Rectal Microbiome Reveals the Improved Effect of Dietary Selenium Levels on Lactation Performance and Milk Fatty Acid Profiles in Lactating Donkeys
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals, Diets, and Experiment Design
2.2. Milk Sampling and Analysis
2.3. Apparent Nutrient Digestion and Metabolism
2.4. Blood Sampling and Analysis
2.5. Short-Chain Fatty Acids Analysis of the Feces
2.6. Rectal Microbiome Analysis
2.7. Statistical Analysis
3. Results
3.1. Lactation Performance
3.2. Nutrient Digestibility
3.3. Plasma Selenium Concentration and Fatty Acid Composition in Plasma and Milk
3.4. Short-Chain Fatty Acids in the Rectal Feces
3.5. Fecal Bacterial Richness, Diversity, and Composition
3.6. Significantly Different Rectum Bacteria Among the CON, Se1, Se2, and Se3 Groups
3.7. Correlation Analysis of Differential RECTAL Bacteria Genus with Nutrient Digestion and Metabolism Rate, Lactation Performance, Milk FA Composition, and SCFA
4. Discussion
4.1. Effects on Lactation Performance
4.2. Effects on Fatty Acid Composition of Milk
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| AI | Atherogenicity index |
| AIA | Acid-insoluble ash |
| ATTD | Apparent total-tract digestibility |
| BH | Biohydrogenation |
| BV | Protein biological value |
| DFA | Desirable fatty acid |
| EE | Ether extract |
| EMY | Estimated milk yield |
| FA | Fatty acid |
| GE | Gross energy |
| MY | Milking yield |
| SCFA | Short-chain fatty acid |
| SCM | Solids-corrected milk |
| SMCFA | Short-and medium-chain fatty acid |
| TI | Thrombogenic index |
| Total VFA | Total volatile fatty acid |
References
- Papademas, P.; Mousikos, P.; Aspri, M. Valorization of donkey milk: Technology, functionality, and future prospects. JDS Commun. 2022, 3, 228–233. [Google Scholar] [CrossRef]
- Cimmino, F.; Catapano, A.; Villano, I.; Di Maio, G.; Petrella, L.; Traina, G.; Pizzella, A.; Tudisco, R.; Cavaliere, G. Invited review: Human, cow, and donkey milk comparison: Focus on metabolic effects. J. Dairy Sci. 2023, 106, 3072–3085. [Google Scholar] [CrossRef]
- Mignone, L.E.; Wu, T.; Horowitz, M.; Rayner, C.K. Whey protein: The “whey” forward for treatment of type 2 diabetes? World J. Diabetes 2015, 6, 1274–1284. [Google Scholar] [CrossRef]
- Vincenzetti, S.; Pucciarelli, S.; Polzonetti, V.; Polidori, P.; Durazzo, A. Role of proteins and of some bioactive peptides on the nutritional quality of donkey milk and their impact on human health. Beverages 2017, 3, 34. [Google Scholar] [CrossRef]
- Brumini, D.; Criscione, A.; Bordonaro, S.; Vegarud, G.E.; Marletta, D. Whey proteins and their antimicrobial properties in donkey milk: A brief review. Dairy Sci. Technol. 2016, 96, 1–14. [Google Scholar] [CrossRef]
- Esener, O.; Balkan, B.M.; Armutak, E.I.; Uvez, A.; Yildiz, G.; Hafizoglu, M.; Yilmazer, N.; Gurel-Gurevin, E. Donkey milk kefir induces apoptosis and suppresses proliferation of Ehrlich ascites carcinoma by decreasing iNOS in mice. Biotech. Histochem. 2018, 93, 424–431. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Liu, X.; Guo, H. The nutritional ingredients and antioxidant activity of donkey milk and donkey milk powder. Food Sci. Biotechnol. 2017, 27, 393–400. [Google Scholar] [CrossRef] [PubMed]
- Yvon, S.; Olier, M.; Leveque, M.; Jard, G.; Tormo, H.; Haimoud-Lekhal, D.A.; Peter, M.; Eutamène, H. Donkey milk consumption exerts anti-inflammatory properties by normalizing antimicrobial peptides levels in Paneth’s cells in a model of ileitis in mice. Eur. J. Nutr. 2018, 57, 155–166. [Google Scholar] [CrossRef]
- Martini, M.; Altomonte, I.; Tricò, D.; Lapenta, R.; Salari, F. Current knowledge on functionality and potential therapeutic uses of donkey milk. Animals 2021, 11, 1382. [Google Scholar] [CrossRef]
- Khan, I.T.; Nadeem, M.; Imran, M.; Ullah, R.; Ajmal, M.; Jaspal, M.H. Antioxidant properties of milk and dairy products: A comprehensive review of the current knowledge. Lipids Health Dis. 2019, 18, 41. [Google Scholar] [CrossRef]
- Carroccio, A.; Cavataio, F.; Montalto, G.; D’Amico, D.; Alabrese, L.; Iacono, G. Intolerance to hydrolysed cow’s milk proteins in infants: Clinical characteristics and dietary treatment. Clin. Exp. Allergy 2000, 30, 1597–1603. [Google Scholar] [CrossRef]
- Gong, J.; Ni, L.; Wang, D.; Shi, B.; Yan, S. Effect of dietary organic selenium on milk selenium concentration and antioxidant and immune status in midlactation dairy cows. Livest. Sci. 2014, 170, 84–90. [Google Scholar] [CrossRef]
- Mahan, D.C.; Cline, T.R.; Richert, B. Effects of dietary levels of selenium-enriched yeast and sodium selenite as selenium sources fed to growing-finishing pigs on performance, tissue selenium, serum glutathione peroxidase activity, carcass characteristics, and loin quality. J. Anim. Sci. 1999, 77, 2172–2179. [Google Scholar] [CrossRef]
- Tong, M.; Li, S.; Hui, F.; Meng, F.; Li, L.; Shi, B.; Zhao, Y.; Guo, X.; Guo, Y.; Yan, S. Effects of dietary selenium yeast supplementation on lactation performance, antioxidant status, and immune responses in lactating donkeys. Antioxidants 2024, 13, 275. [Google Scholar] [CrossRef] [PubMed]
- Sun, P.; Wang, J.; Liu, W.; Bu, D.P.; Liu, S.J.; Zhang, K.Z. Hydroxy-selenomethionine: A novel organic selenium source that improves antioxidant status and selenium concentrations in milk and plasma of mid-lactation dairy cows. J. Dairy Sci. 2017, 100, 9602–9610. [Google Scholar] [CrossRef]
- Ye, R.; Huang, J.; Wang, Z.; Chen, Y.; Dong, Y. Trace element selenium effectively alleviates intestinal diseases. Int. J. Mol. Sci. 2021, 22, 11708. [Google Scholar] [CrossRef]
- Sun, L.; Liu, G.; Xu, D.; Wu, Z.; Ma, L.; Victoria, S.M.; Baumgard, L.H.; Bu, D. Milk selenium content and speciation in response to supranutritional selenium yeast supplementation in cows. Anim. Nutr. 2021, 7, 1087–1094. [Google Scholar] [CrossRef]
- Puniya, A.K.; Singh, R.; Kamra, D.N. Rumen Microbiology: From Evolution to Revolution; Springer: New Delhi, India, 2015; pp. 153–168. [Google Scholar] [CrossRef]
- Jewell, K.A.; McCormick, C.A.; Odt, C.L.; Weimer, P.J.; Suen, G. Ruminal bacterial community composition in dairy cows is dynamic over the course of two lactations and correlates with feed efficiency. Appl. Environ. Microbiol. 2015, 81, 4697–4710. [Google Scholar] [CrossRef] [PubMed]
- Edwards, J.E.; Schennink, A.; Burden, F.; Long, S.; van Doorn, D.A.; Pellikaan, W.F.; Dijkstra, J.; Saccenti, E.; Smidt, H. Domesticated equine species and their derived hybrids differ in their fecal microbiota. Anim. Microbiome 2020, 2, 8. [Google Scholar] [CrossRef]
- Grimm, P.; Philippeau, C.; Julliand, V. Faecal parameters as biomarkers of the equine hindgut microbial ecosystem under dietary change. Animal 2017, 11, 1136–1145. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.B.; Isaacson, R.E. The pig gut microbial diversity: Understanding the pig gut microbial ecology through the next generation high throughput sequencing. Vet. Microbiol. 2015, 177, 242–251. [Google Scholar] [CrossRef]
- Stanley, D.; Geier, M.S.; Chen, H.; Hughes, R.J.; Moore, R.J. Comparison of fecal and cecal microbiotas reveals qualitative similarities but quantitative differences. BMC Microbiol. 2015, 15, 51. [Google Scholar] [CrossRef]
- Guo, Y.; Yin, G.; Hui, F.; Guo, X.; Shi, B.; Zhao, Y.; Yan, S. Effects of dietary energy level on antioxidant capability, immune function and rectal microbiota in late gestation donkeys. Front. Microbiol. 2024, 15, 1308171. [Google Scholar] [CrossRef]
- Li, S.Y.; Tong, M.M.; Li, L.; Hui, F.; Meng, F.Z.; Zhao, Y.L.; Guo, Y.M.; Guo, X.Y.; Shi, B.L.; Yan, S.M. Rectal microbiomes and serum metabolomics reveal the improved effect of Artemisia ordosica crude polysaccharides on the lactation performance, antioxidant status, and immune responses of lactating donkeys. J. Dairy Sci. 2024, 107, 6696–6716. [Google Scholar] [CrossRef]
- Cui, X.; Wang, Z.; Tan, Y.; Chang, S.; Zheng, H.; Wang, H.; Yan, T.; Guru, T.; Hou, F. Selenium yeast dietary supplement affects rumen bacterial population dynamics and fermentation parameters of Tibetan sheep (Ovis aries) in alpine meadow. Front. Microbiol. 2021, 12, 663945. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Shi, H.; Gong, C.; Liu, K.; Li, G. Effects of different yeast selenium levels on rumen fermentation parameters, digestive enzyme activity and gastrointestinal microflora of sika deer during antler growth. Microorganisms 2023, 11, 1444. [Google Scholar] [CrossRef] [PubMed]
- Li, J.X.; Lu, D.L.; Yu, S.J.; Zhang, W.L.; Zainaguli, J.J.L.K.; Zhou, J.H.; Huang, X.X. The analysis of donkey milk production and the research of estimated milk production day. Grass Feed. Livest. 2013, 6, 26. [Google Scholar] [CrossRef]
- Liang, X.S.; Yue, Y.X.; Zhao, Y.L.; Guo, Y.M.; Guo, X.Y.; Shi, B.L.; Yan, S.M. Effects of dietary concentrate to forage ratio on milk performance, milk amino acid composition and milk protein synthesis of lactating donkeys. Anim. Feed Sci. Technol. 2022, 292, 115454. [Google Scholar] [CrossRef]
- Tyrrell, H.F.; Reid, J.T. Prediction of the energy value of cow’s milk. J. Dairy Sci. 1965, 48, 1215–1223. [Google Scholar] [CrossRef]
- Leiber, F.; Dorn, K.; Probst, J.K.; Isensee, A.; Ackermann, N.; Kuhn, A.; Spengler Neff, A. Concentrate reduction and sequential roughage offer to dairy cows: Effects on milk protein yield, protein efficiency and milk quality. J. Dairy Res. 2015, 82, 272–278. [Google Scholar] [CrossRef]
- O’Fallon, J.V.; Busboom, J.R.; Nelson, M.L.; Gaskins, C.T. A direct method for fatty acid methyl ester synthesis: Application to wet meat tissues, oils, and feedstuffs. J. Anim. Sci. 2007, 85, 1511–1521. [Google Scholar] [CrossRef]
- Wereńska, M.; Haraf, G.; Wołoszyn, J.; Goluch, Z.; Okruszek, A.; Teleszko, M. Fatty acid profile and health lipid indices of goose meat in relation to various types of heat treatment. Poult. Sci. 2021, 100, 101237. [Google Scholar] [CrossRef]
- Ulbricht, T.L.V.; Southgate, D.A.T. Coronary heart disease: Seven dietary factors. Lancet 1991, 338, 985–992. [Google Scholar] [CrossRef]
- Helrich, K. Official Methods of Analysis of AOAC International: Food Composition, Additives, Natural Contaminants, 18th ed.; AOAC International: Arlington, VA, USA, 2006; Volume 2. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Ren, H.; Bai, H.; Su, X.; Pang, J.; Li, X.; Wu, S.; Cao, Y.; Cai, C.; Yao, J. Decreased amylolytic microbes of the hindgut and increased blood glucose implied improved starch utilization in the small intestine by feeding rumen-protected leucine in dairy calves. J. Dairy Sci. 2020, 103, 4218–4235. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, C.K.; Humphries, D.J.; Kirton, P.; Kindermann, M.; Duval, S.; Steinberg, W. Effects of 3-nitrooxypropanol on methane emission, digestion, and energy and nitrogen balance of lactating dairy cows. J. Dairy Sci. 2014, 97, 3777–3789. [Google Scholar] [CrossRef] [PubMed]
- Jha, R.; Overend, D.N.; Simmins, P.H.; Hickling, D.; Zijlstra, R.T. Chemical characteristics, feed processing quality, growth performance and energy digestibility among wheat classes in pelleted diets fed to weaned pigs. Anim. Feed Sci. Technol. 2011, 170, 78–90. [Google Scholar] [CrossRef]
- GB5009.268-2016; Determination of Multi-Elements in Foods. Standards Press of China: Beijing, China, 2016.
- Li, Y.; Liu, J.X.; Xiong, J.L.; Wang, Y.M.; Zhang, W.X.; Wang, D.M. Effect of hydroxyselenomethionine on lactation performance, blood profiles, and transfer efficiency in early-lactating dairy cows. J. Dairy Sci. 2019, 102, 6167–6173. [Google Scholar] [CrossRef]
- Bai, X.; Li, F.; Li, F.; Guo, L. Different dietary sources of selenium alter meat quality, shelf life, selenium deposition, and antioxidant status in Hu lambs. Meat Sci. 2022, 194, 108961. [Google Scholar] [CrossRef]
- Hachemi, M.A.; Sexton, J.R.; Briens, M.; Whitehouse, N.L. Efficacy of feeding hydroxy-selenomethionine on plasma and milk selenium in mid-lactation dairy cows. J. Dairy Sci. 2023, 106, 2374–2385. [Google Scholar] [CrossRef]
- Xiao, M.; Wang, Y.; Wei, M.; Peng, W.; Wang, Y.; Zhang, R.; Zheng, Y.; Ju, J.; Dong, C.; Du, L.; et al. Effects of nanoselenium on the performance, blood indices, and milk metabolites of dairy cows during the peak lactation period. Front. Vet. Sci. 2024, 11, 1418165. [Google Scholar] [CrossRef]
- Vonnahme, K.A.; Wienhold, C.M.; Borowicz, P.P.; Neville, T.L.; Redmer, D.A.; Reynolds, L.P.; Caton, J.S. Supranutritional selenium increases mammary gland vascularity in postpartum ewe lambs. J. Dairy Sci. 2011, 94, 2850–2858. [Google Scholar] [CrossRef]
- Arshad, M.A.; Ebeid, H.M.; Hassan, F.U. Revisiting the effects of different dietary sources of selenium on the health and performance of dairy animals: A review. Biol. Trace Elem. Res. 2021, 199, 3319–3337. [Google Scholar] [CrossRef]
- Czauderna, M.; Białek, M.; Krajewska, K.A.; Ruszczyńska, A.; Bulska, E. Selenium supplementation into diets containing carnosic acid, fish and rapeseed oils affects the chemical profile of whole blood in lambs. J. Anim. Feed Sci. 2017, 26, 192–203. [Google Scholar] [CrossRef]
- Yang, Q.; Liu, H.; Jafari, H.; Liu, B.; Wang, Z.; Su, J.; Wang, F.; Yang, G.; Sun, M.; Cheng, J.; et al. Corrigendum: Metabolic changes before and after weaning in Dezhou donkey foals in relation to gut microbiota. Front. Microbiol. 2025, 16, 1557933. [Google Scholar] [CrossRef]
- Waters, J.L.; Ley, R.E. The human gut bacteria Christensenellaceae are widespread, heritable, and associated with health. BMC Biol. 2019, 17, 83. [Google Scholar] [CrossRef]
- Xue, M.Y.; Sun, H.Z.; Wu, X.H.; Liu, J.X.; Guan, L.L. Multi-omics reveals that the rumen microbiome and its metabolome together with the host metabolome contribute to individualized dairy cow performance. Microbiome 2020, 8, 64. [Google Scholar] [CrossRef] [PubMed]
- Si, B.; Liu, K.; Huang, G.; Chen, M.; Yang, J.; Wu, X.; Li, N.; Tang, W.; Zhao, S.; Zheng, N.; et al. Relationship between rumen bacterial community and milk fat in dairy cows. Front. Microbiol. 2023, 14, 1247348. [Google Scholar] [CrossRef] [PubMed]
- Hugenholtz, F.; Davids, M.; Schwarz, J.; Müller, M.; Tomé, D.; Schaap, P.; Hooiveld, G.J.E.J.; Smidt, H.; Kleerebezem, M. Metatranscriptome analysis of the microbial fermentation of dietary milk proteins in the murine gut. PLoS ONE 2018, 13, e0194066. [Google Scholar] [CrossRef] [PubMed]
- Cozma, A.; Miere, D.; Filip, L.; Andrei, S.; Banc, R.; Loghin, F. A review of the metabolic origins of milk fatty acids. Not. Sci. Biol. 2013, 5, 270–274. [Google Scholar] [CrossRef]
- Yang, F.L.; Li, X.S.; He, B.X. Effects of vitamins and trace elements supplementation on milk production in dairy cows A review. Afr. J. Biotechnol. 2011, 10, 2574–2578. [Google Scholar] [CrossRef]
- Ianni, A.; Bennato, F.; Martino, C.; Innosa, D.; Grotta, L.; Martino, G. Effects of selenium supplementation on chemical composition and aromatic profiles of cow milk and its derived cheese. J. Dairy Sci. 2019, 102, 6853–6862. [Google Scholar] [CrossRef]
- Li, S.; Liu, T.; Wang, K.; Li, C.; Wu, F.; Yang, X.; Zhao, M.; Chen, B.; Chen, X. The ratios of dietary non-fibrous carbohydrate (NFC) to neutral detergent fiber (NDF) influence intestinal immunity of rabbits by regulating gut microbiota composition and metabolites. Front. Microbiol. 2023, 14, 1146787. [Google Scholar] [CrossRef]
- Toral, P.G.; Belenguer, A.; Shingfield, K.J.; Hervás, G.; Toivonen, V.; Frutos, P. Fatty acid composition and bacterial community changes in the rumen fluid of lactating sheep fed sunflower oil plus incremental levels of marine algae. J. Dairy Sci. 2012, 95, 794–806. [Google Scholar] [CrossRef] [PubMed]
- Buccioni, A.; Pallara, G.; Pastorelli, R.; Bellini, L.; Cappucci, A.; Mannelli, F.; Minieri, S.; Roscini, V.; Rapaccini, S.; Mele, M.; et al. Effect of dietary chestnut or quebracho tannin supplementation on microbial community and fatty acid profile in the rumen of dairy ewes. BioMed Res. Int. 2017, 2017, 4969076. [Google Scholar] [CrossRef]
- Wang, B.; Ma, M.P.; Diao, Q.Y.; Tu, Y. Saponin-induced shifts in the rumen microbiome and metabolome of young cattle. Front. Microbiol. 2019, 10, 356. [Google Scholar] [CrossRef]
- Adkins, Y.; Kelley, D.S. Mechanisms underlying the cardioprotective effects of omega-3 polyunsaturated fatty acids. J. Nutr. Biochem. 2010, 21, 781–792. [Google Scholar] [CrossRef] [PubMed]
- Simopoulos, A.P. The importance of the omega-6/omega-3 fatty acid ratio in cardiovascular disease and other chronic diseases. Exp. Biol. Med. (Maywood) 2008, 233, 674–688. [Google Scholar] [CrossRef]
- Rizzo, F.A.; Júnior, J.S.; Scheibler, R.B.; Fluck, A.C.; de Vargas, D.P.; Nörnberg, J.L.; Fioreze, V.I.; da Silva, J.L.S.; Costa, O.A.D. Biofortification of cow milk through dietary supplementation with sunflower oil: Fatty acid profile, atherogenicity, and thrombogenic index. Trop. Anim. Health Prod. 2023, 55, 269. [Google Scholar] [CrossRef]
- Bermudez, B.; Lopez, S.; Ortega, A.; Varela, L.M.; Pacheco, Y.M.; Abia, R.; Muriana, F.J. Oleic acid in olive oil: From a metabolic framework toward a clinical perspective. Curr. Pharm. Des. 2011, 17, 831–843. [Google Scholar] [CrossRef] [PubMed]







| Items | Content |
|---|---|
| Feed Ingredients (% of DM) | |
| Millet straw | 33.97 |
| Alfalfa | 23.55 |
| Corn | 15.19 |
| Soybean meal | 8.55 |
| Corn silage | 12.49 |
| Distillers dried grains with solubles | 1.80 |
| Corn germ meal | 1.80 |
| Bran | 0.90 |
| NaCl | 0.39 |
| CaCO3 | 0.21 |
| CaHPO4 | 0.66 |
| Premix 1 | 0.50 |
| Total | 100.00 |
| Nutrient composition (% of DM) | |
| DE (MJ/kg) 2 | 13.82 |
| DM | 87.21 |
| CP | 12.28 |
| EE | 2.12 |
| NDF | 47.87 |
| ADF | 28.30 |
| Ca | 1.12 |
| P | 0.36 |
| Se, mg/kg DM | 0.04 |
| Items 3 | Treatment | SEM 2 | p-Value | |||||
|---|---|---|---|---|---|---|---|---|
| CON1 | Se1 1 | Se2 1 | Se3 1 | Treatment | Week | T × W | ||
| DMI (kg/day) | 7.94 | 8.14 | 7.62 | 7.89 | 0.213 | 0.231 | 0.329 | 0.892 |
| EMY (kg/day) | 3.26 b | 3.23 b | 3.84 a | 3.50 b | 0.191 | 0.015 | 0.026 | 0.878 |
| Milk production efficiency | 0.23 b | 0.22 b | 0.28 a | 0.24 b | 0.014 | 0.001 | <0.0001 | 0.842 |
| Milk protein synthesis efficiency | 0.75 b | 0.72 b | 0.88 a | 0.76 b | 0.045 | 0.002 | <0.0001 | 0.913 |
| Milk components | ||||||||
| Fat (%) | 0.39 | 0.41 | 0.4 | 0.39 | 0.015 | 0.623 | 0.632 | 0.989 |
| Protein (%) | 1.83 | 1.82 | 1.82 | 1.81 | 0.017 | 0.869 | <0.0001 | 0.999 |
| Lactose (%) | 7.11 | 7.11 | 7.12 | 7.12 | 0.021 | 0.918 | <0.0001 | 0.404 |
| SNF (%) | 8.97 | 8.97 | 8.97 | 8.97 | 0.029 | 0.998 | <0.001 | 0.841 |
| TS (%) | 9.38 | 9.37 | 9.36 | 9.38 | 0.028 | 0.955 | <0.001 | 0.803 |
| Milk components yield | ||||||||
| Fat (g/day) | 11.98 b | 13.94 a | 15.54 a | 14.65 a | 0.736 | 0.008 | 0.220 | 0.640 |
| Protein (g/day) | 59.91 b | 59.78 b | 68.53 a | 65.05 ab | 3.880 | 0.063 | 0.002 | 0.965 |
| Lactose (g/day) | 227.58 b | 230.74 b | 270.77 a | 244.13 b | 13.911 | 0.008 | 0.001 | 0.725 |
| SNF (g/day) | 287.07 b | 291.82 b | 341.19 a | 306.64 b | 17.789 | 0.009 | <0.001 | 0.763 |
| TS (g/day) | 299.64 b | 306.04 b | 355.80 a | 323.10 b | 18.594 | 0.012 | 0.001 | 0.831 |
| SCC, ×1000 cells /mL | 6.07 a | 5.26 ab | 4.23 b | 4.39 b | 0.431 | 0.019 | <0.001 | 0.959 |
| Items 3 | CON 1 | Se1 1 | Se2 1 | Se3 1 | SEM 2 | p-Value |
|---|---|---|---|---|---|---|
| DM (%) | 68.08 | 67.08 | 67.38 | 67.6 | 1.070 | 0.935 |
| CP (%) | 79.64 | 79.83 | 79.50 | 80.42 | 0.750 | 0.846 |
| EE (%) | 72.02 | 72.36 | 76.88 | 78.18 | 0.716 | 0.164 |
| NDF (%) | 38.49 b | 40.86 ab | 43.57 a | 44.53 a | 1.645 | 0.064 |
| ADF (%) | 32.58 b | 34.30 ab | 38.84 a | 39.57 a | 1.865 | 0.036 |
| Energy metabolic rate (%) | 67.92 | 68.07 | 70.56 | 69.58 | 0.260 | 0.199 |
| BV (%) | 79.29 b | 80.22 b | 86.54 a | 81.81 b | 0.609 | 0.019 |
| Nitrogen metabolic rate (%) | 63.67 b | 63.89 b | 71.12 a | 66.46 b | 0.594 | 0.012 |
| Items 3 | CON 1 | Se1 1 | Se2 1 | Se3 1 | SEM 2 | p-Value |
|---|---|---|---|---|---|---|
| Plasma Se, ug/L | 107.37 c | 157.20 b | 169.20 ab | 186.10 a | 6.733 | <0.0001 |
| SFA (%, TFA) | ||||||
| C4:0 | 0.09 c | 0.09 c | 0.30 a | 0.12 b | 0.008 | <0.0001 |
| C6:0 | 0.06 c | 0.06 c | 0.19 a | 0.10 b | 0.005 | <0.0001 |
| C8:0 | 0.22 c | 0.21 c | 0.80 a | 0.40 b | 0.041 | <0.0001 |
| C10:0 | 0.14 b | 0.14 b | 0.05 c | 0.16 a | 0.006 | <0.0001 |
| C11:0 | 0.13 c | 0.06 d | 0.18 a | 0.16 b | 0.006 | <0.0001 |
| C12:0 | 0.06 | 0.06 | 0.04 | 0.04 | 0.008 | 0.133 |
| C13:0 | 0.07 a | 0.07 a | 0.03 b | 0.07 a | 0.004 | <0.0001 |
| C14:0 | 0.38 | 0.38 | 0.39 | 0.40 | 0.010 | 0.235 |
| C15:0 | 0.14 | 0.15 | 0.15 | 0.15 | 0.005 | 0.488 |
| C16:0 | 15.81 | 15.77 | 15.34 | 16.57 | 0.343 | 0.108 |
| C17:0 | 0.37 b | 0.41 a | 0.40 a | 0.40 a | 0.009 | 0.046 |
| C18:0 | 18.83 a | 18.53 ab | 18.12 bc | 17.97 c | 0.172 | 0.007 |
| C20:0 | 0.50 a | 0.43 b | 0.43 b | 0.43 b | 0.015 | 0.012 |
| C21:0 | 0.04 c | 0.15 b | 0.07 c | 0.57 a | 0.022 | <0.0001 |
| C22:0 | 0.18 b | 0.20 b | 0.25 a | 0.19 b | 0.007 | <0.0001 |
| C23:0 | 0.55 | 0.61 | 0.58 | 0.61 | 0.042 | 0.715 |
| C24:0 | 0.31 | 0.31 | 0.35 | 0.33 | 0.023 | 0.582 |
| MUFA (%, TFA) | ||||||
| C14:1 | 0.06 | 0.06 | 0.07 | 0.06 | 0.006 | 0.484 |
| C15:1 | 0.03 b | 0.04 a | 0.04 a | 0.04 a | 0.002 | <0.0001 |
| C16:1 | 0.67 | 0.70 | 0.70 | 0.73 | 0.024 | 0.475 |
| C17:1 | 0.17 c | 0.17 bc | 0.29 a | 0.20 b | 0.010 | <0.0001 |
| C18:1t9 | 0.08 | 0.09 | 0.08 | 0.08 | 0.006 | 0.508 |
| C18:1c9 | 12.62 | 12.71 | 12.99 | 13.12 | 0.346 | 0.708 |
| C20:1 | 0.42 a | 0.37 b | 0.36 b | 0.34 b | 0.013 | 0.005 |
| C22:1 | 3.44 c | 4.04 b | 4.89 a | 4.11 b | 0.066 | <0.0001 |
| C24:1 | 0.59 | 0.58 | 0.65 | 0.66 | 0.046 | 0.471 |
| n-6 PUFA (%, TFA) | ||||||
| C18:2t6 | 0.07 a | 0.06 ab | 0.04 b | 0.07 a | 0.007 | 0.016 |
| C18:2c6 | 41.87 | 42.65 | 42.75 | 43.26 | 0.536 | 0.351 |
| C18:3n6 | 0.02 a | 0.02 a | 0.01 b | 0.02 a | 0.001 | <0.001 |
| C20:2n6 | 0.34 | 0.34 | 0.33 | 0.33 | 0.015 | 0.919 |
| C20:3n6 | 0.13 | 0.14 | 0.13 | 0.13 | 0.010 | 0.783 |
| C20:4n6 | 0.08 | 0.07 | 0.07 | 0.07 | 0.007 | 0.936 |
| C22:2n6 | 0.07 b | 0.08 b | 0.14 a | 0.09 b | 0.015 | 0.009 |
| n-3 PUFA (%, TFA) | ||||||
| C18:3n3 | 0.74 | 0.76 | 0.76 | 0.75 | 0.040 | 0.993 |
| C20:3n3 | 0.09 b | 0.09 b | 0.16 a | 0.10 b | 0.014 | 0.001 |
| C20:5n3 | 0.04 b | 0.05 b | 0.07 a | 0.05 b | 0.005 | 0.002 |
| C22:6n3 | 0.14 b | 0.15 ab | 0.16 ab | 0.17 a | 0.008 | 0.089 |
| Sum and Ratio (%, TFA) | ||||||
| SFA | 38.35 a | 36.84 ab | 35.29 b | 35.62 b | 0.644 | 0.011 |
| UFA | 61.65 b | 63.16 ab | 64.71 a | 64.38 a | 0.644 | 0.011 |
| MUFA | 18.06 c | 18.75 bc | 20.08 a | 19.34 ab | 0.369 | 0.006 |
| PUFA | 43.59 | 44.41 | 44.63 | 45.04 | 0.534 | 0.293 |
| n-3 PUFA | 1.01 | 1.05 | 1.15 | 1.07 | 0.040 | 0.105 |
| n-6 PUFA | 42.58 | 43.36 | 43.48 | 43.97 | 0.536 | 0.345 |
| n-3 LCPUFA | 0.26 c | 0.29 bc | 0.39 a | 0.31 b | 0.012 | <0.0001 |
| n-6 LCPUFA | 0.62 | 0.63 | 0.67 | 0.62 | 0.023 | 0.374 |
| n-6/n-3 | 42.37 | 41.61 | 38.39 | 41.36 | 1.471 | 0.263 |
| U/S | 1.61 b | 1.72 ab | 1.84 a | 1.82 a | 0.049 | 0.013 |
| P/S | 1.14 b | 1.21 ab | 1.27 a | 1.27 a | 0.035 | 0.049 |
| DFA | 80.48 b | 81.69 ab | 82.83 a | 82.35 ab | 0.638 | 0.079 |
| AI | 0.28 | 0.27 | 0.26 | 0.28 | 0.007 | 0.107 |
| TI | 1.05 a | 1.01 a | 0.96 b | 1.00 ab | 0.016 | 0.006 |
| (C18:0 + C18:1)/C16:0 | 2.00 | 1.99 | 2.05 | 1.89 | 0.047 | 0.141 |
| FA (%, TFA) 3 | CON 1 | Se1 1 | Se2 1 | Se3 1 | SEM 2 | p-Value |
|---|---|---|---|---|---|---|
| SFA | ||||||
| C4:0 | 0.18 b | 0.18 b | 0.20 a | 0.16 b | 0.006 | 0.003 |
| C6:0 | 0.27 c | 0.31 b | 0.32 b | 0.44 a | 0.013 | <0.0001 |
| C8:0 | 5.16 b | 5.45 ab | 5.69 a | 5.01 b | 0.165 | 0.034 |
| C10:0 | 12.22 bc | 13.42 ab | 13.69 a | 11.02 c | 0.448 | 0.001 |
| C11:0 | 0.02 b | 0.02 b | 0.03 a | 0.03 a | 0.002 | <0.0001 |
| C12:0 | 9.51 a | 9.40 a | 9.35 a | 8.55 b | 0.224 | 0.023 |
| C13:0 | 0.16 b | 0.21 a | 0.22 a | 0.20 a | 0.005 | <0.0001 |
| C14:0 | 6.79 | 6.59 | 6.53 | 6.49 | 0.269 | 0.867 |
| C15:0 | 0.31 c | 0.39 a | 0.27 d | 0.35 b | 0.009 | <0.0001 |
| C16:0 | 22.21 a | 21.03 ab | 20.38 bc | 19.00 c | 0.529 | 0.002 |
| C17:0 | 0.30 | 0.31 | 0.28 | 0.29 | 0.015 | 0.425 |
| C18:0 | 1.77 a | 1.65 ab | 1.61 b | 1.60 b | 0.047 | 0.065 |
| C20:0 | 0.05 a | 0.04 ab | 0.04 c | 0.04 b | 0.002 | <0.001 |
| C21:0 | 0.01 | 0.01 | 0.01 | 0.01 | 0.001 | 0.341 |
| C22:0 | 0.02 | 0.01 | 0.01 | 0.01 | 0.001 | 0.115 |
| C23:0 | 0.08 | 0.09 | 0.08 | 0.09 | 0.003 | 0.231 |
| C24:0 | 0.01 | 0.01 | 0.01 | 0.01 | 0.001 | 0.113 |
| MUFA | ||||||
| C14:1 | 0.23 b | 0.23 b | 0.23 b | 0.29 a | 0.011 | 0.002 |
| C15:1 | 0.01 | 0.01 | 0.01 | 0.01 | 0.001 | 0.145 |
| C16:1 | 1.91 b | 2.46 a | 2.26 a | 2.21 a | 0.088 | 0.002 |
| C17:1 | 0.01 | 0.01 | 0.01 | 0.01 | 0.002 | 0.779 |
| C18:1t9 | 0.09 a | 0.04 c | 0.05 c | 0.08 b | 0.003 | <0.0001 |
| C18:1c9 | 18.29 b | 19.28 a | 19.16 a | 19.91 a | 0.278 | 0.004 |
| C20:1 | 0.25 ab | 0.27 a | 0.24 ab | 0.23 b | 0.009 | 0.080 |
| C22:1 | 0.09 a | 0.07 d | 0.08 c | 0.09 b | 0.001 | <0.0001 |
| C24:1 | 0.01 | 0.01 | 0.01 | 0.01 | 0.001 | 0.801 |
| n-6 PUFA | ||||||
| C18:2t6 | 0.01 | 0.01 | 0.01 | 0.01 | 0.001 | 0.771 |
| C18:2c6 | 18.31 c | 18.58 bc | 19.60 b | 21.26 a | 0.407 | <0.001 |
| C18:3n6 | 0.02 | 0.02 | 0.02 | 0.02 | 0.002 | 0.732 |
| C20:2n6 | 0.46 ab | 0.48 a | 0.42 b | 0.48 a | 0.012 | 0.018 |
| C20:3n6 | 0.04 | 0.04 | 0.04 | 0.05 | 0.002 | 0.147 |
| C20:4n6 | 0.01 | 0.01 | 0.01 | 0.01 | 0.001 | 0.731 |
| C22:2n6 | 0.02 c | 0.03 b | 0.03 a | 0.03 a | 0.001 | <0.0001 |
| n-3 PUFA | ||||||
| C18:3n3 | 3.38 b | 3.47 b | 3.62 b | 4.28 a | 0.090 | <0.0001 |
| C20:3n3 | 0.09 b | 0.10 a | 0.10 a | 0.10 a | 0.003 | 0.008 |
| C20:5n3 | 0.01 | 0.01 | 0.01 | 0.01 | 0.001 | 0.152 |
| C22:6n3 | 0.02 | 0.02 | 0.02 | 0.02 | 0.001 | 0.813 |
| Sum and Ratio | ||||||
| SFA | 56.74 a | 54.84 b | 54.06 b | 50.90 c | 0.477 | <0.0001 |
| UFA | 43.26 c | 45.16 b | 45.94 b | 49.10 a | 0.477 | <0.0001 |
| MUFA | 20.88 b | 22.38 a | 22.05 a | 22.83 a | 0.305 | 0.001 |
| PUFA | 22.38 c | 22.78 bc | 23.89 b | 26.27 a | 0.448 | <0.0001 |
| n-3 PUFA | 3.50 b | 3.60 b | 3.75 b | 4.41 a | 0.091 | <0.0001 |
| n-6 PUFA | 18.88 b | 19.18 b | 20.14 b | 21.86 a | 0.413 | <0.001 |
| n-3 LCPUFA | 0.12 b | 0.13 a | 0.13 a | 0.13 a | 0.003 | 0.006 |
| n-6 LCPUFA | 0.53 ab | 0.56 a | 0.51 b | 0.56 a | 0.013 | 0.018 |
| n-6/n-3 | 5.42 | 5.33 | 5.38 | 4.98 | 0.142 | 0.130 |
| U/S | 0.76 c | 0.82 b | 0.85 b | 0.97 a | 0.017 | <0.0001 |
| P/S | 0.39 c | 0.42 bc | 0.44 b | 0.52 a | 0.012 | <0.0001 |
| DFA | 45.03 c | 46.81 b | 47.55 b | 50.71 a | 0.485 | <0.0001 |
| AI | 1.36 a | 1.26 ab | 1.22 b | 1.09 c | 0.038 | <0.001 |
| TI | 1.01 a | 0.92 b | 0.88 b | 0.76 c | 0.025 | <0.0001 |
| (C18:0 + C18:1)/C16:0 | 0.91 c | 1.00 b | 1.02 b | 1.14 a | 0.026 | <0.0001 |
| FA (g/day) 3 | CON1 | Se1 1 | Se2 1 | Se3 1 | SEM 2 | p-Value |
|---|---|---|---|---|---|---|
| SFA | ||||||
| C4:0 | 0.56 bc | 0.61 b | 0.69 a | 0.50 c | 0.020 | <0.0001 |
| C6:0 | 0.86 c | 1.07 b | 1.12 b | 1.34 a | 0.046 | <0.0001 |
| C8:0 | 16.37 b | 18.67 a | 20.03 a | 15.46 b | 0.727 | 0.001 |
| C10:0 | 38.89 b | 45.97 a | 48.13 a | 33.98 b | 1.817 | <0.0001 |
| C11:0 | 0.07 b | 0.06 b | 0.11 a | 0.10 a | 0.006 | <0.0001 |
| C12:0 | 30.34 a | 32.16 a | 32.90 a | 26.39 b | 1.236 | 0.005 |
| C13:0 | 0.51 c | 0.74 a | 0.76 a | 0.63 b | 0.023 | <0.0001 |
| C14:0 | 21.64 | 22.58 | 22.97 | 20.00 | 1.076 | 0.236 |
| C15:0 | 0.98 b | 1.32 a | 0.97 b | 1.09 b | 0.042 | <0.0001 |
| C16:0 | 70.75 a | 72.02 a | 71.95 a | 58.62 b | 2.846 | 0.006 |
| C17:0 | 0.96 | 1.06 | 0.98 | 0.88 | 0.065 | 0.296 |
| C18:0 | 5.64 | 5.66 | 5.67 | 4.96 | 0.232 | 0.109 |
| C20:0 | 0.15 | 0.15 | 0.12 | 0.13 | 0.008 | 0.064 |
| C21:0 | 0.007 | 0.02 | 0.01 | 0.01 | 0.005 | 0.305 |
| C22:0 | 0.05 | 0.04 | 0.05 | 0.04 | 0.003 | 0.191 |
| C23:0 | 0.27 | 0.29 | 0.29 | 0.28 | 0.011 | 0.229 |
| C24:0 | 0.02 | 0.01 | 0.01 | 0.02 | 0.002 | 0.231 |
| MUFA | ||||||
| C14:1 | 0.73 | 0.79 | 0.82 | 0.88 | 0.042 | 0.101 |
| C15:1 | 0.01 | 0.02 | 0.02 | 0.02 | 0.003 | 0.102 |
| C16:1 | 6.07 b | 8.43 a | 8.00 a | 6.82 b | 0.401 | 0.001 |
| C17:1 | 0.03 | 0.04 | 0.03 | 0.03 | 0.006 | 0.754 |
| C18:1t9 | 0.28 a | 0.15 c | 0.16 c | 0.24 b | 0.010 | <0.0001 |
| C18:1c9 | 58.19 b | 66.10 a | 67.77 a | 61.42 ab | 2.419 | 0.039 |
| C20:1 | 0.80 ab | 0.91 a | 0.87 a | 0.71 b | 0.044 | 0.022 |
| C22:1 | 0.30 a | 0.25 b | 0.27 b | 0.27 b | 0.008 | 0.004 |
| C24:1 | 0.04 | 0.04 | 0.04 | 0.04 | 0.003 | 0.725 |
| n-6 PUFA | ||||||
| C18:2t6 | 0.04 | 0.05 | 0.04 | 0.04 | 0.003 | 0.171 |
| C18:2c6 | 58.37 b | 63.50 ab | 69.26 a | 65.76 ab | 2.635 | 0.050 |
| C18:3n6 | 0.08 | 0.08 | 0.08 | 0.06 | 0.008 | 0.448 |
| C20:2n6 | 1.47 | 1.63 | 1.50 | 1.47 | 0.066 | 0.268 |
| C20:3n6 | 0.11 b | 0.14 a | 0.14 a | 0.14 a | 0.008 | 0.058 |
| C20:4n6 | 0.01 c | 0.02 b | 0.03 a | 0.02 b | 0.001 | <0.0001 |
| C22:2n6 | 0.09 c | 0.11 b | 0.12 a | 0.11 b | 0.004 | <0.0001 |
| n-3 PUFA | ||||||
| C18:3n3 | 10.76 b | 11.87 ab | 12.79 a | 13.23 a | 0.482 | 0.007 |
| C20:3n3 | 0.28 b | 0.34 a | 0.36 a | 0.31 ab | 0.017 | 0.020 |
| C20:5n3 | 0.03 | 0.03 | 0.04 | 0.03 | 0.003 | 0.363 |
| C22:6n3 | 0.06 | 0.06 | 0.07 | 0.06 | 0.006 | 0.780 |
| Sum and Ratio | ||||||
| SFA | 180.57 a | 187.64 a | 190.64 a | 157.05 b | 5.501 | 0.001 |
| UFA | 137.74 b | 154.57 ab | 162.38 a | 151.67 ab | 5.565 | 0.034 |
| MUFA | 66.45 b | 76.73 a | 77.97 a | 70.43 ab | 2.779 | 0.023 |
| PUFA | 71.29 b | 77.84 ab | 84.42 a | 81.24 a | 3.113 | 0.039 |
| n-3 PUFA | 11.12 b | 12.30 ab | 13.24 a | 13.64 a | 0.499 | 0.008 |
| n-6 PUFA | 60.17 b | 65.54 ab | 71.17 a | 67.60 ab | 2.699 | 0.056 |
| n-3 LCPUFA | 0.37 b | 0.43 a | 0.46 a | 0.41 ab | 0.021 | 0.029 |
| n-6 LCPUFA | 1.68 | 1.91 | 1.79 | 1.73 | 0.072 | 0.180 |
| n-6/n-3 | 5.42 | 5.33 | 5.38 | 4.97 | 0.142 | 0.131 |
| U/S | 0.76 c | 0.82 b | 0.85 b | 0.97 a | 0.017 | <0.0001 |
| P/S | 0.39 c | 0.42 bc | 0.44 b | 0.52 a | 0.012 | <0.0001 |
| DFA | 143.39 b | 160.22 ab | 168.06 a | 156.63 ab | 5.737 | 0.041 |
| AI | 1.36 a | 1.26 ab | 1.22 b | 1.09 c | 0.038 | <0.001 |
| TI | 1.01 a | 0.93 b | 0.88 b | 0.76 c | 0.025 | <0.0001 |
| (C18:0 + C18:1)/C16:0 | 0.91 c | 1.00 b | 1.02 b | 1.14 a | 0.026 | <0.0001 |
| Items | CON 1 | Se1 1 | Se2 1 | Se3 1 | SEM 2 | p-Value |
|---|---|---|---|---|---|---|
| Acetate (mmol/L) | 6.20 b | 6.32 b | 6.86 a | 6.88 a | 0.175 | 0.017 |
| Propionate (mmol/L) | 5.81 | 5.75 | 5.67 | 5.85 | 0.120 | 0.771 |
| Butyrate (mmol/L) | 0.81 c | 0.83 bc | 0.87 ab | 0.89 a | 0.017 | 0.014 |
| Isobutyrate (mmol/L) | 0.19 | 0.21 | 0.19 | 0.20 | 0.007 | 0.211 |
| Valerate (mmol/L) | 0.03 | 0.17 | 0.18 | 0.16 | 0.044 | 0.111 |
| Isovalerate (mmol/L) | 0.20 b | 0.24 a | 0.23 a | 0.23 a | 0.007 | 0.003 |
| Acetate:Propionate ratio | 1.07 b | 1.14 ab | 1.21 a | 1.18 a | 0.029 | 0.013 |
| Total VFA (mmol/L) | 13.26 b | 13.73 ab | 13.94 ab | 14.21 a | 0.228 | 0.046 |
| Items | CON 1 | Se1 1 | Se2 1 | Se3 1 | SEM 2 | p-Value |
|---|---|---|---|---|---|---|
| Coverage | 0.98 | 0.98 | 0.98 | 0.98 | - | - |
| Sobs | 1885.00 | 1913.67 | 1857.00 | 1965.40 | 46.161 | 0.573 |
| Ace | 2357.91 | 2444.62 | 2389.24 | 2436.86 | 54.377 | 0.754 |
| Chao1 | 2363.21 | 2470.69 | 2381.10 | 2455.16 | 53.396 | 0.521 |
| Shannon | 5.96 | 5.93 | 5.88 | 5.96 | 0.094 | 0.964 |
| Simpson | 0.01 | 0.01 | 0.01 | 0.01 | 0.001 | 0.198 |
| Phylum | Treatments | SEM 2 | p-Value | |||
|---|---|---|---|---|---|---|
| CON 1 | Se1 1 | Se2 1 | Se3 1 | |||
| Firmicutes | 63.16 | 64.06 | 67.77 | 62.94 | 3.020 | 0.728 |
| Bacteroidota | 22.10 | 22.69 | 19.62 | 25.36 | 1.405 | 0.139 |
| Verrucomicrobiota | 3.51 | 4.92 | 5.14 | 4.99 | 0.983 | 0.706 |
| Spirochaetota | 5.87 | 3.23 | 4.60 | 4.33 | 0.720 | 0.198 |
| Actinobacteriota | 0.93 ab | 0.68 b | 1.37 a | 1.00 ab | 0.146 | 0.038 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meng, F.; Zhao, Y.; Guo, Y.; Guo, X.; Zhang, Q.; Wang, Z.; Li, L.; Hui, F.; Tong, M.; Yan, S. Rectal Microbiome Reveals the Improved Effect of Dietary Selenium Levels on Lactation Performance and Milk Fatty Acid Profiles in Lactating Donkeys. Animals 2025, 15, 3309. https://doi.org/10.3390/ani15223309
Meng F, Zhao Y, Guo Y, Guo X, Zhang Q, Wang Z, Li L, Hui F, Tong M, Yan S. Rectal Microbiome Reveals the Improved Effect of Dietary Selenium Levels on Lactation Performance and Milk Fatty Acid Profiles in Lactating Donkeys. Animals. 2025; 15(22):3309. https://doi.org/10.3390/ani15223309
Chicago/Turabian StyleMeng, Fanzhu, Yanli Zhao, Yongmei Guo, Xiaoyu Guo, Qingyue Zhang, Zefu Wang, Li Li, Fang Hui, Manman Tong, and Sumei Yan. 2025. "Rectal Microbiome Reveals the Improved Effect of Dietary Selenium Levels on Lactation Performance and Milk Fatty Acid Profiles in Lactating Donkeys" Animals 15, no. 22: 3309. https://doi.org/10.3390/ani15223309
APA StyleMeng, F., Zhao, Y., Guo, Y., Guo, X., Zhang, Q., Wang, Z., Li, L., Hui, F., Tong, M., & Yan, S. (2025). Rectal Microbiome Reveals the Improved Effect of Dietary Selenium Levels on Lactation Performance and Milk Fatty Acid Profiles in Lactating Donkeys. Animals, 15(22), 3309. https://doi.org/10.3390/ani15223309

