Amino Acid Nutrition in Poultry: A Review
Simple Summary
Abstract
1. Introduction
2. Essential Versus Non-Essential Amino Acids: Definitions and Roles
2.1. Essential Amino Acids (EAAs)
2.2. Non-Essential Amino Acids (NEAAs)
2.3. Limiting Amino Acids and Their Roles in Poultry Growth and Health
2.3.1. Methionine
2.3.2. Lysine
2.3.3. Threonine
2.3.4. Tryptophan
3. Current Challenges in Optimizing Amino Acid Nutrition
4. Feed Ingredients Supplying Amino Acids and Formulation Strategies
| Feed Ingredient | Major Essential AAs Present | Major AA Concentration g/kg (As-Fed Basis) | First Limiting Essential AAs (Relative to Requirement) | Digestibility | Reference |
|---|---|---|---|---|---|
| Corn | Leucine | 10.8 | Lysine | High for Leucine | [177,178] |
| Wheat | Leucine | 8.4 | Lysine | High for Leucine | [177,179] |
| Soybean Meal | Arginine | 36.1 | Methionine | High overall | [177,180] |
| Canola meal | Methionine, Leucine | 25.2 | Lysine | Varied | [179,181] |
| DDGS 1 | Leucine | 30.9 | Lysine | High for Leucine | [182] |
| Fish meal | Lysine, Methionine | 46.3 | Threonine | High Lysine | [183] |
| Meat and Bone meal | Arginine | 35.9 | Methionine | Lower than blood meal | [177] |
| Blood meal | Lysine | 118.9 | Isoleucine | High for Lysine and Histidine | [177] |
| Feather meal | Leucine | 70.3 | Lysine | High in Histidine | [177] |
| Feed Ingredient | Predominant Non-Essential AAs | Major AA Concentration g/kg (As-Fed Basis) | Notable Variable | Reference |
|---|---|---|---|---|
| Corn | Glutamic Acid and alanine | 16.3 | Higher alanine compared to wheat | [177,179] |
| Wheat | Glutamic acid and Aspartic acid | 32.8 | Higher glutamate compared to corn | [177,179] |
| Soybean meal | Aspartic acid | 87.3 | Significant variations across Brazilian states | [179,180] |
| Canola meal | Aspartic acid and glutamic acid | 62.7 | Glutamic acid has higher apparent ileal AA digestibility | [177,181] |
| Fish Meal | Glutamic acid and aspartic acid | 75.6 | Higher glutamic acid compared to canola meal | [177,179,183] |
| Cottonseed meal | Glutamic acid | 80.6 | Higher proline compared to corn | [177,179] |
| Meat and bone meal | Glycine | 68.7 | Higher glycine and proline | [177,179] |
| Blood meal | Aspartic acid and leucine | 100.1 | Very high level of leucine compared to other animal sources | [177] |
| Sunflower | Glutamic acid | 62.4 | Lower glutamic acid compared to soybean meal | [177] |
| Feather meal | Glutamic acid and glycine | 95.5 | Very high glutamic acid | [177] |
4.1. Anti-Nutritional Factor in Feed Ingredients
4.1.1. Trypsin Inhibitors
4.1.2. β-Glucans
4.1.3. Glucosinolates
5. Advances in Amino Acid Utilization: Processing, Metabolism, and Microbiota Interactions
6. Exogenous Enzymes in Amino Acid Nutrition
6.1. Phytase and Amino Acid Digestibility
6.2. Protease Supplementation and Amino Acid Digestibility
6.3. Carbohydrase and NSP Degradation
6.4. Synergistic Effect of Enzyme Combinations
6.5. Mechanisms of Action: How Exogenous Enzymes Improve Amino Acid Digestibility
6.6. Data-Driven Insights—Role of Exogenous Enzymes in Amino Acid Digestibility and Nutrient Utilization in Poultry
7. Ileal Amino Acid Digestibility Measures
7.1. Standardized Ileal Amino Acid Digestibility
7.2. Basal Ileal Endogenous Amino Acid Losses
7.3. Specific or Diet-Induced Ileal Endogenous Amino Acid Losses
7.4. Apparent Ileal Amino Acid Digestibility
7.5. True Ileal Amino Acid Digestibility
8. Factors Affecting SIAAD in Poultry
8.1. Feed Processing
8.2. Type of Feed Ingredient
8.3. Age
8.4. Gut Microbiota
9. Environmental Impact of Amino Acid Nutrition in Poultry Production
9.1. Strategies to Reduce Environmental Impact Through Optimized Amino Acid Nutrition
9.1.1. Precision Feeding and Diet Formulation
9.1.2. Use of Synthetic Amino Acids
9.1.3. Alternative Protein Sources
9.2. Case Studies on Environmental Benefits of Improved Amino Acid Nutrition
10. Methods for Determining Amino Acid Requirements
10.1. Nitrogen Balance Studies
10.2. Integrated Growth and Energy Model
10.3. Indicator Amino Acid Oxidation (IAAO) Method
10.4. Graded Supplementation Method
10.5. Summit Dilution Method
10.6. Slope-Ratio Assay
11. Recent Technological Advancements in Amino Acid Nutrition
12. Future Research Directions
13. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| AA | Amino acid |
| AID | Apparent Ileal Digestibility |
| AGFs | Antibiotic growth promoters |
| ANFs | Anti-nutritional factors |
| BCAA | Branch-chain amino acids |
| BIEAAL | Basal Ileal endogenous amino acid losses |
| BBTI | Bowman-Birk trypsin inhibitor |
| C | Corn |
| CP | Crude protein |
| DDGS | Distillers dried grains with solubles |
| DNA | Deoxyribonucleic acid |
| DM | Dry matter |
| DMI | Dry matter intake |
| EHC | Enzyme hydrolyzed casein |
| EAAs | Essential amino acids |
| HDP | Highly digestible protein |
| IDE | Ileal digestible energy |
| IEAA | Ileal endogenous amino acid |
| KTI | Kunitz trypsin inhibitor |
| MBM | Meat and bone meal |
| N | Nitrogen |
| NEAAs | Non-essential amino acids |
| NSP | Non-starch polysaccharide |
| NFD | Nitrogen-free diet |
| SAA | Synthetic amino acids |
| SBM | Soybean meal |
| SCP | Single-cell protein |
| SIAAD | Standardized ileal amino acid digestibility |
| TID | True ileal digestibility |
| Tis | Trypsin Inhibitors |
| TLR | Toll-like receptor |
| IL | interleukin |
| SCFA | Short chain fatty acid |
| SIS | Sodium-iodine symporter |
References
- He, W.; Li, P.; Wu, G. Amino Acid Nutrition and Metabolism in Chickens. Adv. Exp. Med. Biol. 2021, 1285, 109–131. [Google Scholar]
- Kálmán, Á.; Szőllősi, L. Global tendencies in turkey meat production, trade and consumption. Acta Agrar. Debreceniensis 2023, 2, 83–89. [Google Scholar] [CrossRef]
- Réhault-Godbert, S.; Guyot, N.; Nys, Y. The golden egg: Nutritional value, bioactivities, and emerging benefits for human health. Nutrients 2019, 11, 684. [Google Scholar] [CrossRef]
- McNeill, S.; Belk, K.; Campbell, W.; Gifford, C. Coming to terms: Meat’s role in a healthful diet. Anim. Front. 2017, 7, 34. [Google Scholar] [CrossRef]
- Kelly, B.; Pearce, E.L. Amino Assets: How Amino Acids Support Immunity. Cell Metab. 2020, 32, 154–175. [Google Scholar] [CrossRef]
- Dong, X.-Y.; Yang, C.-F.; Tang, S.-Q.; Jiang, Q.-Y.; Zou, X.-T. Effect and Mechanism of Glutamine on Productive Performance and Egg Quality of Laying Hens. Asian-Australas. J. Anim. Sci. 2010, 23, 1049–1056. [Google Scholar] [CrossRef]
- Fouad, A.M.; El-Senousey, H.K.; Ruan, D.; Wang, S.; Xia, W.; Zheng, C. Tryptophan in poultry nutrition: Impacts and mechanisms of action. J. Anim. Physiol. Anim. Nutr. 2021, 105, 1146–1153. [Google Scholar] [CrossRef]
- Chowdhury, V.S.; Shigemura, A.; Erwan, E.; Ito, K.; Bahry, M.A.; Tran, P.V.; Furuse, M. Oral Administration of L-Citrulline, but not L-Arginine or L-Ornithine, Acts as a Hypothermic Agent in Chicks. J. Poult. Sci. 2015, 52, 331–335. [Google Scholar] [CrossRef]
- Lee, J.T.; Rochell, S.J.; Kriseldi, R.; Kim, W.; Mitchell, R.D. Functional properties of amino acids: Improve health status and sustainability. Poult. Sci. 2022, 102, 102288. [Google Scholar] [CrossRef] [PubMed]
- Alagawany, M.; Elnesr, S.S.; Farag, M.R.; Tiwari, R.; Yatoo, M.I.; Karthik, K.; Michalak, I.; Dhama, K. Nutritional significance of amino acids, vitamins and minerals as nutraceuticals in poultry production and health—A comprehensive review. Vet. Q. 2020, 41, 1–29. [Google Scholar] [CrossRef] [PubMed]
- Cappelaere, L.; Le Cour Grandmaison, J.; Martin, N.; Lambert, W. Amino Acid Supplementation to Reduce Environmental Impacts of Broiler and Pig Production: A Review. Front. Vet. Sci. 2021, 8, 689259. [Google Scholar] [CrossRef]
- Zampiga, M.; Calini, F.; Sirri, F. Importance of feed efficiency for sustainable intensification of chicken meat production: Implications and role for amino acids, feed enzymes and organic trace minerals. World’s Poult. Sci. J. 2021, 77, 639–659. [Google Scholar] [CrossRef]
- Chalova, V.I.; Kim, J.-H.; Patterson, P.H.; Ricke, S.C.; Kim, W.K. Reduction of nitrogen excretion and emissions from poultry: A review for conventional poultry. World’s Poult. Sci. J. 2016, 72, 509–520. [Google Scholar] [CrossRef]
- Bailey, C.A. Precision poultry nutrition and feed formulation. In Animal Agriculture; Academic Press: New York, NY, USA, 2020; pp. 367–378. [Google Scholar]
- Kidd, M.T.; Maynard, C.W.; Mullenix, G. Progress of amino acid nutrition for diet protein reduction in poultry. J. Anim. Sci. Biotechnol. 2021, 12, 45. [Google Scholar] [CrossRef]
- Ishibashi, T.; Yonemochi, C. Possibility of amino acid nutrition in broiler. Anim. Sci. J. 2002, 73, 155–165. [Google Scholar] [CrossRef]
- Selle, P.H.; Macelline, S.P.; Chrystal, P.V.; Liu, S.Y. A reappraisal of amino acids in broiler chicken nutrition. World’s Poult. Sci. J. 2023, 79, 429–447. [Google Scholar] [CrossRef]
- Bryden, W.L.; Li, X. Amino acid digestibility and poultry feed formulation: Expression, limitations and application. Rev. Bras. Zootec. 2010, 39, 279–287. [Google Scholar] [CrossRef]
- Stein, H.; Fuller, M.F.; Moughan, P.J.; Sève, B.; Mosenthin, R.; Jansman, A.J.M.; Fernández, J.A.; de Lange, C.F.M. Definition of apparent, true, and standardized ileal digestibility of amino acids in pigs. Livest. Sci. 2007, 109, 282–285. [Google Scholar] [CrossRef]
- Cheng, S.; Langrish, T.A.G. A Review of the Treatments to Reduce Anti-Nutritional Factors and Fluidized Bed Drying of Pulses. Foods 2025, 14, 681. [Google Scholar] [CrossRef]
- Kumar, Y.; Basu, S.; Goswami, D.; Devi, M.; Shivhare, U.S.; Vishwakarma, R.K. Anti-nutritional compounds in pulses: Implications and alleviation methods. Legume Sci. 2022, 4, e111. [Google Scholar] [CrossRef]
- Sauer, A.K.; Pfaender, S.; Hagmeyer, S.; Tarana, L.; Mattes, A.K.; Briel, F.; Küry, S.; Boeckers, T.M.; Grabrucker, A.M. Characterization of zinc amino acid complexes for zinc delivery in vitro using Caco-2 cells and enterocytes from hiPSC. Biometals 2017, 30, 643–661. [Google Scholar] [CrossRef] [PubMed]
- Jacob, R.; Afify, A.; Shanab, S.; Shalaby, E. Chelated amino acids: Biomass sources, preparation, properties, and biological activities. Biomass Convers. Biorefinery 2022, 14, 2907–2921. [Google Scholar] [CrossRef]
- Waldroup, P.; Kersey, J.; Fritts, C. Influence of branched-chain amino acid balance in broiler diets. Int. J. Poult. Sci. 2002, 1, 136–144. [Google Scholar] [CrossRef]
- Li, P.; Mai, K.; Trushenski, J.; Wu, G. New developments in fish amino acid nutrition: Towards functional and environmentally oriented aquafeeds. Amino Acids 2009, 37, 43–53. [Google Scholar] [CrossRef]
- Ravindran, V. Poultry feed availability and nutrition in developing countries Advances in poultry nutrition. Poult. Dev. Rev. 2010, 2, 60–63. [Google Scholar]
- van Milgen, J.; Dourmad, J.-Y. Concept and application of ideal protein for pigs. J. Anim. Sci. Biotechnol. 2015, 6, 15. [Google Scholar] [CrossRef] [PubMed]
- Nte, I.J.; Gunn, H.H. Cysteine in Broiler Poultry Nutrition. In Bioactive Compounds—Biosynthesis, Characterization and Applications; Queiroz Zepka, L., Casagrande Do Nascimento, T., Jacob-Lopes, E., Eds.; IntechOpen: Rijeka, Croatia, 2021. [Google Scholar]
- Pacheco, L.G.; Sakomura, N.K.; Suzuki, R.M.; Dorigam, J.C.P.; Viana, G.S.; Van Milgen, J.; Denadai, J.C. Methionine to cystine ratio in the total sulfur amino acid requirements and sulfur amino acid metabolism using labelled amino acid approach for broilers. BMC Vet. Res. 2018, 14, 364. [Google Scholar] [CrossRef] [PubMed]
- Corzo, A.; Kidd, M.T.; Dozier, W.A.; Vieira, S.L. Marginality and Needs of Dietary Valine for Broilers Fed Certain All-Vegetable Diets1. J. Appl. Poult. Res. 2007, 16, 546–554. [Google Scholar] [CrossRef]
- Kidd, M.T.; Kerr, B.J. L-Threonine for Poultry: A Review. J. Appl. Poult. Res. 1996, 5, 358–367. [Google Scholar] [CrossRef]
- Khajali, F.; Slominski, B.A. Factors that affect the nutritive value of canola meal for poultry. Poult. Sci. 2012, 91, 2564–2575. [Google Scholar] [CrossRef]
- Pichardo, A.; Cervantes-Ramírez, M.; Cuca, M.; Figueroa, J.; Araiza, B.; Torrentera, N.; Cervantes, M. Limiting amino acids in wheat for growing-finishing pigs. Interciencia 2003, 28, 287–291. [Google Scholar]
- Fernandez, S.R.; Aoyagi, S.; Han, Y.; Parsons, C.M.; Baker, D.H. Limiting Order of Amino Acids in Corn and Soybean Meal for Growth of the Chick. Poult. Sci. 1994, 73, 1887–1896. [Google Scholar] [CrossRef]
- Gudipati, S. Efficacy & Significance of LYSO HERB Herbal Lysine in the nutrition, metabolism and health in Poultry & Efficacy and significance of the phytogenic METHO ADD Herbal Methionine as replacer of Synthetic DL- Methionine in nutrition and health of Poultry. Rev. Sist. 2024, 14, 482–493. [Google Scholar] [CrossRef]
- Tesseraud, S.; Coustard, S.M.; Collin, A.; Seiliez, I. Role of sulfur amino acids in controlling nutrient metabolism and cell functions: Implications for nutrition. Br. J. Nutr. 2008, 101, 1132–1139. [Google Scholar] [CrossRef] [PubMed]
- Bin, P.; Huang, R.; Zhou, X. Oxidation resistance of the sulfur amino acids: Methionine and cysteine. BioMed Res. Int. 2017, 2017, 9584932. [Google Scholar] [CrossRef] [PubMed]
- Bunchasak, C. Role of Dietary Methionine in Poultry Production. J. Poult. Sci. 2009, 46, 169–179. [Google Scholar] [CrossRef]
- Brosnan, J.T.; Brosnan, M.E. The sulfur-containing amino acids: An overview. J. Nutr. 2006, 136, 1636s–1640s. [Google Scholar] [CrossRef]
- Oshimura, E.; Sakamoto, K. Chapter 19—Amino Acids, Peptides, and Proteins. In Cosmetic Science and Technology; Sakamoto, K., Lochhead, R.Y., Maibach, H.I., Yamashita, Y., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 285–303. [Google Scholar]
- Liu, Y.; Wang, D.; Zhao, L.; Zhang, J.; Huang, S.; Ma, Q. Effect of Methionine Deficiency on the Growth Performance, Serum Amino Acids Concentrations, Gut Microbiota and Subsequent Laying Performance of Layer Chicks. Front. Vet. Sci. 2022, 9, 878107. [Google Scholar] [CrossRef]
- Navik, U.; Sheth, V.G.; Khurana, A.; Jawalekar, S.S.; Allawadhi, P.; Gaddam, R.R.; Bhatti, J.S.; Tikoo, K. Methionine as a double-edged sword in health and disease: Current perspective and future challenges. Ageing Res. Rev. 2021, 72, 101500. [Google Scholar] [CrossRef]
- Soglia, F.; Zampiga, M.; Baldi, G.; Malila, Y.; Thanatsang, K.V.; Srimarut, Y.; Tatiyaborworntham, N.; Unger, O.; Klamchuen, A.; Laghi, L.; et al. Lysine Depletion during Different Feeding Phases: Effects on Growth Performances and Meat Quality of Broiler Chickens. Animals 2021, 11, 1499. [Google Scholar] [CrossRef]
- Scappaticcio, R.; García, J.; Fondevila, G.; de Juan, A.; Cámara, L.; Mateos, G. Influence of the energy and digestible lysine contents of the diet on performance and egg quality traits of brown-egg laying hens from 19 to 59 weeks of age. Poult. Sci. 2021, 100, 101211. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, H.; Cheng, Y.; Li, Y.; Wen, C.; Zhou, Y. Dietary l-threonine supplementation attenuates lipopolysaccharide-induced inflammatory responses and intestinal barrier damage of broiler chickens at an early age. Br. J. Nutr. 2018, 119, 1254–1262. [Google Scholar] [CrossRef]
- Zhang, Q.; Chen, X.; Eicher, S.; Ajuwon, K.; Applegate, T. Effect of threonine on secretory immune system using a chicken intestinal ex vivo model with lipopolysaccharide challenge. Poult. Sci. 2017, 96, 3043–3051. [Google Scholar] [CrossRef]
- van der Eijk, J.A.J.; Lammers, A.; Kjaer, J.B.; Rodenburg, T.B. Stress response, peripheral serotonin and natural antibodies in feather pecking genotypes and phenotypes and their relation with coping style. Physiol. Behav. 2019, 199, 1–10. [Google Scholar] [CrossRef]
- Mund, M.D.; Riaz, M.; Mirza, M.A.; Rahman, Z.U.; Mahmood, T.; Ahmad, F.; Ammar, A. Effect of dietary tryptophan supplementation on growth performance, immune response and anti-oxidant status of broiler chickens from 7 to 21 days. Vet. Med. Sci. 2020, 6, 48–53. [Google Scholar] [CrossRef]
- Sharideh, H.; Zaghari, M. Effect of dietary L-tryptophan supplementation and light-emitting diodes on growth and immune response of broilers. Vet. Res. Forum 2021, 12, 63–67. [Google Scholar] [CrossRef] [PubMed]
- Monavvar, H.; Moghaddam, G.; Ebrahimi, M. A Review on the Effect of Arginine on Growth Performance, Meat Quality, Intestine Morphology, and Immune System of Broiler Chickens. Iran. J. Appl. Anim. Sci. 2020, 10, 587–594. [Google Scholar]
- Ebrahimi, M.; Zare Shahneh, A.; Shivazad, M.; Ansari Pirsaraei, Z.; Tebianian, M.; Ruiz-Feria, C.A.; Adibmoradi, M.; Nourijelyani, K.; Mohamadnejad, F. The effect of feeding excess arginine on lipogenic gene expression and growth performance in broilers. Br. Poult. Sci. 2014, 55, 81–88. [Google Scholar] [CrossRef] [PubMed]
- Anthony, J.C.; Anthony, T.G.; Kimball, S.R.; Vary, T.C.; Jefferson, L.S. Orally administered leucine stimulates protein synthesis in skeletal muscle of postabsorptive rats in association with increased eIF4F formation. J. Nutr. 2000, 130, 139–145. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Sun, J.; Jiang, S.; Jiao, N.; Huang, L.; Yuan, X.; Guan, Q.; Li, Y.; Yang, W. Effects of Dietary Isoleucine Supplementation on the Production Performance, Health Status and Cecal Microbiota of Arbor Acre Broiler Chickens. Microorganisms 2023, 11, 236. [Google Scholar] [CrossRef]
- Jian, H.; Miao, S.; Liu, Y.; Li, H.; Zhou, W.; Wang, X.; Dong, X.; Zou, X. Effects of Dietary Valine Levels on Production Performance, Egg Quality, Antioxidant Capacity, Immunity, and Intestinal Amino Acid Absorption of Laying Hens during the Peak Lay Period. Animals 2021, 11, 1972. [Google Scholar] [CrossRef]
- Wu, G. Amino acids: Metabolism, functions, and nutrition. Amino Acids 2009, 37, 1–17. [Google Scholar] [CrossRef]
- Gudowska, A.; Janas, K.; Wieczorek, J.; Woznicka, O.; Płonka, P.M.; Drobniak, S.M. Canalised and plastic components of melanin-based colouration: A diet-manipulation experiment in house sparrows. Sci. Rep. 2022, 12, 18484. [Google Scholar] [CrossRef]
- Salamanca, N.; Giráldez, I.; Morales, E.; de La Rosa, I.; Herrera, M. Phenylalanine and Tyrosine as Feed Additives for Reducing Stress and Enhancing Welfare in Gilthead Seabream and Meagre. Animals 2021, 11, 45. [Google Scholar] [CrossRef]
- Asahi, R.; Tanaka, K.; Fujimi, T.J.; Kanzawa, N.; Nakajima, S. Proline decreases the suppressive effect of histidine on food intake and fat accumulation. J. Nutr. Sci. Vitaminol. 2016, 62, 277–280. [Google Scholar] [CrossRef] [PubMed]
- Moro, J.; Tomé, D.; Schmidely, P.; Demersay, T.C.; Azzout-Marniche, D. Histidine: A Systematic Review on Metabolism and Physiological Effects in Human and Different Animal Species. Nutrients 2020, 12, 1414. [Google Scholar] [CrossRef]
- Niknafs, S.; Fortes, M.R.S.; Cho, S.; Black, J.L.; Roura, E. Alanine-specific appetite in slow growing chickens is associated with impaired glucose transport and TCA cycle. BMC Genom. 2022, 23, 393. [Google Scholar] [CrossRef]
- Wu, G. Intestinal mucosal amino acid catabolism. J. Nutr. 1998, 128, 1249–1252. [Google Scholar] [CrossRef]
- Wu, G. Dietary requirements of synthesizable amino acids by animals: A paradigm shift in protein nutrition. J. Anim. Sci. Biotechnol. 2014, 5, 34. [Google Scholar] [CrossRef] [PubMed]
- Cruzat, V.; Macedo Rogero, M.; Noel Keane, K.; Curi, R.; Newsholme, P. Glutamine: Metabolism and Immune Function, Supplementation and Clinical Translation. Nutrients 2018, 10, 1564. [Google Scholar] [CrossRef] [PubMed]
- He, W.; Wu, G. Metabolism of amino acids in the brain and their roles in regulating food intake. Amino Acids Nutr. Health Amino Acids Syst. Funct. Health 2020, 1265, 167–185. [Google Scholar]
- Rodas, P.C.; Rooyackers, O.; Hebert, C.; Norberg, Å.; Wernerman, J. Glutamine and glutathione at ICU admission in relation to outcome. Clin. Sci. 2012, 122, 591–597. [Google Scholar] [CrossRef] [PubMed]
- Rajabi, M.; Ali, A.; McConnell, M.; Cabral, J. Keratinous materials: Structures and functions in biomedical applications. Mater. Sci. Eng. C 2020, 110, 110612. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Wu, G. Roles of dietary glycine, proline, and hydroxyproline in collagen synthesis and animal growth. Amino Acids 2018, 50, 29–38. [Google Scholar] [CrossRef] [PubMed]
- He, L.; Ding, Y.; Zhou, X.; Li, T.; Yin, Y. Serine signaling governs metabolic homeostasis and health. Trends Endocrinol. Metab. 2023, 34, 361–372. [Google Scholar] [CrossRef]
- Nakanot, T.; Ikawani, N.; Ozimek, L. Chemical composition of chicken eggshell and shell membranes. Poult. Sci. 2003, 82, 510–514. [Google Scholar] [CrossRef]
- Gupta, S.K.; Giri, S.S. Biotechnological Advances in Aquaculture Health Management; Springer: Berlin/Heidelberg, Germany, 2021. [Google Scholar]
- Wu, G.; Bazer, F.W.; Dai, Z.; Li, D.; Wang, J.; Wu, Z. Amino acid nutrition in animals: Protein synthesis and beyond. Annu. Rev. Anim. Biosci. 2014, 2, 387–417. [Google Scholar] [CrossRef]
- Li, P.; Yin, Y.L.; Li, D.; Kim, S.W.; Wu, G. Amino acids and immune function. Br. J. Nutr. 2007, 98, 237–252. [Google Scholar] [CrossRef]
- Fang, Y.Z.; Yang, S.; Wu, G. Free radicals, antioxidants, and nutrition. Nutrition 2002, 18, 872–879. [Google Scholar] [CrossRef]
- Dao, H.T.; Sharma, N.K.; Bradbury, E.J.; Swick, R.A. Effects of L-arginine and L-citrulline supplementation in reduced protein diets for broilers under normal and cyclic warm temperature. Anim. Nutr. 2021, 7, 927–938. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Lv, Z.; Li, H.; Guo, S.; Liu, D.; Guo, Y. Dietary l-arginine inhibits intestinal Clostridium perfringens colonisation and attenuates intestinal mucosal injury in broiler chickens. Br. J. Nutr. 2017, 118, 321–332. [Google Scholar] [CrossRef]
- Ji, Y.; Fan, X.; Zhang, Y.; Li, J.; Dai, Z.; Wu, Z. Glycine regulates mucosal immunity and the intestinal microbial composition in weaned piglets. Amino Acids 2022, 54, 385–398. [Google Scholar] [CrossRef]
- Wu, G. Amino Acids: Biochemistry and Nutrition; CRC Press: Boca Raton, FL, USA, 2021. [Google Scholar]
- Young, V.R.; Fukagawa, N.K.; Bier, D.; Matthews, D.E. Some Aspects of In Vivo Human Protein and Amino Acid Metabolism, with Particular Reference to Nutritional Modulation. Verhandlungen Der Dtsch. Ges. Für Inn. Med. 1986, 92, 640–665. [Google Scholar]
- Bernal, L.E.P.; Tavernari, F.C.; Rostagno, H.S.; Albino, L.F.T. Digestible lysine requirements of broilers. Braz. J. Poult. Sci. 2014, 16, 49–54. [Google Scholar] [CrossRef]
- Kim, E.; Wickramasuriya, S.S.; Shin, T.K.; Cho, H.M.; Kim, H.B.; Heo, J.M. Estimating total lysine requirement for optimised egg production of broiler breeder hens during the early-laying period. J. Anim. Sci. Technol. 2020, 62, 521–532. [Google Scholar] [CrossRef]
- Baker, K.; Firman, J.; Blair, E.; Brown, J.; Moore, D. Digestible lysine requirements of male turkeys during the 12 to 18 week period. Int. J. Poult. Sci. 2003, 2, 229–233. [Google Scholar] [CrossRef]
- Silva, E.P.; Malheiros, E.B.; Sakomura, N.K.; Venturini, K.S.; Hauschild, L.; Dorigam, J.C.P.; Fernandes, J.B.K. Lysine requirements of laying hens. Livest. Sci. 2015, 173, 69–77. [Google Scholar] [CrossRef]
- Millecam, J.; Khan, D.R.; Dedeurwaerder, A.; Saremi, B. Optimal methionine plus cystine requirements in diets supplemented with L-methionine in starter, grower, and finisher broilers. Poult. Sci. 2021, 100, 910–917. [Google Scholar] [CrossRef] [PubMed]
- Saki, A.A.; Naseri Harsini, R.; Tabatabaei, M.M.; Zamani, P.; Haghight, M. Estimates of methionine and sulfur amino acid requirements for laying hens using different models. Braz. J. Poult. Sci. 2012, 14, 209–216. [Google Scholar] [CrossRef]
- Dozier, W.A.; Kidd, M.T.; Corzo, A. Dietary Amino Acid Responses of Broiler Chickens1. J. Appl. Poult. Res. 2008, 17, 157–167. [Google Scholar] [CrossRef]
- Council, N.R. Nutrient Requirements of Poultry: 1994; National Academies: Washington, DC, USA, 1994. [Google Scholar]
- Ayasan, T.; Okan, F.; Hizli, H. Threonine requirement of broiler from 22–42 days. Int. J. Poult. Sci. 2009, 8, 862–865. [Google Scholar] [CrossRef]
- Rosa, A.P.; Pesti, G.M.; Edwards, H.M.; Bakalli, R.I. Threonine Requirements of Different Broiler Genotypes. Poult. Sci. 2001, 80, 1710–1717. [Google Scholar] [CrossRef] [PubMed]
- Ishibashi, T.; Ogawa, Y.; Itoh, T.; Fujimura, S.; Koide, K.; Watanabe, R. Threonine requirements of laying hens. Poult. Sci. 1998, 77, 998–1002. [Google Scholar] [CrossRef] [PubMed]
- Silva, E.P.; Sakomura, N.K.; Oliveira, C.F.S.; Costa, F.G.P.; Dorigam, J.C.P.; Malheiros, E.B. The optimal lysine and threonine intake for Cobb broiler breeder hens using Reading model. Livest. Sci. 2015, 174, 59–65. [Google Scholar] [CrossRef]
- Kidd, M.T.; Ferket, P.R.; Garlich, J.D. Dietary threonine responses in growing turkey toms. Poult. Sci. 1998, 77, 1550–1555. [Google Scholar] [CrossRef]
- Harms, R.; Russell, G. Evaluation of valine requirement of the commercial layer using a corn-soybean meal basal diet. Poult. Sci. 2001, 80, 215–218. [Google Scholar] [CrossRef]
- Rosa, A.; Pesti, G.; Edwards, H., Jr.; Bakalli, R. Tryptophan requirements of different broiler genotypes. Poult. Sci. 2001, 80, 1718–1722. [Google Scholar] [CrossRef]
- Duarte, K.F.; Junqueira, O.M.; Filardi, R.d.S.; Siqueira, J.C.d.; Puzotti, M.M.; Garcia, E.A.; Molino, A.d.B.; Laurentiz, A.C.d. Digestible tryptophan requirements for broilers from 22 to 42 days old. Rev. Bras. Zootec. 2013, 42, 728–733. [Google Scholar] [CrossRef]
- Cardoso, A.S.; Costa, F.G.P.; Vilar da Silva, J.H.; Saraiva, E.P.; Nogueira, E.T.; Santos, C.S.; Ramalho de Lima, M.; Vieira, D.V.G. Nutritional requirement of digestible tryptophan for white-egg layers of 60 to 76 weeks of age. J. Appl. Poult. Res. 2014, 23, 729–734. [Google Scholar] [CrossRef]
- Babazadeh, D.; Ahmadi Simab, P. Methionine in Poultry Nutrition: A Review. J. World’s Poult. Sci. 2022, 1, 1–11. [Google Scholar] [CrossRef]
- Macelline, S.P.; Toghyani, M.; Chrystal, P.V.; Selle, P.H.; Liu, S.Y. Amino acid requirements for laying hens: A comprehensive review. Poult. Sci. 2021, 100, 101036. [Google Scholar] [CrossRef] [PubMed]
- Schutte, J.B.; van Weerden, E.J. Requirement of the hen for sulphur-containing amino acids. Br. Poult. Sci. 1978, 19, 573–581. [Google Scholar] [CrossRef]
- Courtney-Martin, G.; Pencharz, P.B. Sulfur Amino Acids Metabolism From Protein Synthesis to Glutathione. In The Molecular Nutrition of Amino Acids and Proteins; Academic Press: Boston, MA, USA, 2016; pp. 265–286. [Google Scholar]
- Ak, I.; Sözcü, A. Importance of Methionine For Immune System Development and Performance in Broiler Nutrition. J. Poult. Res. 2016, 13, 5–8. [Google Scholar]
- Baker, D.H.; Boebel, K.P. Utilization of the D- and L-Isomers of Methionine and Methionine Hydroxy Analogue as Determined by Chick Bioassay. J. Nutr. 1980, 110, 959–964. [Google Scholar] [CrossRef]
- Waldroup, P.; Mabray, C.; Blackman, J.; Slagter, P.; Short, R.; Johnson, Z. Effectiveness of the free acid of methionine hydroxy analogue as a methionine supplement in broiler diets. Poult. Sci. 1981, 60, 438–443. [Google Scholar] [CrossRef]
- Thomas, O.P.; Tamplin, C.B.; Crissey, S.D.; Bossard, E.H.; Zuckerman, A. An Evaluation of Methionine Hydroxy Analog Free Acid Using A Nonlinear (Exponential) Bioassay. Poult. Sci. 1991, 70, 605–610. [Google Scholar] [CrossRef]
- Huyghebaert, G. Comparison of DL-methionine and methionine hydroxy analogue-free acid in broilers by using multi-exponential regression models. Br. Poult. Sci. 1993, 34, 351–359. [Google Scholar] [CrossRef]
- Knight, C.D.; Dibner, J.J. Comparative Absorption of 2-Hydroxy-4-(Methylthio)-butanoic Acid and L-Methionine in the Broiler Chick. J. Nutr. 1984, 114, 2179–2186. [Google Scholar] [CrossRef]
- Dibner, J.J.; Atwell, C.A.; Ivey, F.J. Effect of Heat Stress on 2-Hydroxy-4-(Methylthio)Butanoic Acid and DL-Methionine Absorption Measured In Vitro. Poult. Sci. 1992, 71, 1900–1910. [Google Scholar] [CrossRef]
- Drew, M.D.; Van Kessel, A.G.; Maenz, D.D. Absorption of methionine and 2-hydroxy-4-methylthiobutoanic acid in conventional and germ-free chickens. Poult. Sci. 2003, 82, 1149–1153. [Google Scholar] [CrossRef]
- Rostagno, H.S.; Barbosa, W.A. Biological efficacy and absorption of DL-methionine hydroxy analogue free acid compared to DL-methionine in chickens as affected by heat stress. Br. Poult. Sci. 1995, 36, 303–312. [Google Scholar] [CrossRef]
- Balnave, D.; Oliva, A. Responses of finishing broilers at high temperatures to dietary methionine source and supplementation levels. Aust. J. Agric. Res. 1990, 41, 557–564. [Google Scholar] [CrossRef]
- Alagawany, M.; Abd El-Hack, M.E.; Arif, M.; Ashour, E.A. Individual and combined effects of crude protein, methionine, and probiotic levels on laying hen productive performance and nitrogen pollution in the manure. Environ. Sci. Pollut. Res. 2016, 23, 22906–22913. [Google Scholar] [CrossRef] [PubMed]
- Swain, B.K.; Johri, T.S. Effect of supplemental methionine, choline and their combinations on the performance and immune response of broilers. Br. Poult. Sci. 2000, 41, 83–88. [Google Scholar] [CrossRef]
- Picard, M.L.; Uzu, G.; Dunnington, E.A.; Siegel, P.B. Food intake adjustments of chicks: Short term reactions to deficiencies in lysine, methionine and tryptophan. Br. Poult. Sci. 1993, 34, 737–746. [Google Scholar] [CrossRef]
- Wu, B.-Y.; Cui, H.-M.; Peng, X.; Fang, J.; Cui, W.; Liu, X.-D. Effect of Methionine Deficiency on the Thymus and the Subsets and Proliferation of Peripheral Blood T-Cell, and Serum IL-2 Contents in Broilers. J. Integr. Agric. 2012, 11, 1009–1019. [Google Scholar] [CrossRef]
- Alagawany, M.; Abou Kasem, D. The combined effects of dietary lysine and methionine intake on productive performance, egg component yield, egg composition and nitrogen retention in Lohmann Brown hens. Egypt. J. Nutr. Feed. 2014, 17, 400–408. [Google Scholar]
- Kidd, M.; Tillman, P.; Waldroup, P.; Holder, W. Feed-grade amino acid use in the United States: The synergetic inclusion history with linear programming. J. Appl. Poult. Res. 2013, 22, 583–590. [Google Scholar] [CrossRef]
- Emmert, J.L.; Baker, D.H. Use of the Ideal Protein Concept for Precision Formulation of Amino Acid Levels in Broiler Diets1. J. Appl. Poult. Res. 1997, 6, 462–470. [Google Scholar] [CrossRef]
- Kidd, M.T.; Kerr, B.J.; Anthony, N.B. Dietary interactions between lysine and threonine in broilers. Poult. Sci. 1997, 76, 608–614. [Google Scholar] [CrossRef] [PubMed]
- Praharaj, N.K.; Reddy, M.R.; Panda, A.K.; Rao, S.V.R.; Sharma, R.P. Genotype by Dietary Lysine Interaction for Growth and Response to Sheep Red Blood Cells and Escherichia coli Inoculation in Commercial Broiler Chicks. Asian-Australas. J. Anim. Sci. 2002, 15, 1170–1177. [Google Scholar] [CrossRef]
- Panda, A.K.; Rao, S.V.R.; Raju, M.V.L.N.; Lavanya, G.; Reddy, E.P.K.; Sunder, G.S. Early Growth Response of Broilers to Dietary Lysine at Fixed Ratio to Crude Protein and Essential Amino Acids. Asian-Australas. J. Anim. Sci. 2011, 24, 1623–1628. [Google Scholar] [CrossRef]
- Kidd, M.T. Nutritional modulation of immune function in broilers1. Poult. Sci. 2004, 83, 650–657. [Google Scholar] [CrossRef] [PubMed]
- Kakhki, R.A.M.; Golian, A.; Zarghi, H. Effect of dietary digestible lysine concentration on performance, egg quality, and blood metabolites in laying hens. J. Appl. Poult. Res. 2016, 25, 506–517. [Google Scholar] [CrossRef]
- Tian, D.L.; Guo, R.J.; Li, Y.M.; Chen, P.P.; Zi, B.B.; Wang, J.J.; Liu, R.F.; Min, Y.N.; Wang, Z.P.; Niu, Z.Y.; et al. Effects of lysine deficiency or excess on growth and the expression of lipid metabolism genes in slow-growing broilers. Poult. Sci. 2019, 98, 2927–2932. [Google Scholar] [CrossRef]
- Sharma, N.K.; Choct, M.; Toghyani, M.; Laurenson, Y.C.; Girish, C.; Swick, R.A. Dietary energy, digestible lysine, and available phosphorus levels affect growth performance, carcass traits, and amino acid digestibility of broilers. Poult. Sci. 2018, 97, 1189–1198. [Google Scholar] [CrossRef]
- Okumura, J.; Mori, S. Effect of deficiencies of single essential amino acids on nitrogen and energy utilisation in chicks. Br. Poult. Sci. 1979, 20, 421–429. [Google Scholar] [CrossRef] [PubMed]
- Bastianelli, D.; Quentin, M.; Bouvarel, I.; Relandeau, C.; Lescoat, P.; Picard, M.; Tesseraud, S. Early lysine deficiency in young broiler chicks. Animal 2007, 1, 587–594. [Google Scholar] [CrossRef]
- Baker, D.H. Utilization of isomers and analogs of amino acids and other sulfur-containing compounds. Prog. Food Nutr. Sci. 1986, 10, 133–178. [Google Scholar]
- Azzam, M.; Dong, X.; Zou, X. Effect of dietary threonine on laying performance and intestinal immunity of laying hens fed low-crude-protein diets during the peak production period. J. Anim. Physiol. Anim. Nutr. 2016, 101, e55–e66. [Google Scholar] [CrossRef]
- Faria, D.E.; Harms, R.H.; Russell, G.B. Threonine requirement of commercial laying hens fed a corn-soybean meal diet. Poult. Sci. 2002, 81, 809–814. [Google Scholar] [CrossRef]
- Mao, X.; Zeng, X.; Qiao, S.; Wu, G.; Li, D. Specific roles of threonine in intestinal mucosal integrity and barrier function. Front. Biosci. 2011, 3, 1192–1200. [Google Scholar] [CrossRef]
- Stoll, B. Intestinal Uptake and Metabolism of Threonine: Nutritional Impact. Adv. Pork Prod. 2006, 17, 257–263. [Google Scholar]
- Zaefarian, F.; Zaghari, M.; Shivazad, M. The Threonine Requirements and its Effects on Growth Performance and Gut Morphology of Broiler Chicken Fed Different Levels of Protein. Int. J. Poult. Sci. 2008, 7, 1207–1215. [Google Scholar] [CrossRef]
- Lien, K.A.; Sauer, W.C.; Fenton, M. Mucin output in ileal digesta of pigs fed a protein-free diet. Z. Für Ernährungswissenschaft 1997, 36, 182–190. [Google Scholar] [CrossRef] [PubMed]
- Adedokun, S.; Ajuwon, K.; Romero, L.; Adeola, O. Ileal endogenous amino acid losses: Response of broiler chickens to fiber and mild coccidial vaccine challenge. Poult. Sci. 2012, 91, 899–907. [Google Scholar] [CrossRef]
- Wang, X.; Qiao, S.Y.; Liu, M.; Ma, Y.X. Effects of graded levels of true ileal digestible threonine on performance, serum parameters and immune function of 10–25kg pigs. Anim. Feed Sci. Technol. 2006, 129, 264–278. [Google Scholar] [CrossRef]
- Mousavi, S.N.; Afsar, A.; Khalaji, S.; Abbasi, M. Estimation of digestible tryptophan:lysine ratios for maximum performance, egg quality and welfare of white-egg-laying hens by fitting the different non-linear models. J. Appl. Anim. Res. 2018, 46, 411–416. [Google Scholar] [CrossRef]
- Peganova, S.; Eder, K. Interactions of various supplies of isoleucine, valine, leucine and tryptophan on the performance of laying hens. Poult. Sci. 2003, 82, 100–105. [Google Scholar] [CrossRef]
- Hsia, L.; Hsu, J.; Liao, C. The effect of varying levels of tryptophan on growth performance and carcass characteristics of growing and finishing broilers. Asian-Australas. J. Anim. Sci. 2005, 18, 230–234. [Google Scholar] [CrossRef]
- Corzo, A.; Moran, E., Jr.; Hoehler, D.; Lemmell, A. Dietary tryptophan need of broiler males from forty-two to fifty-six days of age. Poult. Sci. 2005, 84, 226–231. [Google Scholar] [CrossRef]
- Dong, X.Y.; Azzam, M.M.M.; Rao, W.; Yu, D.Y.; Zou, X.T. Evaluating the impact of excess dietary tryptophan on laying performance and immune function of laying hens reared under hot and humid summer conditions. Br. Poult. Sci. 2012, 53, 491–496. [Google Scholar] [CrossRef]
- Son, J.; Yun, Y.-S.; Kim, H.-s.; Hong, E.-C.; Kang, H.-K.; Kim, H.-J. Effect of different levels of tryptophan on laying performance, egg quality, blood and tibia parameters, and feather damage of laying hens in barn system. J. Appl. Poult. Res. 2025, 34, 100518. [Google Scholar] [CrossRef]
- Chen, F.; Reheman, A.; Cao, J.; Wang, Z.; Dong, Y.; Zhang, Y.; Chen, Y. Effect of melatonin on monochromatic light-induced T-lymphocyte proliferation in the thymus of chickens. J. Photochem. Photobiol. B Biol. 2016, 161, 9–16. [Google Scholar] [CrossRef]
- Wen, J.; Helmbrecht, A.; Elliot, M.; Thomson, J.; Persia, M.E. Evaluation of the tryptophan requirement of small-framed first cycle laying hens. Poult. Sci. 2019, 98, 1263–1271. [Google Scholar] [CrossRef]
- Caldas, J.V.; Boonsinchai, N.; Wang, J.; England, J.A.; Coon, C.N. The dynamics of body composition and body energy content in broilers. Poult. Sci. 2019, 98, 866–877. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.C.; Huang, Y.X.; Sun, H.; Liu, M.; Zhao, L.; Sun, L.H. Selenium Deficiency Dysregulates One-Carbon Metabolism in Nutritional Muscular Dystrophy of Chicks. J. Nutr. 2023, 153, 47–55. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Zhang, X.; Liu, Y.; Gao, M.; Wang, M.; Wang, Y.; Wang, X.; Guo, Y. Assessment of the dietary amino acid profiles and the relative biomarkers for amino acid balance in the low-protein diets for broiler chickens. J. Anim. Sci. Biotechnol. 2024, 15, 157. [Google Scholar] [CrossRef] [PubMed]
- Pratama, R.I.; Rostini, I.; Andriani, Y.; Dewanti, L.P. A review on protein quality and bioavailability of amino acids. Int. J. All Res. Writ. 2021, 3, 90–97. [Google Scholar]
- Gilani, G.S.; Cockell, K.A.; Sepehr, E. Effects of antinutritional factors on protein digestibility and amino acid availability in foods. J. AOAC Int. 2005, 88, 967–987. [Google Scholar] [CrossRef]
- Sarwar Gilani, G.; Wu Xiao, C.; Cockell, K.A. Impact of Antinutritional Factors in Food Proteins on the Digestibility of Protein and the Bioavailability of Amino Acids and on Protein Quality. Br. J. Nutr. 2012, 108, S315–S332. [Google Scholar] [CrossRef] [PubMed]
- Madsen, P.A.; Lund, P.; Brask-Pedersen, D.N.; Johansen, M. Effect of dietary protein level on nitrogen excretion in dry cows. Livest. Sci. 2022, 262, 104972. [Google Scholar] [CrossRef]
- Dong, R.; Zhao, G.; Chai, L.; Beauchemin, K. Prediction of urinary and fecal nitrogen excretion by beef cattle. J. Anim. Sci. 2014, 92, 4669–4681. [Google Scholar] [CrossRef] [PubMed]
- Moss, A.F.; Chrystal, P.V.; Cadogan, D.J.; Wilkinson, S.J.; Crowley, T.M.; Choct, M. Precision feeding and precision nutrition: A paradigm shift in broiler feed formulation? Anim. Biosci. 2021, 34, 354–362. [Google Scholar] [CrossRef]
- Burley, H.K.; Patterson, P.H.; Anderson, K.E. Alternative ingredients for providing adequate methionine in organic poultry diets in the United States with limited synthetic amino acid use. World’s Poult. Sci. J. 2015, 71, 493–504. [Google Scholar] [CrossRef]
- De Jesús, J.A.C.; Elghandour, M.M.M.Y.; Adegbeye, M.J.; Aguirre, D.L.; Roque-Jimenez, J.A.; Lackner, M.; Salem, A.Z.M. Nano-encapsulation of essential amino acids: Ruminal methane, carbon monoxide, hydrogen sulfide and fermentation. AMB Express 2024, 14, 109. [Google Scholar] [CrossRef]
- Sun, M.; Jiao, H.; Wang, X.; Uyanga, V.A.; Zhao, J.; Lin, H. Encapsulated crystalline lysine and DL-methionine have higher efficiency than the crystalline form in broilers. Poult. Sci. 2020, 99, 6914–6924. [Google Scholar] [CrossRef]
- Sun, M.; Zhao, J.; Wang, X.; Jiao, H.; Lin, H. Use of encapsulated L-lysine-HCl and DL-methionine improves postprandial amino acid balance in laying hens. J. Anim. Sci. 2020, 98, skaa315. [Google Scholar] [CrossRef]
- Tallentire, C.W.; Leinonen, I.; Kyriazakis, I. Artificial selection for improved energy efficiency is reaching its limits in broiler chickens. Sci. Rep. 2018, 8, 1168. [Google Scholar] [CrossRef]
- Tixier-Boichard, M. From the jungle fowl to highly performing chickens: Are we reaching limits? World’s Poult. Sci. J. 2020, 76, 2–17. [Google Scholar] [CrossRef]
- Caldas-Cueva, J.P.; Owens, C.M. A review on the woody breast condition, detection methods, and product utilization in the contemporary poultry industry. J. Anim. Sci. 2020, 98, skaa207. [Google Scholar] [CrossRef]
- Huang, X.; Ahn, D.U. The Incidence of Muscle Abnormalities in Broiler Breast Meat—A Review. Korean J. Food Sci. Anim. Resour. 2018, 38, 835–850. [Google Scholar] [CrossRef]
- Kuttappan, V.A.; Hargis, B.M.; Owens, C.M. White striping and woody breast myopathies in the modern poultry industry: A review. Poult. Sci. 2016, 95, 2724–2733. [Google Scholar] [CrossRef]
- Korver, D.R. Review: Current challenges in poultry nutrition, health, and welfare. Animal 2023, 17, 100755. [Google Scholar] [CrossRef] [PubMed]
- Carney, V.L.; Anthony, N.B.; Robinson, F.E.; Reimer, B.L.; Korver, D.R.; Zuidhof, M.J.; Afrouziyeh, M. Evolution of maternal feed restriction practices over 60 years of selection for broiler productivity. Poult. Sci. 2022, 101, 101957. [Google Scholar] [CrossRef]
- Thomke, S.; Elwinger, K. Growth promotants in feeding pigs and poultry. III. Alternatives to antibiotic growth promotants. In Annales de Zootechnie; Institut National De La Recherche Agronomique: Paris, France, 1998; pp. 245–271. [Google Scholar]
- Maria Cardinal, K.; Kipper, M.; Andretta, I.; Machado Leal Ribeiro, A. Withdrawal of antibiotic growth promoters from broiler diets: Performance indexes and economic impact. Poult. Sci. 2019, 98, 6659–6667. [Google Scholar] [CrossRef]
- Filho, D.d.F.; Torres, K.A.A.; Campos, D.; Vieira, B.S.; Urbano, T.; Rosa, P.S.; Ferraudo, A. Ingredient Classification According to the Digestible Amino Acid Profile: An Exploratory Analysis. Braz. J. Poult. Sci. 2005, 7, 185–193. [Google Scholar] [CrossRef]
- Świątkiewicz, S.; Arczewska-Włosek, A.; Józefiak, D. The use of cottonseed meal as a protein source for poultry: An updated review. World’s Poult. Sci. J. 2016, 72, 473–484. [Google Scholar] [CrossRef]
- Jacob, J. Common Feed Ingredients in Poultry Diets. 2017. Available online: https://ohio4h.org/sites/ohio4h/files/imce/animal_science/Poultry/Common%20Feed%20Ingredients%20in%20Poultry%20Diets%20-%20eXtension.pdf (accessed on 2 October 2025).
- Liu, K. Soybean: Overview. Encycl. Food Grains 2016, 1, 1–4. [Google Scholar]
- Das, D.; Panesar, G.; Panesar, P.; Kumar, M. Soybean Meal: The Reservoir of High-Quality Protein. In Oilseed Meal as a Sustainable Contributor to Plant-Based Protein: Paving the Way Towards Circular Economy and Nutritional Security; Springer International Publishing: Cham, Switzerland, 2024; pp. 31–52. [Google Scholar]
- Tomić, J.; Škrobot, D.; Dapčević Hadnađev, T. Protein from land—Cereals. In Future Proteins; Academic Press: New York, NY, USA, 2023; pp. 13–33. [Google Scholar]
- Chen, M.J.; Xie, W.-Y.; Pan, N.X.; Wang, X.-Q.; Yan, H.-C.; Gao, C.-Q. Methionine improves feather follicle development in chick embryos by activating Wnt/β-catenin signaling. Poult. Sci. 2020, 99, 4479–4487. [Google Scholar] [CrossRef]
- Abe, M.; Iriki, T.; Funaba, M.; Onda, S. Limiting amino acids for a corn and soybean meal diet in weaned calves less than three months of age. J. Anim. Sci. 1998, 76, 628–636. [Google Scholar] [CrossRef]
- Santos, F.A.P.; Santos, J.E.P.; Theurer, C.B.; Huber, J.T. Effects of rumen-undegradable protein on dairy cow performance: A 12-year literature review. J. Dairy Sci. 1998, 81, 3182–3213. [Google Scholar] [CrossRef]
- Calsamiglia, S.; Stern, M.D.; Firkins, J.L. Effects of protein source on nitrogen metabolism in continuous culture and intestinal digestion in vitro. J. Anim. Sci. 1995, 73, 1819–1827. [Google Scholar] [CrossRef]
- Figueiredo-Silva, C.; Lemme, A.; Sangsue, D.; Kiriratnikom, S. Effect of DL-methionine supplementation on the success of almost total replacement of fish meal with soybean meal in diets for hybrid tilapia (Oreochromis niloticus × Oreochromis mossambicus). Aquac. Nutr. 2015, 21, 234–241. [Google Scholar] [CrossRef]
- Hieu, T.; Nguyen Hoang, Q.; Quyen, N. Mitigating feather pecking behavior in laying poultry production through tryptophan supplementation. J. Anim. Behav. Biometeorol. 2022, 10, 1–4. [Google Scholar] [CrossRef]
- Ravindran, V.; Hew, L.I.; Ravindran, G.; Bryden, W.L. Apparent ileal digestibility of amino acids in dietary ingredients for broiler chickens. Anim. Sci. 2005, 81, 85–97. [Google Scholar] [CrossRef]
- Layman, D.K.; Walker, D.A. Potential importance of leucine in treatment of obesity and the metabolic syndrome. J. Nutr. 2006, 136, 319S–323S. [Google Scholar] [CrossRef]
- Huang, K.H.; Ravindran, V.; Li, X.; Ravindran, G.; Bryden, W.L. Apparent ileal digestibility of amino acids in feed ingredients determined with broilers and layers. J. Sci. Food Agric. 2007, 87, 47–53. [Google Scholar] [CrossRef]
- Goldflus, F.; Ceccantini, M.; Santos, W. Amino acid content of soybean samples collected in different Brazilian States—Harvest 2003/2004. Braz. J. Poult. Sci. 2006, 8, 105–111. [Google Scholar] [CrossRef]
- Leme, B.B.; Sakomura, N.; Viana, G.S.; Soares, L.; Melaré, M.C.; Oliveira, M.J.K.; Mansano, C.F.M. Amino Acid Digestibility of Feed Ingredients in Cecectomized Adult Roosters. Braz. J. Poult. Sci. 2019, 21, eRBCA-2018. [Google Scholar] [CrossRef]
- VerBeek, Z.K.; DeLeon, C.; Kerr, B.J.; Shurson, G.C.; Noll, S.L.; Koltes, D.A. Amino acid and energy digestibility of conventional corn dried distillers grains with solubles, high protein distillers dried grains, and corn fermented protein, and impacts on turkey poult growth performance and intestinal characteristics. Poult. Sci. 2024, 103, 104082. [Google Scholar] [CrossRef] [PubMed]
- Smith, R.E.; Scott, H.M. Biological Evaluation of Fish Meal Proteins as Sources of Amino Acids for the Growing Chick1. Poult. Sci. 1965, 44, 394–400. [Google Scholar] [CrossRef]
- David, L.S.; Nalle, C.L.; Abdollahi, M.R.; Ravindran, V. Feeding Value of Lupins, Field Peas, Faba Beans and Chickpeas for Poultry: An Overview. Animals 2024, 14, 619. [Google Scholar] [CrossRef]
- Samtiya, M.; Aluko, R.E.; Dhewa, T. Plant food anti-nutritional factors and their reduction strategies: An overview. Food Prod. Process. Nutr. 2020, 2, 6. [Google Scholar] [CrossRef]
- Choct, M.; Annison, G. Anti-nutritive effect of wheat pentosans in broiler chickens: Roles of viscosity and gut microflora. Br. Poult. Sci. 1992, 33, 821–834. [Google Scholar] [CrossRef] [PubMed]
- Makkar, H.P.S. Antinutritional factors in foods for livestock. BSAP Occas. Publ. 1993, 16, 69–85. [Google Scholar] [CrossRef]
- Francis, G.; Makkar, H.P.S.; Becker, K. Antinutritional factors present in plant-derived alternate fish feed ingredients and their effects in fish. Aquaculture 2001, 199, 197–227. [Google Scholar] [CrossRef]
- Luo, Z.; Zhu, Y.; Xiang, H.; Wang, Z.; Jiang, Z.; Zhao, X.; Sun, X.; Guo, Z. Advancements in Inactivation of Soybean Trypsin Inhibitors. Foods 2025, 14, 975. [Google Scholar] [CrossRef]
- Gopinger, E.; Xavier, E.G.; Elias, M.C.; Catalan, A.A.S.; Castro, M.L.S.; Nunes, A.P.; Roll, V.F.B. The effect of different dietary levels of canola meal on growth performance, nutrient digestibility, and gut morphology of broiler chickens. Poult. Sci. 2014, 93, 1130–1136. [Google Scholar] [CrossRef]
- Min, Y.N.; Wang, Z.; Coto, C.; Yan, F.; Cerrate, S.; Liu, F.Z.; Waldroup, P.W. Evaluation of canola meal from biodiesel production as a feed ingredient for broilers. Int. J. Poult. Sci. 2011, 10, 782–785. [Google Scholar] [CrossRef]
- Mushtaq, T.; Sarwar, M.; Ahmad, G.; Mirza, M.A.; Nawaz, H.; Mushtaq, M.M.H.; Noreen, U. Influence of Canola Meal-Based Diets Supplemented with Exogenous Enzyme and Digestible Lysine on Performance, Digestibility, Carcass, and Immunity Responses of Broiler Chickens. Poult. Sci. 2007, 86, 2144–2151. [Google Scholar] [CrossRef]
- Yang, A.; Zhang, C.; Zhang, B.; Wang, Z.; Zhu, L.; Mu, Y.; Wang, S.; Qi, D. Effects of Dietary Cottonseed Oil and Cottonseed Meal Supplementation on Liver Lipid Content, Fatty Acid Profile and Hepatic Function in Laying Hens. Animals 2021, 11, 78. [Google Scholar] [CrossRef] [PubMed]
- Nagalakshmi, D.; Rao, S.V.R.; Panda, A.K.; Sastry, V.R.B. Cottonseed Meal in Poultry Diets: A Review. J. Poult. Sci. 2007, 44, 119–134. [Google Scholar] [CrossRef]
- Behall, K.M.; Scholfield, D.J.; Hallfrisch, J.G. Barley β-glucan reduces plasma glucose and insulin responses compared with resistant starch in men. Nutr. Res. 2006, 26, 644–650. [Google Scholar] [CrossRef]
- Oda, T.; Aoe, S.; Sanada, H.; Ayano, Y. Effects of Soluble and Insoluble Fiber Preparations Isolated from Oat, Barley, and Wheat on Liver Cholesterol Accumulation in Cholesterol-Fed Rats. J. Nutr. Sci. Vitaminol. 1993, 39, 73–79. [Google Scholar] [CrossRef]
- Hassan, A.S.; Houston, K.; Lahnstein, J.; Shirley, N.; Schwerdt, J.G.; Gidley, M.J.; Waugh, R.; Little, A.; Burton, R.A. A Genome Wide Association Study of arabinoxylan content in 2-row spring barley grain. PLoS ONE 2017, 12, e0182537. [Google Scholar] [CrossRef] [PubMed]
- Reddy, N.R.; Pierson, M.D. Reduction in antinutritional and toxic components in plant foods by fermentation. Food Res. Int. 1994, 27, 281–290. [Google Scholar] [CrossRef]
- Bora, P. Anti-nutritional factors in foods and their effects. J. Acad. Ind. Res. 2014, 3, 285–290. [Google Scholar]
- Shi, J.; Arunasalam, K.; Yeung, D.; Kakuda, Y.; Mittal, G.; Jiang, Y. Saponins from edible legumes: Chemistry, processing, and health benefits. J. Med. Food 2004, 7, 67–78. [Google Scholar] [CrossRef]
- Kong, C.; Adeola, O. Protein utilization and amino acid digestibility of canola meal in response to phytase in broiler chickens. Poult. Sci. 2011, 90, 1508–1515. [Google Scholar] [CrossRef]
- González-Vega, J.C.; Stein, H.H. Amino acid digestibility in canola, cottonseed, and sunflower products fed to finishing pigs. J. Anim. Sci. 2012, 90, 4391–4400. [Google Scholar] [CrossRef] [PubMed]
- Blevins, S.; Siegel, P.; Blodgett, D.; Ehrich, M.; Saunders, G.; Lewis, R. Effects of silymarin on gossypol toxicosis in divergent lines of chickens. Poult. Sci. 2010, 89, 1878–1886. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Yang, A.; Mu, Y.; Zhang, N.; Sun, L.; Rajput, S.A.; Qi, D. Effects of dietary cottonseed oil and cottonseed meal supplementation on the structure, nutritional composition of egg yolk and gossypol residue in eggs. Poult. Sci. 2019, 98, 381–392. [Google Scholar] [CrossRef] [PubMed]
- McNeill, L.; Bernard, K.; MacLeod, M. Food intake, growth rate, food conversion and food choice in broilers fed on diets high in rapeseed meal and pea meal, with observations on sensory evaluation of the resulting poultry meat. Br. Poult. Sci. 2004, 45, 519–523. [Google Scholar] [CrossRef]
- Mansoori, B.; Acamovic, T. The effect of tannic acid on the excretion of endogenous methionine, histidine and lysine with broilers. Anim. Feed Sci. Technol. 2007, 134, 198–210. [Google Scholar] [CrossRef]
- Cabahug, S.; Ravindran, V.; Selle, P.; Bryden, W. Response of broiler chickens to microbial phytase supplementation as influenced by dietary phytic acid and non-phytate phosphorus contents. I. Effects on bird performance and toe ash. Br. Poult. Sci. 1999, 40, 660–666. [Google Scholar] [CrossRef]
- NORTON, G. Proteinase inhibitors. In Toxic Substances in Crop Plants; Elsevier: Amsterdam, The Netherlands, 1991; pp. 68–106. [Google Scholar]
- Domoney, C.; Welham, T. Trypsin inhibitors in Pisum: Variation in amount and pattern of accumulation in developing seed. Seed Sci. Res. 1992, 2, 147–154. [Google Scholar] [CrossRef]
- Zartl, B.; Silberbauer, K.; Loeppert, R.; Viernstein, H.; Praznik, W.; Mueller, M. Fermentation of non-digestible raffinose family oligosaccharides and galactomannans by probiotics. Food Funct. 2018, 9, 1638–1646. [Google Scholar] [CrossRef]
- Salih, M.E.; Classen, H.L.; Campbell, G.L. Response of chickens fed on hull-less barley to dietary β-glucanase at different ages. Anim. Feed Sci. Technol. 1991, 33, 139–149. [Google Scholar] [CrossRef]
- MacGregor, A.W.; Bhatty, R.S. Barley: Chemistry and Technology; Elsevier: Amsterdam, The Netherlands, 1993. [Google Scholar]
- Zhang, L.; Xu, J.; Lei, L.; Jiang, Y.; Gao, F.; Zhou, G.H. Effects of Xylanase Supplementation on Growth Performance, Nutrient Digestibility and Non-starch Polysaccharide Degradation in Different Sections of the Gastrointestinal Tract of Broilers Fed Wheat-based Diets. Asian-Australas. J. Anim. Sci. 2014, 27, 855–861. [Google Scholar] [CrossRef]
- Alagawany, M.; Abd El-Hack, M.E.; Ashour, E.A.; Salah, A.S.; Hussein, E.-S.O.; Al Alowaimer, A.; Swelum, A.A.; Dhama, K. Raw faba bean (Vicia faba) as an alternative protein source in laying hen diets. J. Appl. Poult. Res. 2019, 28, 808–817. [Google Scholar] [CrossRef]
- Ivarsson, E.; Wall, H. Effects of toasting, inclusion levels and different enzyme supplementations of faba beans on growth performance of broiler chickens. J. Appl. Poult. Res. 2017, 26, 467–475. [Google Scholar] [CrossRef]
- Davila-Ortiz, G.; Cabrera Orozco, A.; Jiménez-Martínez, C. Soybean: Non-Nutritional Factors and Their Biological Functionality. In Soybean—Bio-Active Compounds; El-Shemy, H., Ed.; IntechOpen: Rijeka, Croatia, 2013. [Google Scholar]
- Aderibigbe, A.S.; Cowieson, A.J.; Ajuwon, K.M.; Adeola, O. Contribution of purified soybean trypsin inhibitor and exogenous protease to endogenous amino acid losses and mineral digestibility. Poult. Sci. 2021, 100, 101486. [Google Scholar] [CrossRef]
- Kwon, D.; Son, S.W.; Kim, S.H.; Bae, J.E.; Lee, Y.-H.; Jung, Y.-S. Effects of dietary restriction on hepatic sulfur-containing amino acid metabolism and its significance in acetaminophen-induced liver injury. J. Nutr. Biochem. 2022, 108, 109082. [Google Scholar] [CrossRef] [PubMed]
- Salim, R.; Nehvi, I.B.; Mir, R.A.; Tyagi, A.; Ali, S.; Bhat, O.M. A review on anti-nutritional factors: Unraveling the natural gateways to human health. Front. Nutr. 2023, 10, 1215873. [Google Scholar] [CrossRef] [PubMed]
- Shivakumar, M.; Verma, K.; Talukdar, A.; Srivastava, N.; Lal, S.; Sapra, R.; Singh, K. Genetic variability and effect of heat treatment on trypsin inhibitor content in soybean [Glycine max (L.) Merrill.]. Legume Res.—Int. J. 2015, 38, 60–65. [Google Scholar] [CrossRef]
- Liener, I.E. Implications of antinutritional components in soybean foods. Crit. Rev. Food Sci. Nutr. 1994, 34, 31–67. [Google Scholar] [CrossRef]
- Batal, A.; Douglas, M.; Engram, A.; Parsons, C. Protein dispersibility index as an indicator of adequately processed soybean meal. Poult. Sci. 2000, 79, 1592–1596. [Google Scholar] [CrossRef]
- Krupa, U. Main nutritional and antinutritional compounds of bean seeds—A review. Pol. J. Food Nutr. Sci. 2008, 58, 149–155. [Google Scholar]
- Ram, S.; Narwal, S.; Gupta, O.P.; Pandey, V.; Singh, G.P. 4—Anti-nutritional factors and bioavailability: Approaches, challenges, and opportunities. In Wheat and Barley Grain Biofortification; Gupta, O.P., Pandey, V., Narwal, S., Sharma, P., Ram, S., Singh, G.P., Eds.; Woodhead Publishing: Cambridge, UK, 2020; pp. 101–128. [Google Scholar]
- Du, B.; Meenu, M.; Liu, H.; Xu, B. A Concise Review on the Molecular Structure and Function Relationship of β-Glucan. Int. J. Mol. Sci. 2019, 20, 4032. [Google Scholar] [CrossRef]
- Lee, C.J.; Horsley, R.D.; Manthey, F.A.; Schwarz, P.B. Comparisons of β-Glucan Content of Barley and Oat. Cereal Chem. 1997, 74, 571–575. [Google Scholar] [CrossRef]
- Vetvicka, V.; Oliveira, C. β(1-3)(1-6)-D-Glucan with Strong Effects on Immune Status in Chicken: Potential Importance for Efficiency of Commercial Farming. J. Nutr. Health Sci. 2014, 1, 309. [Google Scholar] [CrossRef]
- Andersson, A.A.M.; Elfverson, C.; Andersson, R.; Regnér, S.; Åman, P. Chemical and physical characteristics of different barley samples. J. Sci. Food Agric. 1999, 79, 979–986. [Google Scholar] [CrossRef]
- Lazaridou, A.; Biliaderis, C.; Izydorczyk, M. Cereal Β-glucans: Structures, Physical Properties and Physiological Functions. In Functional Food Carbohydrates; CRC Press: Boca Raton, FL, USA, 2007; pp. 1–72. [Google Scholar]
- Choct, M. Feed non-starch polysaccharides: Chemical structures and nutritional significance. Feed Milling Int. 1997, 191, 13–26. [Google Scholar]
- Reimer, R.A.; Thomson, A.B.; Rajotte, R.V.; Basu, T.K.; Ooraikul, B.; McBurney, M.I. Proglucagon messenger ribonucleic acid and intestinal glucose uptake are modulated by fermentable fiber and food intake in diabetic rats. Nutr. Res. 2000, 20, 851–864. [Google Scholar] [CrossRef]
- Slama, J.; Schedle, K.; Wurzer, G.K.; Gierus, M. Physicochemical properties to support fibre characterization in monogastric animal nutrition. J. Sci. Food Agric. 2019, 99, 3895–3902. [Google Scholar] [CrossRef] [PubMed]
- Edo, G.I.; Mafe, A.N.; Akpoghelie, P.O.; Gaaz, T.S.; Yousif, E.; Yusuf, O.S.; Isoje, E.F.; Igbuku, U.A.; Opiti, R.A.; Ayinla, J.L. The utilization of biopolymer hydrogels to encapsulate and protect probiotics in foods. Process Biochem. 2025, 153, 66–91. [Google Scholar] [CrossRef]
- Mafe, A.N.; Büsselberg, D. Microbiome integrity enhances the efficacy and safety of anticancer drug. Biomedicines 2025, 13, 422. [Google Scholar] [CrossRef]
- Singh, R.P.; Bhardwaj, A. β-glucans: A potential source for maintaining gut microbiota and the immune system. Front. Nutr. 2023, 10, 1143682. [Google Scholar] [CrossRef]
- Wei, S.; Morrison, M.; Yu, Z. Bacterial census of poultry intestinal microbiome. Poult. Sci. 2013, 92, 671–683. [Google Scholar] [CrossRef]
- Tian, X.; Shao, Y.; Wang, Z.; Guo, Y. Effects of dietary yeast β-glucans supplementation on growth performance, gut morphology, intestinal Clostridium perfringens population and immune response of broiler chickens challenged with necrotic enteritis. Anim. Feed Sci. Technol. 2016, 215, 144–155. [Google Scholar] [CrossRef]
- Abreu, M.T. Toll-like receptor signalling in the intestinal epithelium: How bacterial recognition shapes intestinal function. Nat. Rev. Immunol. 2010, 10, 131–144. [Google Scholar] [CrossRef]
- Nawab, A.; An, L.; Wu, J.; Li, G.; Liu, W.; Zhao, Y.; Wu, Q.; Xiao, M. Chicken toll-like receptors and their significance in immune response and disease resistance. Int. Rev. Immunol. 2019, 38, 284–306. [Google Scholar] [CrossRef]
- Cox, C.; Stuard, L.; Kim, S.; McElroy, A.; Bedford, M.; Dalloul, R. Performance and immune responses to dietary β-glucan in broiler chicks. Poult. Sci. 2010, 89, 1924–1933. [Google Scholar] [CrossRef]
- Cengiz, Ö.; Koksal, B.; Onol, A.; Tatli, O.; Sevim, Ö.; Avci, H.; Bilgili, S. Influence of dietary enzyme supplementation of barley-based diets on growth performance and footpad dermatitis in broiler chickens exposed to early high-moisture litter. J. Appl. Poult. Res. 2012, 21, 117–125. [Google Scholar] [CrossRef]
- Ravindran, V. Feed enzymes: The science, practice, and metabolic realities. J. Appl. Poult. Res. 2013, 22, 628–636. [Google Scholar] [CrossRef]
- Karunaratne, N.D.; Classen, H.L.; Ames, N.P.; Bedford, M.R.; Newkirk, R.W. Effects of hulless barley and exogenous beta-glucanase levels on ileal digesta soluble beta-glucan molecular weight, digestive tract characteristics, and performance of broiler chickens. Poult. Sci. 2021, 100, 100967. [Google Scholar] [CrossRef] [PubMed]
- Amerah, A.M.; Romero, L.F.; Awati, A.; Ravindran, V. Effect of exogenous xylanase, amylase, and protease as single or combined activities on nutrient digestibility and growth performance of broilers fed corn/soy diets. Poult. Sci. 2017, 96, 807–816. [Google Scholar] [CrossRef]
- Lázaro, R.; García, M.; Aranibar, M.; Mateos, G. Effect of enzyme addition to wheat-, barley-and rye-based diets on nutrient digestibility and performance of laying hens. Br. Poult. Sci. 2003, 44, 256–265. [Google Scholar] [CrossRef] [PubMed]
- Halkier, B.A.; Gershenzon, J. Biology and Biochemistry of Glucosinolates. Annu. Rev. Plant Biol. 2006, 57, 303–333. [Google Scholar] [CrossRef]
- Zeng, R.S.; Mallik, A.U.; Setliff, E. Growth Stimulation of Ectomycorrhizal Fungi by Root Exudates of Brassicaceae Plants: Role of Degraded Compounds of Indole Glucosinolates. J. Chem. Ecol. 2003, 29, 1337–1355. [Google Scholar] [CrossRef]
- Romeo, L.; Iori, R.; Rollin, P.; Bramanti, P.; Mazzon, E. Isothiocyanates: An Overview of Their Antimicrobial Activity against Human Infections. Molecules 2018, 23, 624. [Google Scholar] [CrossRef]
- Salazar-Villanea, S.; Bruininx, E.M.A.M.; Gruppen, H.; Hendriks, W.H.; Carré, P.; Quinsac, A.; van der Poel, A.F.B. Physical and chemical changes of rapeseed meal proteins during toasting and their effects on in vitro digestibility. J. Anim. Sci. Biotechnol. 2016, 7, 62. [Google Scholar] [CrossRef]
- Messerschmidt, U.; Eklund, M.; Sauer, N.; Rist, V.T.S.; Rosenfelder, P.; Spindler, H.K.; Htoo, J.K.; Schöne, F.; Mosenthin, R. Chemical composition and standardized ileal amino acid digestibility in rapeseed meals sourced from German oil mills for growing pigs. Anim. Feed Sci. Technol. 2014, 187, 68–76. [Google Scholar] [CrossRef]
- Bischoff, K.L. Chapter 40—Glucosinolates. In Nutraceuticals; Gupta, R.C., Ed.; Academic Press: Boston, MA, USA, 2016; pp. 551–554. [Google Scholar]
- Williamson, G.; Wang, H.; Griffiths, S. Glucosinolates as bioactive components of Brassica vegetables: Induction of cytochrome P450 1A1 in Hep G2 cells as assessed using transient transfection. Biochem. Soc. Trans. 1996, 24, 383S. [Google Scholar] [CrossRef] [PubMed]
- Tripathi, M.K.; Mishra, A.S. Glucosinolates in animal nutrition: A review. Anim. Feed Sci. Technol. 2007, 132, 1–27. [Google Scholar] [CrossRef]
- Egorova, T. Glucosinolates in rape and camelina: Composition, concentrations, tox-icity and anti-nutritive effects in poultry, methods of neutralization—A mini-review. Sel’skokhozyaistvennaya Biol. [Agric. Biol.] 2023, 58, 1021–1034. [Google Scholar] [CrossRef]
- Honkatukia, M.; Reese, K.; Preisinger, R.; Tuiskula-Haavisto, M.; Weigend, S.; Roito, J.; Mäki-Tanila, A.; Vilkki, J. Fishy taint in chicken eggs is associated with a substitution within a conserved motif of the FMO3 gene. Genomics 2005, 86, 225–232. [Google Scholar] [CrossRef]
- Martland, M.F.; Butler, E.J.; Fenwick, G.R. Rapeseed induced liver haemorrhage, reticulolysis and biochemical changes in laying hens: The effects of feeding high and low glucosinolate meals. Res. Vet. Sci. 1984, 36, 298–309. [Google Scholar] [CrossRef]
- Ibrahim, I.; Hill, R. The effects of rapeseed meals from brassica napus varieties and the variety tower on the production and health of laying fowl. Br. Poult. Sci. 1980, 21, 423–430. [Google Scholar] [CrossRef]
- Newkirk, R.; Classen, H. The effects of toasting canola meal on body weight, feed conversion efficiency, and mortality in broiler chickens. Poult. Sci. 2002, 81, 815–825. [Google Scholar] [CrossRef]
- Leeson, S.; Atteh, J.; Summers, J. The replacement value of canola meal for soybean meal in poultry diets. Can. J. Anim. Sci. 1987, 67, 151–158. [Google Scholar] [CrossRef]
- Gorski, M.; Foran, C.; Utterback, P.; Parsons, C. Nutritional evaluation of conventional and increased-protein, reduced-fiber canola meal fed to broiler chickens. Poult. Sci. 2017, 96, 2159–2167. [Google Scholar] [CrossRef] [PubMed]
- Toghyani, M.; Swick, R.A.; Barekatain, R. Effect of seed source and pelleting temperature during steam pelleting on apparent metabolizable energy value of full-fat canola seed for broiler chickens. Poult. Sci. 2017, 96, 1325–1333. [Google Scholar] [CrossRef]
- Bell, J.M. Factors affecting the nutritional value of canola meal: A review. Can. J. Anim. Sci. 1993, 73, 689–697. [Google Scholar] [CrossRef]
- Campbell, L.; Slominski, B. Nutritive quality of low-glucosinolate meal for laying hens. Proc. 8th Int. Rapeseed Cong. 1991, 2, 442–447. [Google Scholar]
- Eylen, D.; Oey, I.; Hendrickx, M.; Loey, A. Kinetics of the Stability of Broccoli (Brassica oleracea Cv. Italica) Myrosinase and Isothiocyanates in Broccoli Juice during Pressure/Temperature Treatments. J. Agric. Food Chem. 2007, 55, 2163–2170. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Wen, M.; Chang, Y. Degradation of glucosinolates in rapeseed meal by Lactobacillus delbrueckii and Bacillus subtilis. Grain Oil Sci. Technol. 2020, 3, 70–76. [Google Scholar] [CrossRef]
- Ahmed, A.; Zulkifli, I.; Farjam, A.S.; Abdullah, N.; Liang, J.B. Extrusion Enhances Metabolizable Energy and Ileal Amino Acids Digestibility of Canola Meal for Broiler Chickens. Ital. J. Anim. Sci. 2014, 13, 3032. [Google Scholar] [CrossRef]
- Thirumalaisamy, G.; Purushothaman, P.M.R.; Kumar, P.; Selvaraj, P.; Natarajan, M.; Senthilkumar, S.; Visha, P.; Ramasamy, D.k.; Parkunan, T. Nutritive and Feeding Value of Cottonseed Meal in Broilers—A Review. Adv. Anim. Vet. Sci. 2016, 4, 398–404. [Google Scholar] [CrossRef]
- Sun, H.; Jiang, Z.; Chen, Z.; Liu, G.; Liu, Z. Effects of fermented unconventional protein feed on pig production in China. Front. Vet. Sci. 2024, 11, 1446233. [Google Scholar] [CrossRef]
- Chau, C.-F.; Cheung, P.C.-K. Effect of Various Processing Methods on Antinutrients and in Vitro Digestibility of Protein and Starch of Two Chinese Indigenous Legume Seeds. J. Agric. Food Chem. 1997, 45, 4773–4776. [Google Scholar] [CrossRef]
- Sá, A.G.A.; Moreno, Y.M.F.; Carciofi, B.A.M. Food processing for the improvement of plant proteins digestibility. Crit. Rev. Food Sci. Nutr. 2020, 60, 3367–3386. [Google Scholar] [CrossRef]
- Siddhuraju, P.; Becker, K. Effect of various domestic processing methods on antinutrients and in vitro protein and starch digestibility of two indigenous varieties of Indian tribal pulse, Mucuna pruriens Var. utilis. J. Agric. Food Chem. 2001, 49, 3058–3067. [Google Scholar] [CrossRef]
- Purushotham, B.; Radhakrishna, P.M.; Sherigara, B.S. Effects of Steam Conditioning and Extrusion Temperature on Some Anti-nutritional Factors of Soyabean (Glycine max) for Pet Food Applications. Am. J. Anim. Vet. Sci. 2007, 2, 1–5. [Google Scholar] [CrossRef]
- González-Vega, J.; Kim, B.; Htoo, J.; Lemme, A.; Stein, H. Amino acid digestibility in heated soybean meal fed to growing pigs. J. Anim. Sci. 2011, 89, 3617–3625. [Google Scholar] [CrossRef]
- Hemetsberger, F.; Hauser, T.; Domig, K.J.; Kneifel, W.; Schedle, K. Interaction of Soybean Varieties and Heat Treatments and Its Effect on Growth Performance and Nutrient Digestibility in Broiler Chickens. Animals 2021, 11, 2668. [Google Scholar] [CrossRef]
- Azra, B.H.; Vidhya, C.; Abhinandana, K.; Rout, S.; Kalaimani, P.S. Essential Antinutrients in Plant-based Proteins and Exploring their Nutritional Implications. J. Plant Biota 2023, 2, 5–8. [Google Scholar] [CrossRef]
- Akande, K.E.; Doma, U.D.; Agu, H.O.; Adamu, H.M. Major antinutrients found in plant protein sources: Their effect on nutrition. Pak. J. Nutr. 2010, 9, 827–832. [Google Scholar] [CrossRef]
- Abd Rahim, M.; Yaacob, J.S.; Halim-Lim, S.; Ahmad, N.H. Food processing to reduce antinutrients in plant-based foods. Int. Food Res. J. 2023, 30, 25–45. [Google Scholar] [CrossRef]
- Sureshkumar, S.; Song, J.; Sampath, V.; Kim, I. Exogenous Enzymes as Zootechnical Additives in Monogastric Animal Feed: A Review. Agriculture 2023, 13, 2195. [Google Scholar] [CrossRef]
- Selle, P.H.; Ravindran, V.; Caldwell, A.; Bryden, W.L. Phytate and phytase: Consequences for protein utilisation. Nutr. Res. Rev. 2000, 13, 255–278. [Google Scholar] [CrossRef]
- Oxenbøll, K.M.; Pontoppida, K.; Fru-Nji, F. Use of a Protease in Poultry Feed Offers Promising Environmental Benefits. Int. J. Poult. Sci. 2011, 10, 842–848. [Google Scholar] [CrossRef]
- Bakyaraj, S.; Bhanja, S.K.; Majumdar, S.; Dash, B. Modulation of post-hatch growth and immunity through in ovo supplemented nutrients in broiler chickens. J. Sci. Food Agric. 2012, 92, 313–320. [Google Scholar] [CrossRef] [PubMed]
- Ohta, Y.; Tsushima, N.; Koide, K.; Kidd, M.; Ishibashi, T. Effect of amino acid injection in broiler breeder eggs on embryonic growth and hatchability of chicks. Poult. Sci. 1999, 78, 1493–1498. [Google Scholar] [CrossRef] [PubMed]
- Das, R.; Mishra, P.; Jha, R. In ovo Feeding as a Tool for Improving Performance and Gut Health of Poultry: A Review. Front. Vet. Sci. 2021, 8, 754246. [Google Scholar] [CrossRef]
- Ahmed, M.M.N.; Ismail, Z.S.H.; Elwardany, I.; Abdel-Wareth, A.A.A. In ovo feeding technique of probiotics in broiler chickens: Achievements, Prospective and Challenges. SVU-Int. J. Agric. Sci. 2023, 5, 95–126. [Google Scholar] [CrossRef]
- Ajayi, O.I.; Smith, O.F.; Oso, A.O.; Oke, O.E. Evaluation of in ovo feeding of low or high mixtures of cysteine and lysine on performance, intestinal morphology and physiological responses of thermal-challenged broiler embryos. Front. Physiol. 2022, 13, 972041. [Google Scholar] [CrossRef]
- Eisa, G.; Abdelfatah, S.; Abdellatif, H.; Farouk, F. Effect of In ovo Injection of L-Threonine on Hatchability Followed by post-hatch Extra Level of Dietary Threonine on the Performance of Broilers. J. Adv. Vet. Res. 2022, 12, 605–612. [Google Scholar]
- Silva Alves, L.K.; Pereira Viana, G.; Saboya dos Santos, T.; Queiroz dos Reis, B.; Buck Bernardes Guimarães, E.; Araújo Nacimento, R.; Raineri, C.; Soares da Silva Araújo, C. In ovo feeding: A review. Veterinária Notícias 2020, 26, 18. [Google Scholar] [CrossRef]
- El-Sabrout, K.; Ahmad, S.; El-Deek, A. The In Ovo Feeding Technique as a Recent Aspect of Poultry Farming. J. Anim. Health Prod. 2019, 7, 126–130. [Google Scholar] [CrossRef]
- Zhai, W.; Gerard, P.; Pulikanti, R.; Peebles, E. Effects of in ovo injection of carbohydrates on embryonic metabolism, hatchability, and subsequent somatic characteristics of broiler hatchlings. Poult. Sci. 2011, 90, 2134–2143. [Google Scholar] [CrossRef]
- Uni, Z.; Ferket, R.P. Methods for early nutrition and their potential. World’s Poult. Sci. J. 2004, 60, 101–111. [Google Scholar] [CrossRef]
- D’mello, J.P.F. Amino Acids in Animal Nutrition; CABI Databases: Wallingford, UK, 2003. [Google Scholar]
- Adhikari, R.; Rochell, S.J.; Kriseldi, R.; Silva, M.; Greiner, L.; Williams, C.; Matton, B.; Anderson, A.; Erf, G.F.; Park, E.; et al. Recent advances in protein and amino acid nutritional dynamics in relation to performance, health, welfare, and cost of production. Poult. Sci. 2025, 104, 104852. [Google Scholar] [CrossRef]
- Nie, C.; He, T.; Zhang, W.; Zhang, G.; Ma, X. Branched Chain Amino Acids: Beyond Nutrition Metabolism. Int. J. Mol. Sci. 2018, 19, 954. [Google Scholar] [CrossRef] [PubMed]
- Gu, C.; Mao, X.; Chen, D.; Yu, B.; Yang, Q. Isoleucine plays an important role for maintaining immune function. Curr. Protein Pept. Sci. 2019, 20, 644–651. [Google Scholar] [CrossRef]
- Koopmans, S.; Van der Staay, F.; Le Floc’H, N.; Dekker, R.; Van Diepen, J.T.M.; Jansman, A. Effects of surplus dietary L-tryptophan on stress, immunology, behavior, and nitrogen retention in endotoxemic pigs. J. Anim. Sci. 2012, 90, 241–251. [Google Scholar] [CrossRef]
- Ruan, Z.; Yang, Y.; Wen, Y.; Zhou, Y.; Fu, X.; Ding, S.; Liu, G.; Yao, K.; Wu, X.; Deng, Z. Metabolomic analysis of amino acid and fat metabolism in rats with L-tryptophan supplementation. Amino Acids 2014, 46, 2681–2691. [Google Scholar] [CrossRef]
- Zhang, K.; Wang, N.; Lu, L.; Ma, X. Fermentation and Metabolism of Dietary Protein by Intestinal Microorganisms. Curr. Protein Pept. Sci. 2020, 21, 807–811. [Google Scholar] [CrossRef]
- Zou, A.; Nadeau, K.; Xiong, X.; Wang, P.W.; Copeland, J.K.; Lee, J.Y.; Pierre, J.S.; Ty, M.; Taj, B.; Brumell, J.H. Systematic profiling of the chicken gut microbiome reveals dietary supplementation with antibiotics alters expression of multiple microbial pathways with minimal impact on community structure. Microbiome 2022, 10, 127. [Google Scholar] [CrossRef]
- Fan, P.; Li, L.; Rezaei, A.; Eslamfam, S.; Che, D.; Ma, X. Metabolites of dietary protein and peptides by intestinal microbes and their impacts on gut. Curr. Protein Pept. Sci. 2015, 16, 646–654. [Google Scholar] [CrossRef]
- Hou, Y.; Wu, Z.; Dai, Z.; Wang, G.; Wu, G. Protein hydrolysates in animal nutrition: Industrial production, bioactive peptides, and functional significance. In Bioactive Peptides from Food; CRC Press: Boca Raton, FL, USA, 2022; pp. 209–232. [Google Scholar]
- Neis, E.P.; Dejong, C.H.; Rensen, S.S. The role of microbial amino acid metabolism in host metabolism. Nutrients 2015, 7, 2930–2946. [Google Scholar] [CrossRef]
- Macfarlane, G.; Allison, C.; Gibson, S.; Cummings, J. Contribution of the microflora to proteolysis in the human large intestine. J. Appl. Bacteriol. 1988, 64, 37–46. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.-J.; Tang, B.; Wang, F.-C.; Tang, L.; Lei, Y.-Y.; Luo, Y.; Huang, S.-J.; Yang, M.; Wu, L.-Y.; Wang, W. Parthenolide ameliorates colon inflammation through regulating Treg/Th17 balance in a gut microbiota-dependent manner. Theranostics 2020, 10, 5225. [Google Scholar] [CrossRef]
- Huang, F.; Ma, Z.; Du, X.; Wang, C.; Liu, G.; Zhou, M. Methionine alters the fecal microbiota and enhances the antioxidant capacity of lactating donkeys. Animals 2025, 15, 648. [Google Scholar] [CrossRef]
- Wu, C.-H.; Ko, J.-L.; Liao, J.-M.; Huang, S.-S.; Lin, M.-Y.; Lee, L.-H.; Chang, L.-Y.; Ou, C.-C. D-methionine alleviates cisplatin-induced mucositis by restoring the gut microbiota structure and improving intestinal inflammation. Ther. Adv. Med. Oncol. 2019, 11, 1758835918821021. [Google Scholar] [CrossRef] [PubMed]
- Luo, H.; Yang, R.; Zhao, Y.; Wang, Z.; Liu, Z.; Huang, M.; Zeng, Q. Recent advances and strategies in process and strain engineering for the production of butyric acid by microbial fermentation. Bioresour. Technol. 2018, 253, 343–354. [Google Scholar] [CrossRef]
- Khan, S.; Sultan, A.; Alhidary, I.; Abdelrahman, M.; Khan, R.U.; Khan, N.A.; Ayaz Khan, M.; Ahmad, S. Worm meal: A potential source of alternative protein in poultry feed. World’s Poult. Sci. J. 2016, 72, 93–102. [Google Scholar] [CrossRef]
- Velázquez-De Lucio, B.S.; Hernández-Domínguez, E.M.; Villa-García, M.; Díaz-Godínez, G.; Mandujano-Gonzalez, V.; Mendoza-Mendoza, B.; Álvarez-Cervantes, J. Exogenous Enzymes as Zootechnical Additives in Animal Feed: A Review. Catalysts 2021, 11, 851. [Google Scholar] [CrossRef]
- Ojha, B.K.; Singh, P.K.; Shrivastava, N. Chapter 7—Enzymes in the Animal Feed Industry. In Enzymes in Food Biotechnology; Kuddus, M., Ed.; Academic Press: Cambridge, MA, USA, 2019; pp. 93–109. [Google Scholar]
- da Nobrega, I.P.T.; Teixeira, L.D.V.; Fascina, V.B.; Bittencourt, L.C. Effect of Protease Supplementation in Diets with or Without Copper Sulfate and Formaldehyde on the Standardized Digestibility of Amino Acids in Broiler Chickens. Animals 2025, 15, 1059. [Google Scholar] [CrossRef]
- Namkung, H.; Leeson, S. Effect of phytase enzyme on dietary nitrogen-corrected apparent metabolizable energy and the ileal digestibility of nitrogen and amino acids in broiler chicks. Poult. Sci. 1999, 78, 1317–1319. [Google Scholar] [CrossRef]
- Ravindran, V.; Morel, P.C.; Partridge, G.G.; Hruby, M.; Sands, J.S. Influence of an Escherichia coli-Derived Phytase on Nutrient Utilization in Broiler Starters Fed Diets Containing Varying Concentrations of Phytic Acid. Poult. Sci. 2006, 85, 82–89. [Google Scholar] [CrossRef]
- Selle, P.H.; Ravindran, V.; Partridge, G.G. Beneficial effects of xylanase and/or phytase inclusions on ileal amino acid digestibility, energy utilisation, mineral retention and growth performance in wheat-based broiler diets. Anim. Feed Sci. Technol. 2009, 153, 303–313. [Google Scholar] [CrossRef]
- Fernandes, V.O.; Costa, M.; Ribeiro, T.; Serrano, L.; Cardoso, V.; Santos, H.; Lordelo, M.; Ferreira, L.M.A.; Fontes, C.M.G.A. 1,3-1,4-β-Glucanases and not 1,4-β-glucanases improve the nutritive value of barley-based diets for broilers. Anim. Feed Sci. Technol. 2016, 211, 153–163. [Google Scholar] [CrossRef]
- Poudel, I.; Hodge, V.R.; Wamsley, K.G.S.; Roberson, K.D.; Adhikari, P.A. Effects of protease enzyme supplementation and varying levels of amino acid inclusion on productive performance, egg quality, and amino acid digestibility in laying hens from 30 to 50 weeks of age. Poult. Sci. 2023, 102, 102465. [Google Scholar] [CrossRef]
- Ravindran, V.; Selle, P.; Bryden, W. Effects of phytase supplementation, individually and in combination, with glycanase, on the nutritive value of wheat and barley. Poult. Sci. 1999, 78, 1588–1595. [Google Scholar] [CrossRef] [PubMed]
- Vats, P. Production studies and catalytic properties of phytases (myo-inositolhexakisphosphate phosphohydrolases): An overview. Enzym. Microb. Technol. 2004, 35, 3–14. [Google Scholar] [CrossRef]
- Cowieson, A.; Ravindran, V. Effect of phytic acid and microbial phytase on the flow and amino acid composition of endogenous protein at the terminal ileum of growing broiler chickens. Br. J. Nutr. 2007, 98, 745–752. [Google Scholar] [CrossRef]
- Cowieson, A.; Ravindran, V.; Selle, P. Influence of dietary phytic acid and source of microbial phytase on ileal endogenous amino acid flows in broiler chickens. Poult. Sci. 2008, 87, 2287–2299. [Google Scholar] [CrossRef]
- Simons, P.C.M.; Versteegh, H.A.J.; Wolters, M.G.E. Improvement of phosphorus availability by microbial phytase in broilers and pigs. Br. J. Nutr. 1990, 64, 525–540. [Google Scholar] [CrossRef]
- Cowieson, A.J.; Acamovic, T.; Bedford, M.R. Supplementation of Corn–Soy-Based Diets with an Eschericia coli-Derived Phytase: Effects on Broiler Chick Performance and the Digestibility of Amino Acids and Metabolizability of Minerals and Energy. Poult. Sci. 2006, 85, 1389–1397. [Google Scholar] [CrossRef] [PubMed]
- López-Otín, C.; Bond, J.S. Proteases: Multifunctional Enzymes in Life and Disease. J. Biol. Chem. 2008, 283, 30433–30437. [Google Scholar] [CrossRef]
- Song, P.; Zhang, X.; Wang, S.; Xu, W.; Wang, F.; Fu, R.; Wei, F. Microbial proteases and their applications. Front. Microbiol. 2023, 14, 1236368. [Google Scholar] [CrossRef]
- Angel, C.R.; Saylor, W.; Vieira, S.L.; Ward, N. Effects of a monocomponent protease on performance and protein utilization in 7- to 22-day-old broiler chickens. Poult. Sci. 2011, 90, 2281–2286. [Google Scholar] [CrossRef]
- Lee, J.; Oh, H.; Kim, Y.; Song, D.; An, J.; Chang, S.; Go, Y.; Cho, H.; Lee, B.; Kim, W.K.; et al. Effects of exogenous protease on performance, economic evaluation, nutrient digestibility, fecal score, intestinal morphology, blood profile, carcass trait, and meat quality in broilers fed normal diets and diets considered with matrix value. Poult. Sci. 2023, 102, 102565. [Google Scholar] [CrossRef]
- Liu, H.; Faruk, M.U.; Teixeira, L.; Fávero, A.; Vieira, S.L. Research Note: Proteases effect on soybean meal: Enzyme product and area of production differences on standardized ileal amino acids digestibility of broiler chickens. Poult. Sci. 2024, 103, 104493. [Google Scholar] [CrossRef]
- Cowieson, A.J.; Abdollahi, M.R.; Zaefarian, F.; Pappenberger, G.; Ravindran, V. The effect of a mono-component exogenous protease and graded concentrations of ascorbic acid on the performance, nutrient digestibility and intestinal architecture of broiler chickens. Anim. Feed Sci. Technol. 2018, 235, 128–137. [Google Scholar] [CrossRef]
- Barbosa, S.A.P.V.; Corrêa, G.S.S.; Corrêa, A.B.; de Oliveira, C.F.S.; Vieira, B.S.; de Figueiredo, É.M.; Júnior, J.G.C.; Neto, H.R.L. Effects of different proteases on commercial laying hens at peak production. Rev. Bras. Zootec. 2020, 49, e20200026. [Google Scholar] [CrossRef]
- Adeola, O.; Cowieson, A.J. BOARD-INVITED REVIEW: Opportunities and challenges in using exogenous enzymes to improve nonruminant animal production. J. Anim. Sci. 2011, 89, 3189–3218. [Google Scholar] [CrossRef]
- Olukosi, O.A.; Cowieson, A.J.; Adeola, O. Age-Related Influence of a Cocktail of Xylanase, Amylase, and Protease or Phytase Individually or in Combination in Broilers. Poult. Sci. 2007, 86, 77–86. [Google Scholar] [CrossRef]
- Anjum, M.S.; Chaudhry, A. Using Enzymes and Organic Acids in Broiler Diets. J. Poult. Sci. 2010, 47, 97–105. [Google Scholar] [CrossRef]
- Stefanello, C.; Vieira, S.L.; Rios, H.V.; Soster, P.; Simoes, C.T.; Godoy, G.; Fascina, V. Research Note: Corn energy and nutrient utilization by broilers as affected by geographic areas and carbohydrases. Poult. Sci. 2023, 102, 102366. [Google Scholar] [CrossRef]
- Adeola, O.; Shafer, D.J.; Nyachoti, C.M. Nutrient and Energy Utilization in Enzyme-Supplemented Starter and Grower Diets for White Pekin Ducks1. Poult. Sci. 2008, 87, 255–263. [Google Scholar] [CrossRef]
- Boguhn, J.; Rodehutscord, M. Effects of nonstarch polysaccharide-hydrolyzing enzymes on performance and amino acid digestibility in turkeys. Poult. Sci. 2010, 89, 505–513. [Google Scholar] [CrossRef]
- Hong, D.; Burrows, H.; Adeola, O. Addition of enzyme to starter and grower diets for ducks. Poult. Sci. 2002, 81, 1842–1849. [Google Scholar] [CrossRef]
- Rutherfurd, S.M.; Chung, T.K.; Moughan, P.J. The effect of a commercial enzyme preparation on apparent metabolizable energy, the true ileal amino acid digestibility, and endogenous ileal lysine losses in broiler chickens. Poult. Sci. 2007, 86, 665–672. [Google Scholar] [CrossRef] [PubMed]
- Cowieson, A.J.; Ravindran, V. Effect of exogenous enzymes in maize-based diets varying in nutrient density for young broilers: Growth performance and digestibility of energy, minerals and amino acids. Br. Poult. Sci. 2008, 49, 37–44. [Google Scholar] [CrossRef] [PubMed]
- Moita, V.H.C.; Kim, S.W. Nutritional and Functional Roles of Phytase and Xylanase Enhancing the Intestinal Health and Growth of Nursery Pigs and Broiler Chickens. Animals 2022, 12, 3322. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Ingale, S.L.; Rathi, P.; Kim, I. Influence of β-glucanase supplementation on growth performance, nutrient digestibility, blood parameters, and meat quality in broilers fed wheat–barley–soybean diet. Can. J. Anim. Sci. 2018, 99, 384–391. [Google Scholar] [CrossRef]
- Shalash, S.; El-Wafa, S.; Hassan, R.; Ramadan, N.A.; Mohamed, M.S.; El-Gabry, H.E. Evaluation of distillers dried grains with solubles as feed ingredient in laying hen diets. Int. J. Poult. Sci. 2010, 9, 537–545. [Google Scholar] [CrossRef]
- Ribeiro, T.; Lordelo, M.; Prates, J.; Falcão, L.; Freire, J.; Ferreira, L.; Fontes, C. The thermostable β-1, 3-1, 4-glucanase from Clostridium thermocellum improves the nutritive value of highly viscous barley-based diets for broilers. Br. Poult. Sci. 2012, 53, 224–234. [Google Scholar] [CrossRef]
- Kiarie, E.; Romero, L.; Ravindran, V. Growth performance, nutrient utilization, and digesta characteristics in broiler chickens fed corn or wheat diets without or with supplemental xylanase. Poult. Sci. 2014, 93, 1186–1196. [Google Scholar] [CrossRef]
- Bauer, M.M.; Ao, T.; Jacob, J.P.; Ford, M.J.; Pescatore, A.J.; Power, R.F.; Adedokun, S.A. Performance, energy, and nutrient utilization benefits with exogenous enzyme supplementation of wheat-soybean meal-based diets fed to 22-day-old broiler chickens. Poult. Sci. 2025, 104, 105039. [Google Scholar] [CrossRef]
- Woyengo, T.A.; Bogota, K.J.; Noll, S.L.; Wilson, J. Enhancing nutrient utilization of broiler chickens through supplemental enzymes. Poult. Sci. 2019, 98, 1302–1309. [Google Scholar] [CrossRef]
- Bedford, M.R. Exogenous enzymes in monogastric nutrition—Their current value and future benefits. Anim. Feed Sci. Technol. 2000, 86, 1–13. [Google Scholar] [CrossRef]
- Bedford, M.R. The evolution and application of enzymes in the animal feed industry: The role of data interpretation. Br. Poult. Sci. 2018, 59, 486–493. [Google Scholar] [CrossRef] [PubMed]
- Bedford, M.R.; Apajalahti, J.H. The role of feed enzymes in maintaining poultry intestinal health. J. Sci. Food Agric. 2022, 102, 1759–1770. [Google Scholar] [CrossRef]
- Noy, Y.; Sklan, D. Digestion and absorption in the young chick. Poult. Sci. 1995, 74, 366–373. [Google Scholar] [CrossRef] [PubMed]
- Sklan, D. Development of the digestive tract of poultry. World’s Poult. Sci. J. 2001, 57, 415–428. [Google Scholar] [CrossRef]
- Olukosi, O.A.; González-Ortiz, G.; Whitfield, H.; Bedford, M.R. Comparative aspects of phytase and xylanase effects on performance, mineral digestibility, and ileal phytate degradation in broilers and turkeys. Poult. Sci. 2020, 99, 1528–1539. [Google Scholar] [CrossRef]
- Ravindran, V.; Hew, L.I.; Ravindran, G.; Gill, R.J.; Pittolo, P.H.; Bryden, W.L. Influence of xylanase supplementation on the apparent metabolisable energy and ileal amino acid digestibility in a diet containing wheat and oats, and on the performance of three strains of broiler chickens. Aust. J. Agric. Res. 1999, 50, 1159–1163. [Google Scholar] [CrossRef]
- Fernandes, M.; Bortoluzzi, C.; Junior, A.; Rorig, A.; Perini, R.; Cristo, A. Effect of Different Enzymatic Supplements in Diets of broilers Raised at High Stocking Density. J. Vet. Med. Res. 2015, 2, 1016. [Google Scholar]
- Bedford, M.R.; Schulze, H. Exogenous enzymes for pigs and poultry. Nutr. Res. Rev. 1998, 11, 91–114. [Google Scholar] [CrossRef]
- Ghazi, S.; Rooke, J.A.; Galbraith, H. Improvement of the nutritive value of soybean meal by protease and alpha-galactosidase treatment in broiler cockerels and broiler chicks. Br. Poult. Sci. 2003, 44, 410–418. [Google Scholar] [CrossRef]
- Selle, P.; Pittolo, P.; Gill, R.; Bryden, W. Xylanase plus phytase supplementation of broiler diets based on different wheats. Proc. Aust. Poult. Sci. Symp. 2002, 14, 141–144. [Google Scholar]
- Singh, A.; O’Neill, H.V.M.; Ghosh, T.K.; Bedford, M.R.; Haldar, S. Effects of xylanase supplementation on performance, total volatile fatty acids and selected bacterial population in caeca, metabolic indices and peptide YY concentrations in serum of broiler chickens fed energy restricted maize–soybean based diets. Anim. Feed Sci. Technol. 2012, 177, 194–203. [Google Scholar] [CrossRef]
- Nian, F.; Guo, Y.; Ru, Y.; Li, F.; Peron, A. Effect of exogenous xylanase supplementation on the performance, net energy and gut microflora of broiler chickens fed wheat-based diets. Asian-Australas. J. Anim. Sci. 2011, 24, 400–406. [Google Scholar] [CrossRef]
- Dänicke, S.; Vahjen, W.; Simon, O.; Jeroch, H. Effects of dietary fat type and xylanase supplementation to rye-based broiler diets on selected bacterial groups adhering to the intestinal epithelium. on transit time of feed, and on nutrient digestibility. Poult. Sci. 1999, 78, 1292–1299. [Google Scholar] [CrossRef] [PubMed]
- Vahjen, W.; GlÄSer, K.; SchÄFer, K.; Simon, O. Influence of xylanase-supplemented feed on the development of selected bacterial groups in the intestinal tract of broiler chicks. J. Agric. Sci. 1998, 130, 489–500. [Google Scholar] [CrossRef]
- Choct, M.; Hughes, R.J.; Bedford, M.R. Effects of a xylanase on individual bird variation, starch digestion throughout the intestine, and ileal and caecal volatile fatty acid production in chickens fed wheat. Br. Poult. Sci. 1999, 40, 419–422. [Google Scholar] [CrossRef]
- Cowieson, A.J.; Bedford, M.R. The effect of phytase and carbohydrase on ileal amino acid digestibility in monogastric diets: Complimentary mode of action? World’s Poult. Sci. J. 2009, 65, 609–624. [Google Scholar] [CrossRef]
- Tajudeen, H.; Hosseindoust, A.; Ha, S.H.; Moturi, J.; Mun, J.Y.; Lee, C.B.; Park, J.W.; Lokhande, A.; Ingale, S.L.; Kim, J.S. Effects of dietary level of crude protein and supplementation of protease on performance and gut morphology of broiler chickens. Eur. Poult. Sci. 2022, 86, 1–12. [Google Scholar] [CrossRef]
- Cowieson, A.; Sorbara, J.O.; Pappenberger, G.; Abdollahi, M.R.; Roos, F.F.; Ravindran, V. Additivity of apparent and standardized ileal amino acid digestibility of corn and soybean meal in broiler diets. Poult. Sci. 2019, 98, 3722–3728. [Google Scholar] [CrossRef]
- Zavelinski, V.A.B.; Vieira, V.I.; Bassi, L.S.; de Almeida, L.M.; Schramm, V.G.; Maiorka, A.; de Oliveira, S.G. The effect of protease supplementation in broiler chicken diets containing maize from different batches on growth performance and nutrient digestibility. Animal 2024, 18, 101363. [Google Scholar] [CrossRef]
- Vieira, S.L.; Stefanello, C.; Cemin, H.S. Lowering the dietary protein levels by the use of synthetic amino acids and the use of a mono component protease. Anim. Feed Sci. Technol. 2016, 221, 262–266. [Google Scholar] [CrossRef]
- Lin Law, F.; Idrus, Z.; Soleimani Farjam, A.; Juan Boo, L.; Awad, E.A. Effects of protease supplementation of low protein and/or energy diets on growth performance and blood parameters in broiler chickens under heat stress condition. Ital. J. Anim. Sci. 2019, 18, 679–689. [Google Scholar] [CrossRef]
- Ndazigaruye, G.; Kim, D.-H.; Kang, C.-W.; Kang, K.-R.; Joo, Y.-J.; Lee, S.-R.; Lee, K.-W. Effects of Low-Protein Diets and Exogenous Protease on Growth Performance, Carcass Traits, Intestinal Morphology, Cecal Volatile Fatty Acids and Serum Parameters in Broilers. Animals 2019, 9, 226. [Google Scholar] [CrossRef] [PubMed]
- Sumanasekara, T.D.L.M.; Nayananjalie, W.A.D.; Ang, L.; Kumari, M.A.A.P. Effect of Protease Supplementation on Growth Performances, Carcass and Meat Quality Characteristics of Broiler Chicken Fed with Low Protein Diets. Sri Lankan J. Agric. Ecosyst. 2020, 2, 122–140. [Google Scholar] [CrossRef]
- Cowieson, A.J.; Bedford, M.R.; Ravindran, V. Interactions between xylanase and glucanase in maize-soy-based diets for broilers. Br. Poult. Sci. 2010, 51, 246–257. [Google Scholar] [CrossRef]
- Jeichitra, V.; Srinivasan, G. Effect of Xylanase Supplementation on Average Dailygain in Nandanam Colour Broiler; KrishiKosh: New Delhi, India, 2013. [Google Scholar]
- Purushothaman, M.; Kathirvelan, C.; Chandrasekaran, D.; Vasanthakumar, P.; Senthilkumar, S. Efficacy of supplemental mannase on corn soya based diet in broilers. Indian J. Poult. Sci. 2013, 48, 169–172. [Google Scholar]
- Govil, K.; Nayak, S.K.; Baghel, R.P.S.; Khare, A.; Patil, A.K.; Malapure, C.D.; Nayak, A.S. Xylanase Supplementation and Performance of Broiler Chicken Fed Low Energy Diet. Indian J. Anim. Nutr. 2016, 33, 475–478. [Google Scholar] [CrossRef]
- Ravindran, V.; Selle, P.H.; Ravindran, G.; Morel, P.C.H.; Kies, A.K.; Bryden, W.L. Microbial Phytase Improves Performance, Apparent Metabolizable Energy, and Ileal Amino Acid Digestibility of Broilers Fed a Lysine-Deficient Diet. Poult. Sci. 2001, 80, 338–344. [Google Scholar] [CrossRef] [PubMed]
- Amerah, A.M.; Plumstead, P.W.; Barnard, L.P.; Kumar, A. Effect of calcium level and phytase addition on ileal phytate degradation and amino acid digestibility of broilers fed corn-based diets. Poult. Sci. 2014, 93, 906–915. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Vallespín, B.; Männer, K.; Ader, P.; Zentek, J. Evaluation of High Doses of Phytase in a Low-Phosphorus Diet in Comparison to a Phytate-Free Diet on Performance, Apparent Ileal Digestibility of Nutrients, Bone Mineralization, Intestinal Morphology, and Immune Traits in 21-Day-Old Broiler Chickens. Animals 2022, 12, 1955. [Google Scholar] [CrossRef]
- Dersjant-Li, Y.; Bello, A.; Stormink, T.; Abdollahi, M.R.; Ravindran, V.; Babatunde, O.O.; Adeola, O.; Toghyani, M.; Liu, S.Y.; Selle, P.H.; et al. Modeling improvements in ileal digestible amino acids by a novel consensus bacterial 6-phytase variant in broilers. Poult. Sci. 2022, 101, 101666. [Google Scholar] [CrossRef] [PubMed]
- Cowieson, A.J.; Ruckebusch, J.P.; Sorbara, J.O.B.; Wilson, J.W.; Guggenbuhl, P.; Roos, F.F. A systematic view on the effect of phytase on ileal amino acid digestibility in broilers. Anim. Feed Sci. Technol. 2017, 225, 182–194. [Google Scholar] [CrossRef]
- Ravindran, V.; Hew, L.I.; Ravindran, G.; Bryden, W.L. A comparison of ileal digesta and excreta analysis for the determination of amino acid digestibility in food ingredients for poultry. Br. Poult. Sci. 1999, 40, 266–274. [Google Scholar] [CrossRef]
- Barua, M.; Abdollahi, M.R.; Zaefarian, F.; Wester, T.J.; Girish, C.K.; Chrystal, P.V.; Ravindran, V. Influence of Age on the Standardized Ileal Amino Acid Digestibility of Corn and Barley in Broilers. Animals 2021, 11, 3575. [Google Scholar] [CrossRef]
- Lemme, A.; Ravindran, V.; Bryden, W. Ileal digestibility of amino acids in feed ingredients for broilers. World’s Poult. Sci. J. 2004, 60, 423–438. [Google Scholar] [CrossRef]
- Kirchgessner, M.; Beyer, M.G.; Steinhart, H. Activation of pepsin (EC 3.4.4.1) by heavy-metal ions including a contribution to the mode of action of copper sulphate in pig nutrition. Br. J. Nutr. 1976, 36, 15–22. [Google Scholar] [CrossRef]
- Olukosi, O.A.; Pilevar, M.; Ajao, A.M.; Veluri, S.; Lin, Y. Determination of standardised ileal digestibility of amino acids in high-fibre feedstuffs and additivity of apparent and standardised ileal amino acids digestibility of diets containing mixtures of maize, sorghum, and soybean meal. Br. Poult. Sci. 2023, 64, 409–418. [Google Scholar] [CrossRef] [PubMed]
- Angkanaporn, K.; Ravindran, V.; Bryden, W.L. Additivity of Apparent and True Ileal Amino Acid Digestibilities in Soybean Meal, Sunflower Meal, and Meat and Bone Meal for Broilers. Poult. Sci. 1996, 75, 1098–1103. [Google Scholar] [CrossRef]
- Adedokun, S.A.; Adeola, O.; Parsons, C.M.; Lilburn, M.S.; Applegate, T.J. Factors affecting endogenous amino acid flow in chickens and the need for consistency in methodology. Poult. Sci. 2011, 90, 1737–1748. [Google Scholar] [CrossRef] [PubMed]
- Jansman, A.; Smink, W.; Van Leeuwen, P.; Rademacher, M. Evaluation through literature data of the amount and amino acid composition of basal endogenous crude protein at the terminal ileum of pigs. Anim. Feed Sci. Technol. 2002, 98, 49–60. [Google Scholar] [CrossRef]
- Moter, V.; Stein, H. Effect of feed intake on endogenous losses and amino acid and energy digestibility by growing pigs1,2. J. Anim. Sci. 2004, 82, 3518–3525. [Google Scholar] [CrossRef]
- Stein, H.H.; Pedersen, C.; Wirt, A.R.; Bohlke, R.A. Additivity of values for apparent and standardized ileal digestibility of amino acids in mixed diets fed to growing pigs. J. Anim. Sci. 2005, 83, 2387–2395. [Google Scholar] [CrossRef]
- Kong, C.; Adeola, O. Additivity of amino acid digestibility in corn and soybean meal for broiler chickens and White Pekin ducks. Poult. Sci. 2013, 92, 2381–2388. [Google Scholar] [CrossRef]
- Fang, R.; Li, T.; Yin, F.; Yin, Y.; Kong, X.; Wang, K.; Yuan, Z.; Wu, G.; He, J.; Deng, Z. The additivity of true or apparent phosphorus digestibility values in some feed ingredients for growing pigs. Asian-Australas. J. Anim. Sci. 2007, 20, 1092–1099. [Google Scholar] [CrossRef]
- Ravindran, V. Progress in ileal endogenous amino acid flow research in poultry. J. Anim. Sci. Biotechnol. 2021, 12, 5. [Google Scholar] [CrossRef]
- McDonald, P.; Edwards, R.; Greenhalgh, J.; Morgan, C. Animal Nutrition, 7th ed.; Pearson Education: London, UK, 2021; p. 51995. [Google Scholar]
- Nyachoti, C.M.; Lange, C.F.M.d.; McBride, B.W.; Schulze, H. Significance of endogenous gut nitrogen losses in the nutrition of growing pigs: A review. Can. J. Anim. Sci. 1997, 77, 149–163. [Google Scholar] [CrossRef]
- Hess, V.; Sève, B. Effects of body weight and feed intake level on basal ileal endogenous losses in growing pigs. J. Anim. Sci. 1999, 77, 3281–3288. [Google Scholar] [CrossRef]
- Adeola, O.; Xue, P.C.; Cowieson, A.J.; Ajuwon, K.M. Basal endogenous losses of amino acids in protein nutrition research for swine and poultry. Anim. Feed Sci. Technol. 2016, 221, 274–283. [Google Scholar] [CrossRef]
- Kong, C.; Adeola, O. Comparative amino acid digestibility for broiler chickens and White Pekin ducks. Poult. Sci. 2013, 92, 2367–2374. [Google Scholar] [CrossRef]
- Adedokun, S.A.; Parsons, C.M.M.; Lilburn, M.S.; Adeola, O.; Applegate, T.J. Standardized ileal amino acid digestibility of meat and bone meal from different sources in broiler chicks and turkey poults with a nitrogen-free or casein diet. Poult. Sci. 2007, 86, 2598–2607. [Google Scholar] [CrossRef] [PubMed]
- Eklund, M.; Sauer, N.; Schöne, F.; Messerschmidt, U.; Rosenfelder, P.; Htoo, J.; Mosenthin, R. Effect of processing of rapeseed under defined conditions in a pilot plant on chemical composition and standardized ileal amino acid digestibility in rapeseed meal for pigs. J. Anim. Sci. 2015, 93, 2813–2825. [Google Scholar] [CrossRef]
- Dilger, R.; Adeola, O. Estimation of true phosphorus digestibility and endogenous phosphorus loss in growing pigs fed conventional and low-phytate soybean meals. J. Anim. Sci. 2006, 84, 627–634. [Google Scholar] [CrossRef]
- Adedokun, S.; Lilburn, M.; Parsons, C.; Adeola, O.; Applegate, T. Effect of age and method on ileal endogenous amino acid flow in turkey poults. Poult. Sci. 2007, 86, 1948–1954. [Google Scholar] [CrossRef]
- Adedokun, S.; Parsons, C.; Lilburn, M.; Adeola, O.; Applegate, T. Comparison of ileal endogenous amino acid flows in broiler chicks and turkey poults. Poult. Sci. 2007, 86, 1682–1689. [Google Scholar] [CrossRef]
- Parsons, C. Digestibility and Bioavailability of Protein and Amino Acids; CABI: Wallingford, CT, USA, 2002; pp. 115–135. [Google Scholar] [CrossRef]
- Ravindran, V.; Adeola, O.; Rodehutscord, M.; Kluth, H.; Van der Klis, J.; Van Eerden, E.; Helmbrecht, A. Determination of ileal digestibility of amino acids in raw materials for broiler chickens–results of collaborative studies and assay recommendations. Anim. Feed Sci. Technol. 2017, 225, 62–72. [Google Scholar] [CrossRef]
- Kluth, H.; Rodehutscord, M. Effect of inclusion of cellulose in the diet on the inevitable endogenous amino acid losses in the ileum of broiler chicken. Poult. Sci. 2009, 88, 1199–1205. [Google Scholar] [CrossRef] [PubMed]
- Parsons, C.M. Unresolved issues for amino acid digestibility in poultry nutrition. J. Appl. Poult. Res. 2020, 29, 1–10. [Google Scholar] [CrossRef]
- Mariscal-Landín, G.; Reis de Souza, T.C. Endogenous ileal losses of nitrogen and amino acids in pigs and piglets fed graded levels of casein. Arch. Anim. Nutr. 2006, 60, 454–466. [Google Scholar] [CrossRef]
- Yoon, J.H.; Kong, C. Comparison of methods for estimating basal endogenous losses of amino acids and additivity of digestibility of amino acids in corn and soybean meal for broilers. Anim. Nutr. 2023, 15, 233–241. [Google Scholar] [CrossRef]
- An, S.H.; Sung, J.Y.; Kang, H.-K.; Kong, C. Additivity of Ileal Amino Acid Digestibility in Diets Containing Corn, Soybean Meal, and Corn Distillers Dried Grains with Solubles for Male Broilers. Animals 2020, 10, 933. [Google Scholar] [CrossRef]
- Amerah, A.M.; Ravindran, V.; Lentle, R.G.; Thomas, D.G. Feed particle size: Implications on the digestion and performance of poultry. World’s Poult. Sci. J. 2007, 63, 439–455. [Google Scholar] [CrossRef]
- Hamilton, R.M.G.; Proudfoot, F.G. Ingredient particle size and feed texture: Effects on the performance of broiler chickens. Anim. Feed Sci. Technol. 1995, 51, 203–210. [Google Scholar] [CrossRef]
- Abdollahi, M.; Ravindran, V.; Svihus, B. Pelleting of broiler diets: An overview with emphasis on pellet quality and nutritional value. Anim. Feed Sci. Technol. 2013, 179, 1–23. [Google Scholar] [CrossRef]
- Boltz, T.; Ward, N.E.; Ayres, V.E.; Lamp, A.E.; Moritz, J.S. The effect of varying steam conditioning temperature and time on pellet manufacture variables, true amino acid digestibility, and feed enzyme recovery. J. Appl. Poult. Res. 2020, 29, 328–338. [Google Scholar] [CrossRef]
- Abd El-Khalek, E.; Janssens, G.P.J. Effect of extrusion processing on starch gelatinisation and performance in poultry. World’s Poult. Sci. J. 2010, 66, 53–64. [Google Scholar] [CrossRef]
- Sung, J.Y.; Park, C.S.; Ragland, D.; Caroline González-Vega, J.; Wiltafsky-Martin, M.K.; Adeola, O. Autoclaving time-related reduction in amino acid digestibility of poultry meal in broiler chickens and growing pigs. J. Anim. Sci. 2024, 102, skad415. [Google Scholar] [CrossRef] [PubMed]
- Adedokun, S.A.; Pescatore, A.J.; Ford, M.J.; Ao, T.; Jacob, J.P. Investigating the effect of dietary calcium levels on ileal endogenous amino acid losses and standardized ileal amino acid digestibility in broilers and laying hens. Poult. Sci. 2018, 97, 131–139. [Google Scholar] [CrossRef]
- Kong, C.; Adeola, O. Ileal endogenous amino acid flow response to nitrogen-free diets with differing ratios of corn starch to dextrose in broiler chickens. Poult. Sci. 2013, 92, 1276–1282. [Google Scholar] [CrossRef]
- Adedokun, S.; Pescatore, A.; Ford, M.; Jacob, J.; Helmbrecht, A. Examining the effect of dietary electrolyte balance, energy source, and length of feeding of nitrogen-free diets on ileal endogenous amino acid losses in broilers. Poult. Sci. 2017, 96, 3351–3360. [Google Scholar] [CrossRef] [PubMed]
- Huang, K.H.; Ravindran, V.; Li, X.; Bryden, W.L. Influence of age on the apparent ileal amino acid digestibility of feed ingredients for broiler chickens. Br. Poult. Sci. 2005, 46, 236–245. [Google Scholar] [CrossRef]
- Kim, E.; Barta, J.R.; Lambert, W.; Kiarie, E.G. Standardized ileal digestibility of amino acids in broiler chickens fed single or mixture of feed ingredients-based diets with or without Eimeria challenge. Poult. Sci. 2022, 101, 101839. [Google Scholar] [CrossRef]
- Amerah, A.M.; Ravindran, V. Effect of coccidia challenge and natural betaine supplementation on performance, nutrient utilization, and intestinal lesion scores of broiler chickens fed suboptimal level of dietary methionine. Poult. Sci. 2015, 94, 673–680. [Google Scholar] [CrossRef] [PubMed]
- Teyssier, J.R.; Cozannet, P.; Greene, E.; Dridi, S.; Rochell, S.J. Influence of different heat stress models on nutrient digestibility and markers of stress, inflammation, lipid, and protein metabolism in broilers. Poult. Sci. 2023, 102, 103048. [Google Scholar] [CrossRef]
- Lancheros, J.P.; Espinosa, C.D.; Stein, H.H. Effects of particle size reduction, pelleting, and extrusion on the nutritional value of ingredients and diets fed to pigs: A review. Anim. Feed Sci. Technol. 2020, 268, 114603. [Google Scholar] [CrossRef]
- Zentek, J.; Boroojeni, F.G. (Bio)Technological processing of poultry and pig feed: Impact on the composition, digestibility, anti-nutritional factors and hygiene. Anim. Feed Sci. Technol. 2020, 268, 114576. [Google Scholar] [CrossRef]
- Svihus, B.; Perry, G.C. The role of feed processing on gastrointestinal function and health in poultry. In Avian Gut Function in Health and Disease; CABI: Wallingford, UK, 2006. [Google Scholar]
- Huang, X.; Zhang, H.; Yu, P. Structural changes on a molecular basis of canola meal by conditioning temperature and time during pelleting process in relation to physiochemical (energy and protein) properties relevant to ruminants. PLoS ONE 2017, 12, e0170173. [Google Scholar] [CrossRef]
- Dale, N.M. Variation in feed ingredient quality: Oilseed meals. Anim. Feed Sci. Technol. 1996, 59, 129–135. [Google Scholar] [CrossRef]
- de Coca-Sinova, A.; Valencia, D.G.; Jiménez-Moreno, E.; Lázaro, R.; Mateos, G.G. Apparent Ileal Digestibility of Energy, Nitrogen, and Amino Acids of Soybean Meals of Different Origin in Broilers1. Poult. Sci. 2008, 87, 2613–2623. [Google Scholar] [CrossRef]
- Moughan, P.J.; Ravindran, V.; Sorbara, J.O.B. Dietary protein and amino acids—Consideration of the undigestible fraction1. Poult. Sci. 2014, 93, 2400–2410. [Google Scholar] [CrossRef] [PubMed]
- Friedman, M. Food Browning and Its Prevention: An Overview. J. Agric. Food Chem. 1996, 44, 631–653. [Google Scholar] [CrossRef]
- Finot, P.A.; Magnenat, E. Metabolic transit of early and advanced Maillard products. Prog. Food Nutr. Sci. 1981, 5, 193–207. [Google Scholar]
- Oliveira, M.S.F.; Wiltafsky, M.K.; Lee, S.A.; Kwon, W.B.; Stein, H.H. Concentrations of digestible and metabolizable energy and amino acid digestibility by growing pigs may be reduced by autoclaving soybean meal. Anim. Feed Sci. Technol. 2020, 269, 114621. [Google Scholar] [CrossRef]
- Skurray, G.R. The Nutritional Evaluation of Meat Meals for Poultry. World’s Poult. Sci. J. 1974, 30, 129–136. [Google Scholar] [CrossRef]
- Muramatsu, K.; Massuquetto, A.; Dahlke, F.; Maiorka, A. Factors that Affect Pellet Quality: A Review. J. Agric. Sci. Technol. 2015, 5, 717–722. [Google Scholar] [CrossRef]
- Svihus, B.; Zimonja, O. Chemical alterations with nutritional consequences due to pelleting animal feeds: A review. Anim. Prod. Sci. 2011, 51, 590–596. [Google Scholar] [CrossRef]
- Samarasinghe, K.; Messikommer, R.; Wenk, C. Activity of supplemental enzymes and their effect on nutrient utilization and growth performance of growing chickens as affected by pelleting temperature. Arch. Für Tierernährung 2000, 53, 45–58. [Google Scholar] [CrossRef] [PubMed]
- Riaz, M. Extrusion Processing of Oilseed Meals for Food and Feed Production; Wiley: New York, NY, USA, 2020; pp. 1–34. [Google Scholar]
- Stein, H.; Bohlke, R. The effects of thermal treatment of field peas (Pisum sativum L.) on nutrient and energy digestibility by growing pigs. J. Anim. Sci. 2007, 85, 1424–1431. [Google Scholar] [CrossRef]
- Clarke, E.; Wiseman, J. Effects of extrusion conditions on trypsin inhibitor activity of full fat soybeans and subsequent effects on their nutritional value for young broilers. Br. Poult. Sci. 2007, 48, 703–712. [Google Scholar] [CrossRef] [PubMed]
- Schulze, H.; Verstegen, M.W.A.; van der Poel, A.F.B.; Tamminga, S.; Savelkoul, F.H.M.G. Inclusion of various biologically treated white kidney beans (Phaseolus vulgaris var. processor) on ileal amino acid and nitrogen flow in pigs. In Proceedings of the 6th International Symposium Digestive Physiology in the Pig, Bad Doberan, Germany, 4–6 October 1994; pp. 370–373. [Google Scholar]
- Schöne, F.; Kirchheim, U.; Schumann, W. Glucosinolate degradation by rapeseed myrosinase and effect on rapeseed acceptability by growing pigs. Anim. Feed Sci. Technol. 1994, 48, 229–235. [Google Scholar] [CrossRef]
- Bedford, M.R.; Classen, H.L.; Campbell, G.L. The effect of pelleting, salt, and pentosanase on the viscosity of intestinal contents and the performance of broilers fed rye. Poult. Sci. 1991, 70, 1571–1577. [Google Scholar] [CrossRef] [PubMed]
- Ravindran, V.; Hendriks, W.H. Endogenous amino acid flows at the terminal ileum of broilers, layers and adult roosters. Anim. Sci. 2004, 79, 265–271. [Google Scholar] [CrossRef]
- Whitehouse, T.H.; Zaefarian, F.; Abdollahi, M.R.; Ravindran, V. Dietary fat lowers ileal endogenous amino acid losses in broiler chickens. Br. Poult. Sci. 2024, 65, 478–483. [Google Scholar] [CrossRef]
- Parsons, C.M.; Potter, L.M.; Brown, R.D. Effects of Dietary Carbohydrate and of Intestinal Microflora on Excretion of Endogenous Amino Acids by Poultry. Poult. Sci. 1983, 62, 483–489. [Google Scholar] [CrossRef]
- Adedokun, S.A.; Adeola, O.; Parsons, C.M.; Lilburn, M.S.; Applegate, T.J. Standardized Ileal Amino Acid Digestibility of Plant Feedstuffs in Broiler Chickens and Turkey Poults Using a Nitrogen-Free or Casein Diet1. Poult. Sci. 2008, 87, 2535–2548. [Google Scholar] [CrossRef]
- Adedokun, S.; Parsons, C.; Lilburn, M.; Adeola, O.; Applegate, T. Endogenous amino acid flow in broiler chicks is affected by the age of birds and method of estimation. Poult. Sci. 2007, 86, 2590–2597. [Google Scholar] [CrossRef]
- Adedokun, S.A.; Utterback, P.; Parsons, C.M.; Adeola, O.; Lilburn, M.S.; Applegate, T.J. Comparison of endogenous amino acid flow in broilers, laying hens and caecectomised roosters. Br. Poult. Sci. 2009, 50, 359–365. [Google Scholar] [CrossRef]
- Andoh, A. Physiological Role of Gut Microbiota for Maintaining Human Health. Digestion 2016, 93, 176–181. [Google Scholar] [CrossRef]
- Lewis, J.D.; Chen, E.Z.; Baldassano, R.N.; Otley, A.R.; Griffiths, A.M.; Lee, D.; Bittinger, K.; Bailey, A.; Friedman, E.S.; Hoffmann, C.; et al. Inflammation, Antibiotics, and Diet as Environmental Stressors of the Gut Microbiome in Pediatric Crohn’s Disease. Cell Host Microbe 2015, 18, 489–500. [Google Scholar] [CrossRef]
- Vangay, P.; Ward, T.; Gerber, J.S.; Knights, D. Antibiotics, pediatric dysbiosis, and disease. Cell Host Microbe 2015, 17, 553–564. [Google Scholar] [CrossRef] [PubMed]
- Blake, D.P.; Knox, J.; Dehaeck, B.; Huntington, B.; Rathinam, T.; Ravipati, V.; Ayoade, S.; Gilbert, W.; Adebambo, A.O.; Jatau, I.D.; et al. Re-calculating the cost of coccidiosis in chickens. Vet. Res. 2020, 51, 115. [Google Scholar] [CrossRef]
- Dahiya, J.P.; Wilkie, D.C.; Kessel, A.G.V.; Drew, M.D. Potential strategies for controlling necrotic enteritis in broiler chickens in post-antibiotic era. Anim. Feed Sci. Technol. 2006, 129, 60–88. [Google Scholar] [CrossRef]
- Adedokun, S.A.; Helmbrecht, A.; Applegate, T.J. Investigation of the effect of coccidial vaccine challenge on apparent and standardized ileal amino acid digestibility in grower and finisher broilers and its evaluation in 21-day-old broilers. Poult. Sci. 2016, 95, 1825–1835. [Google Scholar] [CrossRef]
- Persia, M.E.; Young, E.L.; Utterback, P.L.; Parsons, C.M. Effects of Dietary Ingredients and Eimeria acervulina Infection on Chick Performance, Apparent Metabolizable Energy, and Amino Acid Digestibility. Poult. Sci. 2006, 85, 48–55. [Google Scholar] [CrossRef] [PubMed]
- Pomar, C.; Remus, A. 242 The Impact of Feed Formulation and Feeding Methods on Pig and Poultry Production on the Environment. J. Anim. Sci. 2022, 100, 124. [Google Scholar] [CrossRef]
- Such, N.; Pál, L.; Strifler, P.; Horváth, B.; Koltay, I.A.; Rawash, M.A.; Farkas, V.; Mezőlaki, Á.; Wágner, L.; Dublecz, K. Effect of Feeding Low Protein Diets on the Production Traits and the Nitrogen Composition of Excreta of Broiler Chickens. Agriculture 2021, 11, 781. [Google Scholar] [CrossRef]
- Kim, J.H.; Patterson, P.H.; Kim, W.K. Impact of dietary crude protein, Synthetic amino acid and keto acid formulation on nitrogen excretion. Int. J. Poult. Sci. 2014, 13, 429–436. [Google Scholar] [CrossRef]
- Kim, J.-H. Protein Quality and Amino Acid Utilization in Chickens. Korean J. Poult. Sci. 2015, 42, 87–100. [Google Scholar] [CrossRef]
- Meadows, R. Curbing livestock emissions: Ammonia, greenhouse gases, and odors. CSA News 2016, 61, 8–11. [Google Scholar] [CrossRef]
- Ritz, C.; Fairchild, B.D.; Lacy, M.P. Implications of Ammonia Production and Emissions from Commercial Poultry Facilities: A Review. J. Appl. Poult. Res. 2004, 13, 684–692. [Google Scholar] [CrossRef]
- Ullah, H. Feed Sustainability and Efficiency. In Poultry Farming—New Perspectives and Applications; Téllez-Isaías, G., Ed.; IntechOpen: Rijeka, Croatia, 2023. [Google Scholar]
- Pope, T.; Loupe, L.N.; Townsend, J.A.; Emmert, J.L. Growth performance of broilers using a phase-feeding approach with diets switched every other day from forty-two to sixty-three days of age. Poult. Sci. 2002, 81, 466–471. [Google Scholar] [CrossRef]
- Pope, T.; Loupe, L.N.; Pillai, P.B.; Emmert, J.L. Growth performance and nitrogen excretion of broilers using a phase-feeding approach from twenty-one to sixty-three days of age. Poult. Sci. 2004, 83, 676–682. [Google Scholar] [CrossRef]
- Castillo, A.R.; Kebreab, E.; Beever, D.E. A review of efficiency of nitrogen utilisation in lactating dairy cows and its relationship with environmental pollution. J. Anim. Feed Sci. 2000, 9, 1–32. [Google Scholar] [CrossRef]
- Oluwabiyi, C.T.; Song, Z. Branched-chain amino acids supplementation in low-protein broiler diets: A review. Anim. Feed Sci. Technol. 2024, 318, 116114. [Google Scholar] [CrossRef]
- Aletor, V.; Hamid, I.I.; Nieß, E.; Pfeffer, E. Low-protein amino acid-supplemented diets in broiler chickens: Effects on performance, carcass characteristics, whole-body composition and efficiencies of nutrient utilisation. J. Sci. Food Agric. 2000, 80, 547–554. [Google Scholar] [CrossRef]
- Bregendahl, K.; Sell, J.L.; Zimmerman, D.R. Effect of low-protein diets on growth performance and body composition of broiler chicks. Poult. Sci. 2002, 81, 1156–1167. [Google Scholar] [CrossRef] [PubMed]
- Belloir, P.; Méda, B.; Lambert, W.; Corrent, E.; Juin, H.; Lessire, M.; Tesseraud, S. Reducing the CP content in broiler feeds: Impact on animal performance, meat quality and nitrogen utilization. Animal 2017, 11, 1881–1889. [Google Scholar] [CrossRef]
- de Rauglaudre, T.; Méda, B.; Fontaine, S.; Lambert, W.; Fournel, S.; Létourneau-Montminy, M.-P. Meta-analysis of the effect of low-protein diets on the growth performance, nitrogen excretion, and fat deposition in broilers. Front. Anim. Sci. 2023, 4, 1214076. [Google Scholar] [CrossRef]
- Attia, Y.A.; Bovera, F.; Wang, J.; Al-Harthi, M.A.; Kim, W.K. Multiple Amino Acid Supplementations to Low-Protein Diets: Effect on Performance, Carcass Yield, Meat Quality and Nitrogen Excretion of Finishing Broilers under Hot Climate Conditions. Animals 2020, 10, 973. [Google Scholar] [CrossRef] [PubMed]
- Woyengo, T.; Knudsen, K.E.; Børsting, C.F. Low-protein diets for broilers: Current knowledge and potential strategies to improve performance and health, and to reduce environmental impact. Anim. Feed Sci. Technol. 2023, 297, 115574. [Google Scholar] [CrossRef]
- Khan, S.H. Recent advances in role of insects as alternative protein source in poultry nutrition. J. Appl. Anim. Res. 2018, 46, 1144–1157. [Google Scholar] [CrossRef]
- Slimen, I.; Yerou, H.; Ben Larbi, M.; M’Hamdi, N.; Najar, T. Insects as an alternative protein source for poultry nutrition: A review. Front. Vet. Sci. 2023, 10, 1200031. [Google Scholar] [CrossRef]
- Chu, X.; Li, M.; Wang, G.; Wang, K.; Shang, R.; Wang, Z.; Li, L. Evaluation of the low inclusion of full-fatted Hermetia illucens larvae meal for layer chickens: Growth performance, nutrient digestibility, and gut health. Front. Vet. Sci. 2020, 7, 585843. [Google Scholar] [CrossRef]
- Oonincx, D.G.A.B.; de Boer, I.J.M. Environmental Impact of the Production of Mealworms as a Protein Source for Humans—A Life Cycle Assessment. PLoS ONE 2012, 7, e51145. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Zhai, S.-W.; Zhang, C.-X.; Zhang, Q.; Chen, H. Nutrition value of the Chinese grasshopper Acrida cinerea (Thunberg) for broilers. Anim. Feed Sci. Technol. 2007, 135, 66–74. [Google Scholar] [CrossRef]
- Wang, D.; Zhai, S.W.; Zhang, C.X.; Bai, Y.Y.; An, S.H.; Xu, Y.N. Evaluation on Nutritional Value of Field Crickets as a Poultry Feedstuff. Asian-Australas. J. Anim. Sci. 2005, 18, 667–670. [Google Scholar] [CrossRef]
- Abdel-Wareth, A.A.A.; Williams, A.N.; Salahuddin, M.; Gadekar, S.; Lohakare, J. Algae as an alternative source of protein in poultry diets for sustainable production and disease resistance: Present status and future considerations. Front. Vet. Sci. 2024, 11, 1382163. [Google Scholar] [CrossRef]
- Janssen, R.H.; Vincken, J.-P.; van den Broek, L.A.; Fogliano, V.; Lakemond, C.M. Nitrogen-to-protein conversion factors for three edible insects: Tenebrio molitor, Alphitobius diaperinus, and Hermetia illucens. J. Agric. Food Chem. 2017, 65, 2275–2278. [Google Scholar] [CrossRef]
- Belluco, S.; Losasso, C.; Maggioletti, M.; Alonzi, C.C.; Paoletti, M.G.; Ricci, A. Edible insects in a food safety and nutritional perspective: A critical review. Compr. Rev. Food Sci. Food Saf. 2013, 12, 296–313. [Google Scholar] [CrossRef]
- Askri, A.; de Rauglaudre, T.; Létourneau-Montminy, M.-P.; Alnahhas, N. Impact of low crude protein diets containing animal byproducts on growth performance, nitrogen excretion, meat yield, and quality in broiler chickens. Can. J. Anim. Sci. 2025, 105, 1–10. [Google Scholar] [CrossRef]
- Kriseldi, R.; Tillman, P.B.; Jiang, Z.; Dozier, W.A., 3rd. Effects of feeding reduced crude protein diets on growth performance, nitrogen excretion, and plasma uric acid concentration of broiler chicks during the starter period. Poult. Sci. 2018, 97, 1614–1626. [Google Scholar] [CrossRef] [PubMed]
- Heo, Y.-J.; Park, J.; Kim, Y.-B.; Kwon, B.-Y.; Kim, D.-H.; Song, J.-Y.; Lee, K.-W. Effects of dietary protein levels on performance, nitrogen excretion, and odor emission of growing pullets and laying hens. Poult. Sci. 2023, 102, 102798. [Google Scholar] [CrossRef]
- Summers, J.D. Reducing nitrogen excretion of the laying hen by feeding lower crude protein diets. Poult. Sci. 1993, 72, 1473–1478. [Google Scholar] [CrossRef]
- Weil, J.; Beitia, A.; Suesuttajit, N.; Hilton, K.; Maharjan, P.; Caldas, J.; Rao, S.; Coon, C.N.; Chizzotti, M.L. Energy and protein metabolism and nutrition. In Determining Amino Acid Requirements for Broiler Breeders Using the Nitrogen Balance Method; Wageningen Academic: Wageningen, The Netherlands, 2019; pp. 471–472. [Google Scholar]
- Martin, P.A.; Bradford, G.D.; Gous, R.M. A formal method of determining the dietary amino acid requirements of laying-type pullets during their growing period. Br. Poult. Sci. 1994, 35, 709–724. [Google Scholar] [CrossRef]
- Ewing, H.; Pesti, G.; Bakalli, R. Development of Procedures for Determining the Amino Acid Requirements of Chickens by the Indicator Amino Acid Oxidation Method. Poult. Sci. 2001, 80, 182–186. [Google Scholar] [CrossRef]
- D’Mello, J.P.F. A Comparison of two Empirical Methods of determining Amino Acid Requirements. World’s Poult. Sci. J. 1982, 38, 114–119. [Google Scholar] [CrossRef]
- Fisher, C.; Morris, T.R. The determination of the methionine requirement of laying pullets by a diet dilution technique. Br. Poult. Sci. 1970, 11, 67–82. [Google Scholar] [CrossRef]
- Wecke, C.; Liebert, F. Improving the Reliability of Optimal In-Feed Amino Acid Ratios Based on Individual Amino Acid Efficiency Data from N Balance Studies in Growing Chicken. Animals 2013, 3, 558–573. [Google Scholar] [CrossRef] [PubMed]
- Mansilla, W.D.; Gorman, A.; Fortener, L.; Shoveller, A.K. Dietary phenylalanine requirements are similar in small, medium, and large breed adult dogs using the direct amino acid oxidation technique. J. Anim. Sci. 2018, 96, 3112–3120. [Google Scholar] [CrossRef]
- Hurwitz, S.; Sklan, D.; Bartov, I.D.O. New Formal Approaches to the Determination of Energy and Amino Acid Requirements of Chicks1. Poult. Sci. 1978, 57, 197–205. [Google Scholar] [CrossRef]
- Sklan, D.; Noy, Y. Direct determination of optimal amino acid intake for maintenance and growth in broilers. Poult. Sci. 2005, 84, 412–418. [Google Scholar] [CrossRef]
- Pomar, C.; Milgen, J.V.; Remus, A. Precision livestock feeding, principle and practice. Agriculture and Agri-Food Canada: Sherbrooke, QC, Canada, 2019. [Google Scholar]
- Zuidhof, M.J. Precision livestock feeding: Matching nutrient supply with nutrient requirements of individual animals. J. Appl. Poult. Res. 2020, 29, 11–14. [Google Scholar] [CrossRef]
- Lange, C.F.M.d.; Huber, L.A. 16: The role of nutrient utilisation models in precision animal management. In Poultry and Pig Nutrition; Wageningen Academic: Wageningen, The Netherlands, 2019. [Google Scholar]
- Hosseininezhad, M.; Hussain, M.A. Single-Cell Protein—A Group of Alternative Proteins. In Alternative Proteins; CRC Press: Boca Raton, FL, USA, 2021. [Google Scholar]
- Nasseri, A.T.; Rasoul-Amini, S.; Morowvat, M.H.; Younes, G. Single Cell Protein: Production and Process. Am. J. Food Technol. 2011, 6, 103–116. [Google Scholar] [CrossRef]
- Saheed, O.K.; Jamal, P.; Karim, M.I.A.; Alam, M.Z.; Muyibi, S.A. Utilization of fruit peels as carbon source for white rot fungi biomass production under submerged state bioconversion. J. King Saud Univ. Sci. 2016, 28, 143–151. [Google Scholar] [CrossRef]
- Ritala, A.; Häkkinen, S.T.; Toivari, M.; Wiebe, M.G. Single Cell Protein—State-of-the-Art, Industrial Landscape and Patents 2001–2016. Front. Microbiol. 2017, 8, 2009. [Google Scholar] [CrossRef] [PubMed]
- Ugbogu, E.A.; Ugbogu, O.C. A review of microbial protein production: Prospects and challenges. FUW Trends Sci. Technol. J. 2016, 1, 182–185. [Google Scholar]
- Cambra-López, M.; Marín-García, P.J.; Lledó, C.; Cerisuelo, A.; Pascual, J.J. Biomarkers and De Novo Protein Design Can Improve Precise Amino Acid Nutrition in Broilers. Animals 2022, 12, 935. [Google Scholar] [CrossRef]
- Sajid, Q.U.A.; Asghar, M.U.; Tariq, H.; Wilk, M.; Płatek, A. Insect Meal as an Alternative to Protein Concentrates in Poultry Nutrition with Future Perspectives (An Updated Review). Agriculture 2023, 13, 1239. [Google Scholar] [CrossRef]
- Salter, A.M.; Lopez-Viso, C. Role of novel protein sources in sustainably meeting future global requirements. Proc. Nutr. Soc. 2021, 80, 186–194. [Google Scholar] [CrossRef] [PubMed]
- Shang, Y.; Kumar, S.; Oakley, B.; Kim, W.K. Chicken Gut Microbiota: Importance and Detection Technology. Front. Vet. Sci. 2018, 5, 254. [Google Scholar] [CrossRef] [PubMed]
| Amino Acid | Classification | Functions in Poultry | Reference(s) |
| Methionine + Cysteine | Essential | Supports protein synthesis and feather development; serves as a methyl donor in DNA methylation; maintains antioxidant defense via glutathione and taurine pathways | [41,42] |
| Lysine | Essential | Required for muscle protein accretion and collagen formation; enhances immune response; promotes egg formation | [43,44] |
| Threonine | Essential | Serves as a major component of mucin; supports immune-protein synthesis and lipid metabolism; maintains gut barrier integrity | [45,46] |
| Tryptophan | Essential | Precursor of serotonin and melatonin; regulates feed intake and stress response; reduces feather pecking. | [47,48,49] |
| Arginine | Essential | Precursor of nitric oxide; required for cell proliferation and wound healing; enhances immune response and reduces carcass fat deposition. | [50,51] |
| Isoleucine | Essential | Involved in muscle metabolism and repair; supports hemoglobin formation and immune function. | [52,53] |
| Valine | Essential | Promotes muscle protein synthesis; essential for feather keratin and egg albumen formation. | [54,55] |
| Phenylalanine | Essential | Precursor for tyrosine; contributes to feather pigmentation and thyroid hormone synthesis | [56,57] |
| Histidine | Essential | Required for histamine synthesis; maintains muscle pH buffering; supports oxygen transport in erythrocytes | [58,59] |
| Alanine | Non-essential | Facilitates glucose-alanine cycle in muscle; contributes to nitrogen transport and gluconeogenesis. | [60] |
| Aspartate | Non-essential | Involved in nucleotide synthesis and transamination reactions; contributes to arginine biosynthesis and neurotransmission. | [61,62] |
| Glutamate | Non-essential | Key precursor for glutathione; serves as a major excitatory neurotransmitter; provides energy for intestinal enterocytes and nitrogen for other AAs. | [63,64,65] |
| Glycine | Non-essential | Required for collagen and heme synthesis; essential for feather keratin structure; exhibits anti-inflammatory properties. | [66,67] |
| Serine | Non-essential | Precursor for glycine and phospholipid synthesis; supports DNA and protein biosynthesis. | [1,68] |
| Proline | Non-essential | Supports collagen and feather keratin synthesis; provides energy for intestinal cells; contributes to eggshell membrane integrity and strength. | [66,69] |
| Limiting Amino Acids | Species | Age | Strain | Requirements (% of Diet) or mg/g/Birds | Reference (s) |
|---|---|---|---|---|---|
| Lysine | Broiler | 0–3 weeks 3–5 weeks | Cobb 500 | 1.22 1.16 | [79] |
| Broiler breeder | 23–29 weeks | Ross 308 | 0.7–0.77 | [80] | |
| Turkey | 72–83 days 84–95 days | Tom Poult (Male) | 0.68–0.67 0.53–0.51 | [81] | |
| Layer | 32–48 weeks | Dekalb White | 660–70 mg/g/b | [82] | |
| L-Methionine + Cystine | Broiler | 0–10 days 11–23 days 24–35 days | Ross 308 (Male broiler) | 0.69 0.66 0.62 | [83] |
| Layer | 22–36 weeks | N/S | 0.31 | [84] | |
| Methionine | Broiler | 7 days 14 days 21 days | Ross 308 | 0.62 0.55 0.50 | [85,86] |
| Threonine | Broiler | 22–42 days | Ross 308 (Male broiler) | 0.74 | [87] |
| Broiler | 1–18 day | Arbor Acre Classic | 0.71–0.72 | [88] | |
| Layer | 29–39 weeks | White Leghorn | 0.42–0.43 | [89] | |
| Breeder | 60 weeks | Cobb strain broiler breeder | 569 mg/g/b | [90] | |
| Turkey | 0–3 weeks 3–6 weeks 6–9 weeks | Large White Turkey | 0.97 0.88 0.77 | [91] | |
| Valine | Layer | 39–40 weeks 41–60 weeks | Hy-line W36 | 0.53–0.77 0.86–0.87 | [92] |
| Broiler | 28 days | Ross 308 | 0.90 | [85,86] | |
| Tryptophan | Broiler | 1–18 days 22–42 days | Ross 308 Cobb 500 (male) | 0.16–0.17 0.19–0.22 | [93] [94] |
| Layer | 60–70 weeks | Dekalb White Layer | 0.19 | [95] |
| Feedstuffs | Anti-Nutrients | Effect on Birds’ Performance/AA Utilization | References |
|---|---|---|---|
| Soybean Meal | Trypsin inhibitors | Inhibit proteases, reduce protein digestion and absorption of AA | [198] |
| Lectins | Lectins damage the gut lining, impairing nutrient uptake | [199] | |
| Saponins | Reduce feed intake and affect protein digestibility | [200] | |
| Phytic acid | Phytate binds minerals and reduce AA digestibility | [201] | |
| Cottonseed Meal | Gossypol | Gossypol decreases feed intake, reduces egg production and quality, damages organs, and binds lysine. | [193,202,203] |
| Cyclopropenoid fatty acids (CPFA) | In laying hens, affect egg discoloration such as brown yolk and pink albumen | [194,204] | |
| Canola/Rapeseed Meal | Glucosinolates | Glucosinolates cause bitter taste, lower feed intake, thyroid dysfunction (goiter) | [205] |
| Tannins | Tannins bind with proteins and affect growth performance | [32,206] | |
| Phytate | Phytate reduces minerals & AA availability. | [201,207] | |
| Field Peas | Trypsin inhibitors | Activate pancreatic hypertrophy and reduce protein absorption | [208,209] |
| Oligosaccharides | Cause digestive disorders, including mild diarrhea, possibly reducing feed efficiency | [210] | |
| Barley | β-glucans | Increase intestinal viscosity in chicks, sticky feces, decrease nutrient digestibility and feed conversion ratio. | [211,212] |
| Wheat | Arabinoxylans | Arabinoxylans in wheat cause high gut viscosity, reducing digestibility of protein and energy. | [186,213] |
| Faba Bean | Trypsin inhibitors & Lectins | Reduce feed intake, egg production, body weight and reduces total protein and AME in broilers and laying hens | [214,215] |
| Enzyme Type | Species | Diet | Measured Outcomes | Mechanism of Action | Reference |
|---|---|---|---|---|---|
| Phytase | Broilers | Chick-starter diet | ↑ Ileal AA digestibility at 1149 FTU/kg—(~2%) Specifically, ↑ Val, Ile. Also, ↑ N digestibility (numerical increase of 2%). | Hydrolyzes phytate-protein complexes, which otherwise limit AA utilization. Improves AA release and reduces endogenous N loss. | [311] |
| Phytase | Broilers | C-SBM | ↑ Ileal AA digestibility (averaging 4.0% units) at 1000 FTU/kg, ranging from 2.5% to 8.3% units for arginine and cystine respectively. | Improves AA digestibility by phytate hydrolysis, overcoming the anti-nutritive effects of phytic acid. Effectiveness varies with dietary phytate concentration and dosage. Partial dephosphorylation may suffice for AA digestibility, with higher doses primarily aiding phosphorus retention | [312] |
| Carbohydrase (Xylanase) | Broilers | Wheat-SBM | ↑ Ileal digestibility of 13 AAs, including Histidine, Threonine, leucine, Aspartic acid, Glutamic acid, Serine (from 2.5% to 13.4%). ↑ AID of N (average 4.8%). ↑ Feed efficiency (6.2%). | Disrupts non-starch polysaccharides; enhances enzyme-substrate contact and, consequently, AA digestibility. Counteracts increased gut viscosity induced by soluble arabinoxylans | [313] |
| Carbohydrase (β-Glucanase) | Broilers | Barley-based | ↑ Body weight gain, ↓ Feed conversion ratio when β-glucanase (CtGlc16A) was supplemented in barley-based diets. | Reduces digesta viscosity by cleaving mixed-linked glucans. This improves nutrient digestibility and absorption, and increases feed passage rate. | [314] |
| Protease | Laying hens | Commercial laying hen diet | ↑ Apparent ileal digestibility of Crude Protein, Lysine, Threonine, Tryptophan, and Valine. Protease inclusion also reduced feed consumption and FCR. | Hydrolyzes complex dietary proteins into smaller peptides and free AAs, facilitating absorption. Degrades proteinaceous ANFs and protein-bound ANFs. It can supplement endogenous peptidase activity and reduce protein turnover. | [315] |
| Xylanase + Phytase | Broilers | Wheat-SBM | ↑ AID of 14 AAs (average 8.7%) (or 15–17 AAs by average 8.6%); ↑ Apparent Metabolizable Energy (19%). The combination also restored BWG and improved FCR | Xylanase enhances cell wall permeability, releasing encapsulated nutrients and reducing digesta viscosity, which facilitates phytase action and nutrient absorption. Phytase hydrolyzes phytate, which is an integral component of the cell wall matrix, thus disrupting it. This leads to a synergistic increase in AA digestibility. | [313,316] |
| Factor Type | Specific Example(s) | Mechanism of Impact | Key Amino Acids Affected | Reference(s) |
|---|---|---|---|---|
| Feed Processing | Grinding | Enhances enzymatic hydrolysis via increased surface area | General improvement in AA digestibility | [408,409] |
| Pelleting (moderate vs. excessive) | Moderate heat improves digestibility; excessive heat causes protein damage | Lysine, Cystine | [410,411] | |
| Extrusion | Denatures proteins, disrupts ANFs, gelatinizes starch | Lysine, Threonine, Serine, Tryptophan | [266,412] | |
| Autoclaving (soybean meal) | Forms D-isomers → reduced true digestibility | D-Lysine, D-Methionine | [413] | |
| Excessive rendering/drying | Damages heat-sensitive proteins | Lysine, others | [274] | |
| Feed Ingredient | High dietary calcium | Stimulates mucosal secretions → ↑ mucin-associated AA excretion | Tryptophan, Tyrosine, Glutamic acid, Histidine | [414] |
| High-fiber or cellulose diets | ↑ mucin secretion and gut turnover → ↑ endogenous losses | Glutamic acid, Threonine | [403] | |
| Nitrogen-free or casein diets | Stimulate mucin and bile secretion → ↑ endogenous AA flow | Glutamic acid, Aspartic acid, Threonine, Glycine | [415,416] | |
| Age | Broiler chicks vs. poults | Younger birds → higher mucin secretion and IEAA flow → ↓ AID | Glutamic acid, Threonine, Aspartic acid | [396,399] |
| Broilers at 14, 28, 42 days | Digestibility improves with age | All measured AAs | [417] | |
| Gut Microbiota | Coccidiosis (Eimeria spp.) | Intestinal lesions → ↓ AID of all measured AAs | Lysine, Threonine, Isoleucine, Arginine, Valine | [418,419] |
| Antibiotic or heat stress | Dysbiosis → ↓ nutrient absorption | Broad AA impact (non-specific) | [420] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alabi, T.; Adedokun, S. Amino Acid Nutrition in Poultry: A Review. Animals 2025, 15, 3323. https://doi.org/10.3390/ani15223323
Alabi T, Adedokun S. Amino Acid Nutrition in Poultry: A Review. Animals. 2025; 15(22):3323. https://doi.org/10.3390/ani15223323
Chicago/Turabian StyleAlabi, Taiwo, and Sunday Adedokun. 2025. "Amino Acid Nutrition in Poultry: A Review" Animals 15, no. 22: 3323. https://doi.org/10.3390/ani15223323
APA StyleAlabi, T., & Adedokun, S. (2025). Amino Acid Nutrition in Poultry: A Review. Animals, 15(22), 3323. https://doi.org/10.3390/ani15223323

