin, X.; Wu, B.B.; Juan, Z.L.; Cui, Z.W.; Yu, D.Y.; Li, W.F. Effect of Saccharomyces boulardii and Bacillus subtilis B10 on Intestinal Ultrastructure Modulation and Mucosal Immunity Development Mechanism in Broiler Chickens. Poult. Sci. 2013, 92, 956–965. [Google Scholar] [CrossRef]
- Hossain, M.N.; Afrin, S.; Humayun, S.; Ahmed, M.M.; Saha, B.K. Identification and Growth Characterization of a Novel Strain of Saccharomyces boulardii Isolated from Soya Paste. Front. Nutr. 2020, 7, 27. [Google Scholar] [CrossRef]
- Nari, N.; Ghasemi, H.A. Growth Performance, Nutrient Digestibility, Bone Mineralization, and Hormone Profile in Broilers Fed with Phosphorus-Deficient Diets Supplemented with Butyric Acid and Saccharomyces boulardii. Poult. Sci. 2020, 99, 926–935. [Google Scholar] [CrossRef]
- Abid, R.; Waseem, H.; Ali, J.; Ghazanfar, S.; Muhammad Ali, G.; Elasbali, A.M.; Alharethi, S.H. Probiotic Yeast Saccharomyces: Back to Nature to Improve Human Health. J. Fungi 2022, 8, 444. [Google Scholar] [CrossRef]
- Massacci, F.R.; Lovito, C.; Tofani, S.; Tentellini, M.; Genovese, D.A.; De Leo, A.A.P.; Papa, P.; Magistrali, C.F.; Manuali, E.; Trabalza-Marinucci, M.; et al. Dietary Saccharomyces cerevisiae boulardii CNCM I-1079 Positively Affects Performance and Intestinal Ecosystem in Broilers during a Campylobacter jejuni Infection. Microorganisms 2019, 7, 596. [Google Scholar] [CrossRef]
- Agawane, S.B.; Lonkar, P.S. Effect of Probiotic Containing Saccharomyces boulardii on Experimental Ochratoxicosis in Broilers: Hematobiochemical Studies. J. Vet. Sci. 2004, 5, 359–367. [Google Scholar] [CrossRef] [PubMed]
- Kumari, K.N.R.; Susmita, T. Performance and Intestinal Integrity of Broiler Chickens by Supplementation of Yeast Saccharomyces boulardii through Water. Ind. J. Vet. Anim. Sci. Res. 2014, 43, 399–404. [Google Scholar]
- Sun, Y.; Rajput, I.R.; Arain, M.A.; Li, Y.; Baloch, D.M. Oral Administration of Saccharomyces boulardii Alters Duodenal Morphology, Enzymatic Activity and Cytokine Production Response in Broiler Chickens. Anim. Sci. J. 2017, 88, 1204–1211. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-S.; Kacem, N.; Kim, W.-S.; Peng, D.Q.; Kim, Y.-J.; Joung, Y.-G.; Lee, C.; Lee, H.-G. Effect of Saccharomyces boulardii Supplementation on Performance and Physiological Traits of Holstein Calves under Heat Stress Conditions. Animals 2019, 9, 510. [Google Scholar] [CrossRef]
- Huang, J.C.; Yang, J.; Huang, M.; Chen, K.J.; Xu, X.L.; Zhou, G.H. The Effects of Electrical Stunning Voltage on Meat Quality, Plasma Parameters, and Protein Solubility of Broiler Breast Meat. Poult. Sci. 2016, 96, 764–769. [Google Scholar] [CrossRef]
- Kim, Y.B.; Park, J.; Lee, H.-G.; Song, J.-Y.; Kim, D.-H.; Ji, W.; Joo, S.S.; Kim, M.; Jung, J.Y.; Kim, M.; et al. Dietary Probiotic Lacticaseibacillus paracasei NSMJ56 Modulates Gut Immunity and Microbiota in Laying Hens. Poult. Sci. 2024, 103, 103505. [Google Scholar] [CrossRef]
- Lee, K.W.; Lillehoj, H.S.; Jang, S.I.; Li, G.X.; Bautista, D.A.; Phillips, K.; Ritter, D.; Lillehoj, E.P.; Siragusa, G.R. Effects of Coccidiosis Control Programs on Antibody Levels against Selected Pathogens and Serum Nitric Oxide Levels in Broiler Chickens. J. Appl. Poult. Res. 2011, 20, 143–152. [Google Scholar] [CrossRef]
- Li, J.; Yuan, J.; Miao, Z.; Song, Z.; Yang, Y.; Tian, W.; Guo, Y. Effect of Dietary Nutrient Density on Small Intestinal Phosphate Transport and Bone Mineralization of Broilers during the Growing Period. PLoS ONE 2016, 11, e0153859. [Google Scholar] [CrossRef]
- Abdollahi, M.R.; Zaefarian, F.; Ravindran, V.; Selle, P.H. The Interactive Influence of Dietary Nutrient Density and Feed Form on the Performance of Broiler Chickens. Anim. Feed Sci. Technol. 2018, 239, 33–43. [Google Scholar] [CrossRef]
- Kim, S.-J.; Lee, K.-W.; Kang, C.-W.; An, B.-K. Growth Performance, Relative Meat and Organ Weights, Cecal Microflora, and Blood Characteristics in Broiler Chickens Fed Diets Containing Different Nutrient Density with or without Essential Oils. Asian-Australas. J. Anim. Sci. 2016, 29, 549–554. [Google Scholar] [CrossRef]
- Sun, Z.; Wang, T.; Demelash, N.; Zheng, S.; Zhao, W.; Chen, X.; Zhen, Y.; Qin, G. Effect of Yeast Culture (Saccharomyces cerevisiae) on Broilers: A Preliminary Study on the Effective Components of Yeast Culture. Animals 2020, 10, 68. [Google Scholar] [CrossRef]
- Majdeddin, M.; Golian, A.; Kermanshahi, H.; De Smet, S.; Michiels, J. Guanidinoacetic Acid Supplementation in Broiler Chickens Fed on Corn-Soybean Diets Affects Performance in the Finisher Period and Energy Metabolites in Breast Muscle Independent of Diet Nutrient Density. Br. Poult. Sci. 2018, 59, 443–451. [Google Scholar] [CrossRef] [PubMed]
- Delezie, E.; Bruggeman, V.; Swennen, Q.; Decuypere, E.; Huyghebaert, G. The Impact of Nutrient Density in Terms of Energy and/or Protein on Live Performance, Metabolism and Carcass Composition of Female and Male Broiler Chickens of Two Commercial Broiler Strains. J. Anim. Physiol. Anim. Nutr. 2010, 94, 509–518. [Google Scholar] [CrossRef] [PubMed]
- Nikbakhtzade, M.; Zarghi, H.; Golian, A. Effects of Finisher Diet Nutrients Density and Slaughter Age on Energy and Protein Efficiency, Productive and Economic Performance and Meat Quality of Broilers. Vet. Med. Sci. 2024, 10, e1493. [Google Scholar] [CrossRef] [PubMed]
- Barekatain, R.; Romero, L.F.; Sorbara, J.O.B.; Cowieson, A.J. Balanced Nutrient Density for Broiler Chickens Using a Range of Digestible Lysine-to-Metabolizable Energy Ratios and Nutrient Density: Growth Performance, Nutrient Utilisation and Apparent Metabolizable Energy. Anim. Nutr. 2021, 7, 430–439. [Google Scholar] [CrossRef]
- Ndazigaruye, G.; Kim, D.-H.; Kang, C.-W.; Kang, K.-R.; Joo, Y.-J.; Lee, S.-R.; Lee, K.-W. Effects of Low-Protein Diets and Exogenous Protease on Growth Performance, Carcass Traits, Intestinal Morphology, Cecal Volatile Fatty Acids and Serum Parameters in Broilers. Animals 2019, 9, 226. [Google Scholar] [CrossRef]
- Ma, B.; Zhang, L.; Li, J.; Xing, T.; Jiang, Y.; Gao, F. Heat Stress Alters Muscle Protein and Amino Acid Metabolism and Accelerates Liver Gluconeogenesis for Energy Supply in Broilers. Poult. Sci. 2021, 100, 215–223. [Google Scholar] [CrossRef]
- Abou-Elkhair, R.; Ahmed, H.; Ketkat, S.; Selim, S. Supplementation of a Low-Protein Diet with Tryptophan, Threonine, and Valine and Its Impact on Growth Performance, Blood Biochemical Constituents, Immune Parameters, and Carcass Traits in Broiler Chickens. Vet. World 2020, 13, 1234–1244. [Google Scholar] [CrossRef]
- Li, F.; Shan, M.X.; Gao, X.; Yang, Y.; Yang, X.; Zhang, Y.Y.; Hu, J.W.; Shan, A.S.; Cheng, B.J. Effects of Nutrition Restriction of Fat- and Lean-Line Broiler Breeder Hens during the Laying Period on Offspring Performance, Blood Biochemical Parameters, and Hormone Levels. Domest. Anim. Endocrinol. 2019, 68, 73–82. [Google Scholar] [CrossRef]
- Choe, H.S.; Um, J.S.; Ryu, K.S. A Comparison of Various Energy and Protein Concentrations in Diets on the Performance, Bone Mineral Density and Blood Characteristics of Broiler Chicks. Korean Poult. Sci. 2013, 40, 369–377. [Google Scholar] [CrossRef]
- Sigolo, S.; Zohrabi, Z.; Gallo, A.; Seidavi, A.; Prandini, A. Effect of a Low Crude Protein Diet Supplemented with Different Levels of Threonine on Growth Performance, Carcass Traits, Blood Parameters, and Immune Responses of Growing Broilers. Poult. Sci. 2017, 96, 2751–2760. [Google Scholar] [CrossRef]
- Jahanpour, H.; Seidavi, A.; Qotbi, A.A.A.; Payan-Carreira, R. Effects of Two Levels of Quantitative Feed Restriction for a 7- or 14-Days Period on Broilers Blood Parameters. Acta Sci. Vet. 2013, 41, 1144. [Google Scholar]
- Mohebodini, H.; Dastar, B.; Sharg, M.; Zerehdaran, S. The Comparison of Early Feed Restriction and Meal Feeding on Performance, Carcass Characteristics and Blood Constituents of Broiler Chickens. J. Anim. Vet. Adv. 2009, 8, 2069–2074. [Google Scholar]
- Swennen, Q.; Janssens, G.P.J.; Millet, S.; Vansant, G.; Decuypere, E.; Buyse, J. Effects of Substitution between Fat and Protein on Feed Intake and Its Regulatory Mechanisms in Broiler Chickens: Endocrine Functioning and Intermediary Metabolism. Poult. Sci. 2005, 84, 1051–1057. [Google Scholar] [CrossRef]
- McFarland, L.V. Systematic Review and Meta-Analysis of Saccharomyces boulardii in Adult Patients. World J. Gastroenterol. 2010, 16, 2202–2222. [Google Scholar] [CrossRef]
- Rezaeipour, V.; Fononi, H.; Irani, M. Effects of Dietary L-Threonine and Saccharomyces cerevisiae on Performance, Intestinal Morphology and Immune Response of Broiler Chickens. S. Afr. J. Anim. Sci. 2012, 42, 266–273. [Google Scholar] [CrossRef]
- Mountzouris, K.C.; Dalaka, E.; Palamidi, I.; Paraskeuas, V.; Demey, V.; Theodoropoulos, G.; Fegeros, K. Evaluation of Yeast Dietary Supplementation in Broilers Challenged or Not with Salmonella on Growth Performance, Cecal Microbiota Composition and Salmonella in Ceca, Cloacae and Carcass Skin. Poult. Sci. 2015, 94, 2445–2455. [Google Scholar] [CrossRef]
- El-Naga, M.K.A. Effect of Dietary Yeast Supplementation on Broiler Performance. Egypt. Poult. Sci. J. 2012, 32, 95–106. [Google Scholar]
- Gil De Los Santos, J.R.; Storch, O.B.; Gil-Turnes, C. Bacillus cereus Var. Toyoii and Saccharomyces boulardii Increased Feed Efficiency in Broilers Infected with Salmonella enteritidis. Br. Poult. Sci. 2005, 46, 494–497. [Google Scholar] [CrossRef]
- Tang, X.; Liu, X.; Liu, H. Effects of Dietary Probiotic (Bacillus subtilis) Supplementation on Carcass Traits, Meat Quality, Amino Acid, and Fatty Acid Profile of Broiler Chickens. Front. Vet. Sci. 2021, 8, 767802. [Google Scholar] [CrossRef] [PubMed]
- Eltazi, S.M.; Mohamed, K.A.; Mohamed, M.A. Response of Broiler Chicks to Diets Containing Live Yeast as Probiotic Natural Feed Additive. Int. J. Pharm. Res. Allied Sci. 2014, 3, 40–46. [Google Scholar]
- Mohammed, A.A.; Zaki, R.S.; Negm, E.A.; Mahmoud, M.A.; Cheng, H.W. Effects of Dietary Supplementation of a Probiotic (Bacillus subtilis) on Bone Mass and Meat Quality of Broiler Chickens. Poult. Sci. 2021, 100, 100906. [Google Scholar] [CrossRef]
- Aristides, L.G.A.; Venancio, E.J.; Alfieri, A.A.; Otonel, R.A.A.; Frank, W.J.; Oba, A. Carcass Characteristics and Meat Quality of Broilers Fed with Different Levels of Saccharomyces cerevisiae Fermentation Product. Poult. Sci. 2018, 97, 3337–3342. [Google Scholar] [CrossRef] [PubMed]
- Hoque, M.-R.; Jung, H.-I.; Kim, I.-H. Effect of Yeast Culture (Saccharomyces cerevisiae) Supplementation on Growth Performance, Excreta Microbes, Noxious Gas, Nutrient Utilization, and Meat Quality of Broiler Chicken. J. Poult. Sci. 2021, 58, 216–221. [Google Scholar] [CrossRef]
- Barnes, E.M.; Impey, C.S.; Stevens, B.J. Factors Affecting the Incidence and Anti-Salmonella Activity of the Anaerobic Caecal Flora of the Young Chick. J. Hyg. 1979, 82, 263–283. [Google Scholar] [CrossRef]
- Van Der Wielen, P.W.J.J.; Biesterveld, S.; Notermans, S.; Hofstra, H.; Urlings, B.A.P.; Van Knapen, F. Role of Volatile Fatty Acids in Development of the Cecal Microflora in Broiler Chickens during Growth. Appl. Environ. Microbiol. 2000, 66, 2536–2540. [Google Scholar] [CrossRef]
- Shanmugasundaram, R.; Sifri, M.; Jeyabalan, R.; Selvaraj, R.K. Effect of Yeast Cell Product (CitriStim) Supplementation on Turkey Performance and Intestinal Immune Cell Parameters during an Experimental Lipopolysaccharide Injection. Poult. Sci. 2014, 93, 1195–1201. [Google Scholar] [CrossRef]
- Spring, P.; Wenk, C.; Dawson, K.A.; Newman, K.E. The Effects of Dietary Mannanoligosaccharides on Cecal Parameters and the Concentrations of Enteric Bacteria in the Ceca of Salmonella-Challenged Broiler Chicks. Poult. Sci. 2000, 79, 205–211. [Google Scholar] [CrossRef]
- Juśkiewicz, J.; Zduńczyk, Z.; Jankowski, J.; Król, B. Caecal Metabolism in Young Turkeys Fed Diets Supplemented with Oligosaccharides. Arch. Geflugelk. 2002, 66, 206–210. [Google Scholar] [CrossRef]
- Rajput, I.R.; Li, W.F. Potential Role of Probiotics in Mechanism of Intestinal Immunity. Pak. Vet. J. 2012, 32, 2531. [Google Scholar]
- Rajput, I.R.; Li, Y.L.; Xu, X.; Huang, Y.; Zhi, W.C.; Yu, D.Y.; Li, W. Supplementary Effects of Saccharomyces boulardii and Bacillus subtilis B10 on Digestive Enzyme Activities, Antioxidation Capacity and Blood Homeostasis in Broiler. Int. J. Agric. Biol. 2013, 15, 231–237. [Google Scholar]
- Yun, C.H.; Lillehoj, H.S.; Lillehoj, E.P. Intestinal Immune Responses to Coccidiosis. Dev. Comp. Immunol. 2000, 24, 303–324. [Google Scholar] [CrossRef]
- Robinson, J.K.; Blanchard, T.G.; Levine, A.D.; Emancipator, S.N.; Lamm, M.E. A Mucosal IgA-Mediated Excretory Immune System in Vivo. J. Immunol. 2001, 166, 3688–3692. [Google Scholar] [CrossRef]
- Fujioka, H.; Emancipator, S.N.; Aikawa, M.; Huang, D.S.; Blatnik, F.; Karban, T.; DeFife, K.; Mazanec, M.B. Immunocytochemical Colocalization of Specific Immunoglobulin A with Sendai Virus Protein in Infected Polarized Epithelium. J. Exp. Med. 1998, 188, 1223–1229. [Google Scholar] [CrossRef]
- Muhlen, C.; Conrad, N.L.; Roll, A.P.; Dias, R.C.; Leiter, F.P.L.; Corcini, C.D.; Varela Junior, A.S.; Roll, V.F.B. Saccharomyces boulardii and Saccharomyces cerevisiae improve immunity in broilers vaccinated against Pasteurella multicide and Salmonella gallinarum. Braz. J. Pout. Sci. 2024, 26, 1993. [Google Scholar]
- Paryad, A.; Mahmoudi, M. Effect of Different Levels of Supplemental Yeast (Saccharomyces cerevisiae) on Performance, Blood Constituents and Carcass Characteristics of Broiler Chicks. Afr. J. Agric. Res. 2008, 3, 835–842. [Google Scholar]
- Saied, J.M.; Al-Jabary, Q.H.; Thalij, K.M. Effect of Dietary Supplement Yeast Culture on Production Performance and Hematological Parameters in Broiler Chicks. Int. J. Poult. Sci. 2011, 10, 376–380. [Google Scholar] [CrossRef]
- Pais, P.; Almeida, V.; Yılmaz, M.; Teixeira, M.C. Saccharomyces boulardii: What Makes It Tick as Successful Probiotic? J. Fungi 2020, 6, 78. [Google Scholar] [CrossRef]
- Goktas, H.; Dertli, E.; Sagdic, O. Comparison of Functional Characteristics of Distinct Saccharomyces boulardii Strains Isolated from Commercial Food Supplements. LWT 2021, 136, 110340. [Google Scholar] [CrossRef]
- Nawaz, S.; Asif, M.; Bhutta, Z.A.; Kulyar, M.F.; Hussain, R.; Ramzan, A.; Shafeeq, S.; Shakir, M.Z.; Sarfaraz, M.T.; Li, K. A Comprehensive Review on Acute Phase Proteins in Chicken. Eur. Poul. Sci. 2021, 85, 1–18. [Google Scholar] [CrossRef]
- Adewole, D.I.; Kim, I.H.; Nyachoti, C.M. Gut Health of Pigs: Challenge Models and Response Criteria with a Critical Analysis of the Effectiveness of Selected Feed Additives—A Review. Asian-Australas. J. Anim. Sci. 2016, 29, 909–924. [Google Scholar] [CrossRef] [PubMed]
- Panda, A.K.; Bhanja, S.K.; Sunder, G.S. Early Post Hatch Nutrition on Immune System Development and Function in Broiler Chickens. World’s Poult. Sci. J. 2015, 71, 285–296. [Google Scholar] [CrossRef]
- Yu, K.; Choi, I.; Yun, C.-H. Immunosecurity: Immunomodulants Enhance Immune Responses in Chickens. Anim. Biosci. 2021, 34, 321–337. [Google Scholar] [CrossRef]
- Takahashi, K.; Akiba, Y.; Tamura, K. Effect of Repeated Sephadex Injection with or without Escherichia coli Lipopolysaccharide on Growth, Immunocompetent Organ Weight and Plasma Alpha 1 Acid Glycoprotein Concentration in Broiler Chicks Reared in Different Stocking Density. Anim. Sci. J. 2000, 71, 268–273. [Google Scholar] [CrossRef]
- Chang, C.; Wang, K.; Zhou, S.-N.; Wang, X.-D.; Wu, J.-E. Protective Effect of Saccharomyces boulardii on Deoxynivalenol-Induced Injury of Porcine Macrophage via Attenuating P38 MAPK Signal Pathway. Appl. Biochem. Biotechnol. 2017, 182, 411–427. [Google Scholar] [CrossRef]
- Lee, S.K.; Kim, Y.W.; Chi, S.-G.; Joo, Y.-S.; Kim, H.J. The Effect of Saccharomyces boulardii on Human Colon Cells and Inflammation in Rats with Trinitrobenzene Sulfonic Acid-Induced Colitis. Dig. Dis. Sci. 2009, 54, 255–263. [Google Scholar] [CrossRef]
- van der Aa Kühle, A.; Skovgaard, K.; Jespersen, L. In Vitro Screening of Probiotic Properties of Saccharomyces cerevisiae Var. Boulardii and Food-Borne Saccharomyces cerevisiae Strains. Int. J. Food Microbiol. 2005, 101, 29–39. [Google Scholar] [CrossRef]
- Sumanu, V.O.; Byaruhanga, C.; Bosman, A.-M.; Ochai, S.O.; Naidoo, V.; Oosthuizen, M.C.; Chamunorwa, J.P. Effects of Probiotic (Saccharomyces cerevisiae) and Ascorbic Acid on Oxidative Gene Damage Biomarker, Heat Shock Protein 70 and Interleukin 10 in Broiler Chickens Exposed to Heat Stress. Anim. Gene 2023, 28, 200150. [Google Scholar] [CrossRef]
- Alizadeh, M.; Rodriguez-Lecompte, J.C.; Echeverry, H.; Crow, G.H.; Slominski, B.A. Effect of Yeast-Derived Products and Distillers Dried Grains with Solubles (DDGS) on Antibody-Mediated Immune Response and Gene Expression of Pattern Recognition Receptors and Cytokines in Broiler Chickens Immunized with T-Cell Dependent Antigens. Poult. Sci. 2016, 95, 823–833. [Google Scholar] [CrossRef]
| Starter (0–21 d) | Finisher (22–35 d) | |||
|---|---|---|---|---|
| Item | OPT | DEF | OPT | DEF |
| Ingredients (g/kg) | ||||
| Maize, 8.8% CP | 570 | 580 | 636.5 | 646.5 |
| Soybean meal, 44.6% CP | 320 | 320 | 255 | 255 |
| Corn gluten meal, 60% CP | 40 | 10 | 40 | 10 |
| Soybean oil | 25 | 25 | 30 | 30 |
| Salt | 3 | 3 | 2.4 | 2.4 |
| Dicalcium phosphate | 17 | 17 | 13 | 13 |
| DL-methionine, 99% | 3.1 | 3.1 | 2.0 | 2.0 |
| L-lysine, 78% | 2.0 | 2.0 | 2.2 | 2.2 |
| L-threonine | 0.5 | 0.5 | 0.5 | 0.5 |
| Limestone | 13 | 13 | 13 | 13 |
| Sodium bicarbonate | 2.4 | 2.4 | 1.4 | 1.4 |
| Choline chloride, 50% | 2.0 | 2.0 | 2.0 | 2.0 |
| Cellulose | 0.0 | 20.0 | 0.0 | 20.0 |
| Vitamin premix 2 | 1.0 | 1.0 | 1.0 | 1.0 |
| Mineral premix 3 | 1.0 | 1.0 | 1.0 | 1.0 |
| Total | 1000.0 | 1000.0 | 1000.0 | 1000.0 |
| Nutrient composition 4 (%) | ||||
| AMEn (kcal/kg) | 3049 | 2971 | 3152 | 3074 |
| Dry matter | 89.1 | 89.5 | 89.3 | 89.5 |
| Crude protein | 22.1 | 20.4 | 19.8 | 18.1 |
| Total lysine | 1.26 | 1.23 | 1.10 | 1.08 |
| Methionine | 0.65 | 0.61 | 0.52 | 0.48 |
| Total TSAA | 1.00 | 0.93 | 0.84 | 0.76 |
| Total threonine | 0.87 | 0.81 | 0.77 | 0.72 |
| Calcium | 1.00 | 1.00 | 0.9 | 0.9 |
| Nonphytate phosphorus | 0.45 | 0.45 | 0.37 | 0.37 |
| Body Weight Gain, g/d/Bird | Feed Intake, g/d/Bird | Feed Conversion Ratio | Mortality (%) | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| Density | S. boulardii | 1–21 d | 21–35 d | 1–35 d | 1–21 d | 21–35 d | 1–35 d | 1–21 d | 21–35 d | 1–35 d | |
| OPT | − | 39.58 2 | 78.46 | 55.13 | 57.71 | 133.5 | 88.02 | 1.39 | 1.71 | 1.51 | 0.952 |
| + | 36.43 | 79.34 | 53.59 | 57.20 | 131.3 | 86.84 | 1.46 | 1.66 | 1.54 | 0.000 | |
| DEF | − | 36.31 | 74.99 | 51.79 | 55.57 | 129.1 | 84.97 | 1.46 | 1.73 | 1.57 | 2.857 |
| + | 35.74 | 70.16 | 49.51 | 54.36 | 128.9 | 84.17 | 1.43 | 1.84 | 1.59 | 1.905 | |
| Pooled SEM | 0.771 | 2.011 | 0.794 | 0.822 | 2.029 | 1.080 | 0.031 | 0.039 | 0.017 | 0.273 | |
| Main factors | |||||||||||
| OPT | 38.00 a | 78.90 a | 54.36 a | 57.46 a | 132.4 | 87.43 a | 1.42 | 1.68 b | 1.53 b | 0.317 | |
| DEF | 36.02 b | 72.58 b | 50.65 b | 54.96 b | 129.0 | 84.57 b | 1.45 | 1.78 a | 1.58 a | 2.222 | |
| − | 37.95 | 76.73 | 53.46 A | 56.64 | 131.3 | 86.50 | 1.43 | 1.72 | 1.54 | 1.905 | |
| + | 36.08 | 74.75 | 51.55 B | 55.78 | 130.1 | 85.51 | 1.45 | 1.75 | 1.57 | 0.952 | |
| p-value | |||||||||||
| Density (ND) | 0.017 | 0.004 | <0.0001 | 0.006 | 0.106 | 0.014 | 0.465 | 0.018 | 0.004 | 0.076 | |
| Additive (AD) | 0.024 | 0.336 | 0.024 | 0.302 | 0.569 | 0.369 | 0.525 | 0.393 | 0.138 | 0.364 | |
| ND × AD | 0.109 | 0.169 | 0.644 | 0.674 | 0.624 | 0.860 | 0.094 | 0.054 | 0.975 | 1.000 | |
| Breast Meat (g/100 BW) | Cooking Loss (%) | pH | CIE L* (Lightness) | CIE a* (Redness) | CIE b* (Yellowness) | ||
|---|---|---|---|---|---|---|---|
| Density | S. boulardii | ||||||
| OPT | − | 7.525 2 | 27.77 | 6.056 | 55.27 | 0.484 | 11.82 |
| + | 7.217 | 27.98 | 6.026 | 54.00 | 0.190 | 11.35 | |
| DEF | − | 7.616 | 25.66 | 6.002 | 54.09 | −0.121 | 9.774 |
| + | 7.351 | 28.56 | 6.090 | 55.74 | 0.089 | 10.81 | |
| Pooled SEM | 0.236 | 0.982 | 0.113 | 1.356 | 0.363 | 0.789 | |
| Main factors | |||||||
| OPT | 7.371 | 27.87 | 6.041 | 54.63 | 0.337 | 11.59 | |
| DEF | 7.483 | 27.11 | 6.046 | 54.92 | −0.016 | 10.29 | |
| − | 7.571 | 26.71 | 6.029 | 54.68 | 0.181 | 10.80 | |
| + | 7.284 | 28.27 | 6.058 | 54.87 | 0.139 | 11.08 | |
| p-value | |||||||
| Density (ND) | 0.639 | 0.443 | 0.968 | 0.837 | 0.340 | 0.114 | |
| Additive (AD) | 0.237 | 0.126 | 0.800 | 0.890 | 0.909 | 0.724 | |
| ND × AD | 0.927 | 0.183 | 0.606 | 0.290 | 0.494 | 0.352 |
| Thigh Meat (g/100 BW) | Cooking Loss (%) | pH | CIE L* (Lightness) | CIE a* (Redness) | CIE b* (Yellowness) | ||
|---|---|---|---|---|---|---|---|
| Density | S. boulardii | ||||||
| OPT | − | 6.908 2 | 33.66 | 5.602 | 52.89 | 3.133 | 12.15 |
| + | 6.748 | 33.19 | 5.633 | 55.51 | 3.137 | 12.95 | |
| DEF | − | 6.381 | 35.24 | 5.664 | 55.81 | 2.541 | 11.42 |
| + | 6.679 | 34.66 | 5.573 | 54.96 | 2.687 | 11.70 | |
| Pooled SEM | 0.168 | 1.400 | 0.038 | 1.266 | 0.410 | 0.543 | |
| Main factors | |||||||
| OPT | 6.828 3 | 33.42 | 5.618 | 54.20 | 3.135 | 12.55 | |
| DEF | 6.530 | 34.95 | 5.619 | 55.38 | 2.614 | 11.56 | |
| − | 6.645 4 | 34.45 | 5.633 | 54.35 | 2.837 | 11.78 | |
| + | 6.714 | 33.92 | 5.603 | 55.24 | 2.912 | 12.32 | |
| p-value | |||||||
| Density (ND) | 0.089 | 0.286 | 0.978 | 0.360 | 0.216 | 0.081 | |
| Additive (AD) | 0.685 | 0.712 | 0.431 | 0.492 | 0.856 | 0.330 | |
| ND × AD | 0.187 | 0.968 | 0.120 | 0.184 | 0.864 | 0.635 |
| Density | S. boulardii | Acetate | Propionate | Butyrate | Total VFA |
|---|---|---|---|---|---|
| μM/g | |||||
| OPT | − | 30.15 2 | 9.083 | 9.256 | 48.48 |
| + | 33.80 | 9.369 | 12.27 | 55.44 | |
| DEF | − | 30.36 | 9.410 | 9.435 | 49.20 |
| + | 33.69 | 9.097 | 11.23 | 54.02 | |
| Pooled SEM | 3.447 | 1.120 | 18.96 | 4.882 | |
| Main factors | |||||
| OPT | 31.97 | 9.226 | 10.76 | 51.96 | |
| DEF | 32.03 | 9.253 | 10.33 | 51.61 | |
| − | 30.25 | 9.246 | 9.35 | 48.84 | |
| + | 33.75 | 9.233 | 11.75 | 54.73 | |
| p-value | |||||
| Density (ND) | 0.988 | 0.981 | 0.985 | 0.943 | |
| Additive (AD) | 0.321 | 0.991 | 0.863 | 0.240 | |
| ND × AD | 0.964 | 0.792 | 0.988 | 0.829 | |
| % of total VFA | |||||
| OPT | − | 60.15 | 21.95 | 17.90 | |
| + | 60.86 | 17.14 | 21.99 | ||
| DEF | − | 61.77 | 19.73 | 18.50 | |
| + | 61.93 | 17.65 | 20.42 | ||
| Pooled SEM | 1.947 | 2.883 | 3.208 | ||
| Main factors | |||||
| OPT | 60.51 | 19.55 | 19.95 | ||
| DEF | 61.85 | 18.69 | 19.46 | ||
| − | 60.96 | 20.84 | 18.20 | ||
| + | 61.40 | 17.40 | 21.21 | ||
| p-value | |||||
| Density (ND) | 0.498 | 0.769 | 0.881 | ||
| Additive (AD) | 0.824 | 0.244 | 0.358 | ||
| ND × AD | 0.889 | 0.640 | 0.737 |
| SOD Activity | Jejunal sIgA (μg/mg of Protein) | NO (μmol/L) | AGP (μg/mL) | IgA (mg/mL) | IgM (mg/mL) | IFN-γ (pg/mL) | ||
|---|---|---|---|---|---|---|---|---|
| Density | S. boulardii | |||||||
| OPT | − | 72.42 2 | 16.998 | 18.76 | 366.1 ab | 1.190 | 1.657 | 119.3 ab |
| + | 77.46 | 17.455 | 17.49 | 503.2 a | 1.094 | 1.533 | 131.9 ab | |
| DEF | − | 74.41 | 3.959 | 19.87 | 491.9 a | 1.153 | 1.505 | 185.2 a |
| + | 70.29 | 4.046 | 21.09 | 210.2 b | 1.146 | 1.345 | 101.4 b | |
| Pooled SEM | 7.855 | 0.806 | 2.114 | 62.28 | 0.056 | 0.096 | 20.95 | |
| Main factors | ||||||||
| OPT | 74.94 | 3.067 | 18.13 | 434.6 | 1.142 | 1.595 | 125.6 | |
| DEF | 72.35 | 4.003 | 20.48 | 351.0 | 1.149 | 1.425 | 143.3 | |
| − | 73.41 | 3.908 | 19.32 | 429.0 | 1.171 | 1.581 | 152.2 | |
| + | 73.88 | 3.162 | 19.29 | 356.7 | 1.120 | 1.439 | 116.7 | |
| p-value | ||||||||
| Density (ND) | 0.745 | 0.267 | 0.276 | 0.202 | 0.896 | 0.088 | 0.406 | |
| Additive (AD) | 0.953 | 0.374 | 0.990 | 0.267 | 0.381 | 0.152 | 0.102 | |
| ND × AD | 0.565 | 0.322 | 0.562 | 0.003 | 0.447 | 0.853 | 0.030 |
| GOT (IU/L) | GPT (IU/L) | Glucose (mg/dL) | Total Cholesterol (mg/dL) | Triglyceride (mg/dL) | P (mg/dL) | Uric Acid (mg/dL) | ||
|---|---|---|---|---|---|---|---|---|
| Density | S. boulardii | |||||||
| OPT | − | 175.4 2 | 3.86 | 413.7 | 83.00 | 146.9 | 11.29 | 7.600 |
| + | 195.9 | 4.29 | 404.4 | 87.29 | 146.6 | 11.69 | 7.686 | |
| DEF | − | 156.6 | 3.57 | 376.1 | 81.43 | 85.43 | 10.64 | 6.743 |
| + | 166.1 | 2.71 | 257.3 | 79.43 | 43.71 | 9.586 | 4.529 | |
| Pooled SEM | 11.73 | 0.373 | 48.29 | 4.709 | 36.55 | 0.817 | 1.124 | |
| Main factors | ||||||||
| OPT | 185.6 a | 4.071 a | 409.1 | 85.14 | 146.7 a | 11.49 | 7.643 | |
| DEF | 161.4 b | 3.143 b | 316.7 | 80.43 | 64.57 b | 10.11 | 5.636 | |
| − | 166.0 | 3.714 | 394.9 | 82.21 | 116.1 | 10.96 | 7.171 | |
| + | 181.0 | 3.500 | 330.9 | 83.36 | 95.14 | 10.64 | 6.107 | |
| p-value | ||||||||
| Density (ND) | 0.049 | 0.020 | 0.068 | 0.327 | 0.034 | 0.106 | 0.087 | |
| Additive (AD) | 0.213 | 0.571 | 0.197 | 0.810 | 0.571 | 0.691 | 0.353 | |
| ND × AD | 0.648 | 0.098 | 0.268 | 0.511 | 0.576 | 0.381 | 0.317 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vu, V.A.; Lis, C.; Kim, D.-H.; Lee, Y.-S.; Lee, K.-W. Role of Dietary Saccharomyces boulardii in Innate Immune Responses of Broiler Chickens Fed Diets Containing Different Nutrient Densities. Animals 2025, 15, 3425. https://doi.org/10.3390/ani15233425
Vu VA, Lis C, Kim D-H, Lee Y-S, Lee K-W. Role of Dietary Saccharomyces boulardii in Innate Immune Responses of Broiler Chickens Fed Diets Containing Different Nutrient Densities. Animals. 2025; 15(23):3425. https://doi.org/10.3390/ani15233425
Chicago/Turabian StyleVu, Viet Anh, Chreng Lis, Da-Hye Kim, Yong-Suk Lee, and Kyung-Woo Lee. 2025. "Role of Dietary Saccharomyces boulardii in Innate Immune Responses of Broiler Chickens Fed Diets Containing Different Nutrient Densities" Animals 15, no. 23: 3425. https://doi.org/10.3390/ani15233425
APA StyleVu, V. A., Lis, C., Kim, D.-H., Lee, Y.-S., & Lee, K.-W. (2025). Role of Dietary Saccharomyces boulardii in Innate Immune Responses of Broiler Chickens Fed Diets Containing Different Nutrient Densities. Animals, 15(23), 3425. https://doi.org/10.3390/ani15233425

