Sex-Based Dietary Divergence in Plateau Pikas (Ochotona curzoniae) but Not Plateau Zokors (Eospalax baileyi)
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Plant Sampling and Construction of DNA Barcode Database
2.3. Classification of Plant Root System Types
2.4. Animal Sampling and DNA-Based Annotation of Stomach Contents
2.5. Data Analysis
2.5.1. Food Diversity
2.5.2. Trophic Niche Breadth and Overlap
2.6. Statistical Analysis
3. Results
3.1. Diet Composition and Trophic Niche Characteristics of Plateau Pika
3.1.1. Sex-Specific Diet Composition and Foraging Proportions
3.1.2. Sex-Specific Trophic Niche
3.2. Diet Composition and Trophic Niche Characteristics of Plateau Zokor
3.2.1. Sex-Specific Diet Composition and Foraging Proportions
3.2.2. Sex-Specific Trophic Niche
4. Discussion
4.1. Sex-Specific Dietary Differences in Plateau Pikas and Plateau Zokors
4.2. Sex-Specific Food Diversity and Trophic Niche in Plateau Pikas and Plateau Zokors
4.3. Revisiting Diet Composition of Plateau Pikas and Zokors with DNA Metabarcoding
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
| Family | Genus | Species |
|---|---|---|
| Cyperaceae | Kobresia | Kobresia humilis |
| Kobresia capillifolia | ||
| Carex | Carex aridula | |
| Poaceae | Elymus | Elymus nutans |
| Poa | Poa pratensis | |
| Koeleria | Koeleria macrantha | |
| Asteraceae | Ligularia | Ligularia virgaurea |
| Saussurea | Saussurea pulchra | |
| Saussurea sungpanensis | ||
| Saussurea longifolia | ||
| Leontopodium | Leontopodium souliei | |
| Taraxacum | Taraxacum mongolicum | |
| Artemisia | Artemisia frigida | |
| Anaphalis | Anaphalis lactea | |
| Ranunculaceae | Anemone | Anemone rivularis |
| Anemone imbricata | ||
| Anemone trullifolia | ||
| Ranunculus | Ranunculus japonicus | |
| Gymnaconitum | Gymnaconitum gymnandrum | |
| Trollius | Trollius ranunculoides | |
| Aconitum | Aconitum pulchellum | |
| Fabaceae | Oxytropis | Oxytropis kansuensis |
| Medicago | Medicago ruthenica | |
| Gueldenstaedtia | Gueldenstaedtia verna | |
| Astragalus | Astragalus polycladus | |
| Orobanchaceae | Pedicularis | Pedicularis kansuensis f. albiflora |
| Pedicularis kansuensis | ||
| Gentianaceae | Gentiana | Gentiana macrophylla |
| Gentiana aristata | ||
| Gentianopsis | Gentianopsis paludosa | |
| Swertia | Swertia bimaculata | |
| Rosaceae | Potentilla | Potentilla anserina |
| Potentilla discolor | ||
| Euphorbiaceae | Euphorbia | Euphorbia esula |
| Lamiaceae | Elsholtzia | Elsholtzia densa |
| Ajuga | Ajuga lupulina | |
| Phlomoides | Phlomoides umbrosa | |
| Phlomoides rotata | ||
| Plantaginaceae | Plantago | Plantago depressa |
| Apiaceae | Sphallerocarpus | Sphallerocarpus gracilis |
| Carum | Carum carvi | |
| Bupleurum | Bupleurum chinense | |
| Mazaceae | Lancea | Lancea tibetica |
| Geraniaceae | Geranium | Geranium pylzowianum |
| Primulaceae | Lysimachia | Lysimachia maritima |
| Violaceae | Viola | Viola patrinii |
| Boraginaceae | Microula | Microula sikkimensis |
| Caryophyllaceae | Arenaria | Arenaria serpyllifolia |
| Polygonaceae | Bistorta | Bistorta vivipara |
References
- Ayodele, A. Small mammal communities as indicators of habitat health: A review. World 2025, 28, 29. [Google Scholar] [CrossRef]
- Emlen, S.T.; Oring, L.W. Ecology, sexual selection, and the evolution of mating systems. Science 1977, 197, 215–223. [Google Scholar] [CrossRef]
- McNamara, J.M.; Houston, A.I. State-dependent life histories. Nature 1996, 380, 215–221. [Google Scholar] [CrossRef]
- Bauld, J.T.; Abernethy, K.A.; Newton, J.; Lehmann, D.; Jones, I.L.; Bussière, L.F. Can diet niche partitioning enhance sexual dimorphism? Ecol. Evol. 2022, 12, e9599. [Google Scholar] [CrossRef]
- Rocha, P.N.; Gawryszewski, F.M. Foraging strategy as a route for sexual size dimorphism evolution. Ecol. Evol. 2024, 14, e70100. [Google Scholar] [CrossRef]
- Michelena, P.; Deneubourg, J.L. How group size affects vigilance dynamics and time allocation patterns: The key role of imitation and tempo. PLoS ONE 2011, 6, e18631. [Google Scholar] [CrossRef]
- Dong, L.M.; Cai, X.C.; Gan, R.X.; Zhang, J.; Dong, R.; Dong, K.C.; Hua, L.M.; Zhou, R. Seasonal variations in the foraging strategies of plateau pikas (Ochotona curzoniae). Animals 2025, 15, 902. [Google Scholar] [CrossRef]
- Cai, X.C.; Bao, D.; Ye, G.H.; Chu, B.; Tang, Z.S.; Hua, R.; Hua, L.M. The complex and well-developed morphological and histological structures of the gastrointestinal tract of the plateau zokor improve its digestive adaptability to high-fiber foods. Animals 2022, 12, 2447. [Google Scholar] [CrossRef] [PubMed]
- Nie, H.; Liu, J.; Chen, B. Life-history traits and fitness of plateau pika (Ochotona curzoniae) in alpine meadow ecosystem. Ecol. Evol. 2022, 12, e8548. [Google Scholar] [CrossRef]
- Yao, B.; Hegab, I.M.; Kang, Y.; Tan, Y.; Zhang, D.; Su, J. Underground environment increases the differentiation of personality traits between male and female plateau zokors (Eospalax baileyi). Acta Ethologica 2023, 26, 21–30. [Google Scholar] [CrossRef]
- Song, Z.H.; Li, X.L.; Su, X.X.; Ka, Z.C.R.; Ma, G.L. Spatial distribution pattern and succession of disturbance patches formed by plateau pika and plateau zokor in their population outbreak areas in alpine meadow. Acta Ecol. Sin. 2023, 43, 2949–2958. [Google Scholar] [CrossRef]
- Kang, Y.K.; Zhang, D.G.; Gou, J.Y.; Wang, H.F.; Yang, Y.B.; Su, J.H. Food habits and its seasonal changes of plateau pika (Ochotona curzniae) in Gannan meadow. J. Gansu Agric. Univ. 2019, 54, 132–138. [Google Scholar] [CrossRef]
- Zhang, C.J. Study on the Feeding Habits of Three Rodents in Gannan Grassland Under Different Disturbance Habitats. Master’s Thesis, Gansu Agricultural University, Lanzhou, China, 2022. [Google Scholar] [CrossRef]
- Zhou, R.; Song, M.L.; Wang, Y.Q.; Wang, H.S.; Ma, Y. Trophic niches and interspecific elationships of sympatric plateau pika Ochotona curzoniae and plateau zokor Eospalax baileyi in alpine meadows. Chin. J. Zool. 2024, 59, 908–918. [Google Scholar] [CrossRef]
- Wetzel, W.C.; Inouye, B.D.; Hahn, P.G.; Whitehead, S.R.; Underwood, N. Variability in plant–herbivore interactions. Annu. Rev. Ecol. Evol. Syst. 2023, 54, 451–474. [Google Scholar] [CrossRef]
- Zhang, C.J.; Yao, B.H.; Wang, X.Y.; Sun, X.M. Effects of grassland sowing on the feeding habits of Eospalax baileyi in the Gannan alpine meadow. Pratacultural Sci. 2021, 38, 967–975. [Google Scholar] [CrossRef]
- Chen, G.K. Study on Food Traceability and Trophic Niches of Major Rodents in Alax Desert Area. Master’s Thesis, Inner Mongolia Agricultural University, Hohhot, China, 2023. [Google Scholar] [CrossRef]
- Hua, R. Research on Key Technologies of Plateau Pika Damage Monitoring and Risk Assessment in Qinghai-Tibet Plateau. Ph.D. Thesis, Gansu Agricultural University, Lanzhou, China, 2023. [Google Scholar] [CrossRef]
- Yan, J.W. Responses of Population Density and Territory Behavior of Plateau Pika to Yak Grazing. Master’s Thesis, Lanzhou University, Lanzhou, China, 2022. [Google Scholar] [CrossRef]
- Zhang, F.Y.; Zhou, J.W.; Hou, F.F.; Zhou, R.; Hua, X.Z.; Hua, L.M. The change of home range of plateau zokor during courtship period and its relationship with body mass. Grassl. Turf 2020, 40, 67–72. [Google Scholar] [CrossRef]
- Cai, Z.; Yao, B.; Tan, Y.; Liu, Y.; Su, J. Seasonal piRNA expression profile changes in the testes of plateau zokor (Eospalax baileyi). Animals 2024, 14, 2620. [Google Scholar] [CrossRef]
- Chen, S.H. Root Systems of Grassland Plants in Northern China; Jilin University Press: Jilin, China, 2001. [Google Scholar]
- Sikes, R.S.; Animal Care and Use Committee of the American Society of Mammalogists. 2016 Guidelines of the American Society of Mammalogists for the use of wild mammals in research and education. J. Mammal. 2016, 97, 663–688. [Google Scholar] [CrossRef] [PubMed]
- Taberlet, P.; Coissac, E.; Pompanon, F.; Gielly, L.; Miquel, C.; Valentini, A.; Vermat, T.; Corthier, G.; Brochmann, C.; Willerslev, E. Power and limitations of the chloroplast trn L (UAA) intron for plant DNA barcoding. Nucleic Acids Res. 2007, 35, e14. [Google Scholar] [CrossRef]
- Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2011, 17, 10–12. [Google Scholar] [CrossRef]
- Rognes, T.; Flouri, T.; Nichols, B.; Quince, C.; Mahé, F. VSEARCH: A versatile open source tool for metagenomics. PeerJ 2016, 4, e2584. [Google Scholar] [CrossRef]
- Edgar, R.C.; Haas, B.J.; Clemente, J.C.; Quince, C.; Knight, R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 2011, 27, 2194–2200. [Google Scholar] [CrossRef]
- Altschul, S.F.; Madden, T.L.; Schäffer, A.A.; Zhang, J.; Zhang, Z.; Miller, W.; Lipman, D.J. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 1997, 25, 3389–3402. [Google Scholar] [CrossRef]
- Gotelli, N.J.; Colwell, R.K. Quantifying biodiversity: Procedures and pitfalls in the measurement and comparison of species richness. Ecol. Lett. 2001, 4, 379–391. [Google Scholar] [CrossRef]
- Chao, A.; Chiu, C.H. Nonparametric estimation and comparison of species richness. In Els; John Wiley & Sons: Hoboken, NJ, USA, 2016; pp. 1–11. [Google Scholar] [CrossRef]
- Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef]
- Simpson, E.H. Measurement of diversity. Nature 1949, 163, 688. [Google Scholar] [CrossRef]
- Pielou, E.C. The measurement of diversity in different types of biological collections. J. Theor. Biol. 1966, 13, 131–144. [Google Scholar] [CrossRef]
- Bray, J.R.; Curtis, J.T. An ordination of the upland forest communities of southern Wisconsin. Ecol. Monogr. 1957, 27, 326–349. [Google Scholar] [CrossRef]
- Levins, R. Evolution in Changing Environments: Some Theoretical Explorations (No. 2); Princeton University Press: Princeton, NJ, USA, 1968. [Google Scholar] [CrossRef]
- Pianka, E.R. The structure of lizard communities. Annu. Rev. Ecol. Syst. 1973, 4, 53–74. [Google Scholar] [CrossRef]
- Estaki, M.; Jiang, L.; Bokulich, N.A.; McDonald, D.; González, A.; Kosciolek, T.; Martino, C.; Zhu, Q.Y.; Birmingham, A.; Vázquez-Baeza, Y.; et al. QIIME 2 enables comprehensive end-to-end analysis of diverse microbiome data and comparative studies with publicly available data. Curr. Protoc. Bioinform. 2020, 70, e100. [Google Scholar] [CrossRef] [PubMed]
- Shapiro, S.S.; Wilk, M.B. An analysis of variance test for normality (complete samples). Biometrika 1965, 52, 591–611. [Google Scholar] [CrossRef]
- Van Soest, P.V.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi, S.; Jafari, B.; Anvarian, S.P.; Nazemiyeh, H.; Asnaashari, S.; Delazar, A.; Asgharian, P. Taxonomic revision and clinical importance of Phlomoides genus: A comprehensive review. Pharm. Sci. 2023, 30, 21–35. [Google Scholar] [CrossRef]
- Vanderschuren, H.; Agusti, J. Storage roots. Curr. Biol. 2022, 32, R607–R609. [Google Scholar] [CrossRef]
- Brambilla, A.; Bal, X.; Lusetti, M.L.; Colombo, M.; Mainetti, A.; Keller, L.; Bassano, B. Dietary differences in males and females of a strongly sexually dimorphic ungulate. Eur. J. Wildl. Res. 2024, 70, 98. [Google Scholar] [CrossRef]
- Garcia, F.; Silva, A.A.; Ruckstuhl, K.; Neuhaus, P.; Coelho, C.; Wang, M.; Sousa, J.P.; Alves, J. Differences in the diets of female and male red deer: The meaning for sexual segregation. Biology 2023, 12, 540. [Google Scholar] [CrossRef]
- Zhang, X.; Zou, Y.; Zou, X.; Xu, Z.; Nan, X.; Han, C. DNA metabarcoding uncovers the diet of subterranean rodents in China. PLoS ONE 2022, 17, e0258078. [Google Scholar] [CrossRef]
- Zhang, F.Y.; Zhou, F.F.; Zhou, J.W.; Zhou, R.; Bao, D.; Ye, G.H.; Hua, L.M. Diurnal activity pattern of plateau zokor in breeding season and its influencing factors. Chin. J. Zool. 2020, 55, 297–305. [Google Scholar] [CrossRef]
- Garcia, M.; Gupta, S.; Wikenheiser, A.M. Sex differences in patch-leaving foraging decisions in rats. Oxf. Open Neurosci. 2023, 2, kvad011. [Google Scholar] [CrossRef] [PubMed]
- Houston, A.I.; McNamara, J.M. A general theory of central place foraging for single-prey loaders. Theor. Popul. Biol. 1985, 28, 233–262. [Google Scholar] [CrossRef]
- Schoener, T.W. Resource partitioning in ecological communities. Science 1974, 185, 27–39. [Google Scholar] [CrossRef] [PubMed]
- Bolnick, D.; Svanb, R.; Fordyce, J.; Yang, L.H.; Davis, J.M. The ecology of individuals: Incidence and implications of individual specialization. Am. Nat. 2003, 161, 1–28. [Google Scholar] [CrossRef] [PubMed]
- Speakman, J.R. The physiological costs of reproduction in small mammals. Philos. Trans. R. Soc. B Biol. Sci. 2008, 363, 375–398. [Google Scholar] [CrossRef]
- Moore, B.J.; Brasel, J.A. One cycle of reproduction consisting of pregnancy, lactation or no lactation, and recovery: Effects on carcass composition in ad libitum-fed and food-restricted rats. J. Nutr. 1984, 114, 1548–1559. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.J.; Rhim, S.J. Seasonal home ranges and activity of three rodent species in a post-fire planted stand. Folia Zool. 2016, 65, 101–106. [Google Scholar] [CrossRef]
- Zhou, J.; Ji, C.; Dong, K.; Chu, B.; Wang, L.; Hua, L. Dynamic changes in the home range of the subterranean rodent Eospalax baileyi. Front. Ecol. Evol. 2022, 10, 1041322. [Google Scholar] [CrossRef]
- Xie, J.X.; Lin, G.H.; Liu, C.X.; Yang, C.H.; Deng, X.G.; Cui, X.F.; Li, B.; Zhang, T.Z.; Su, J.P. Diet selection in overwinter caches of plateau zokor (Eospalax baileyi). Acta Theriol. 2014, 59, 337–345. [Google Scholar] [CrossRef]
- Vleck, D. The energy cost of burrowing by the pocket gopher Thomomys bottae. Physiol. Zool. 1979, 52, 122–136. [Google Scholar] [CrossRef]
- Vleck, D. Burrow structure and foraging costs in the fossorial rodent, Thomomys bottae. Oecologia 1981, 49, 391–396. [Google Scholar] [CrossRef]
- Hildner, K.K.; Soulé, M.E. Relationship between the energetic cost of burrowing and genetic variability among populations of the pocket gopher, T. bottae: Does physiological fitness correlate with genetic variability? J. Exp. Biol. 2004, 207, 2221–2227. [Google Scholar] [CrossRef]
- Finn, K.T. The subterranean niche provides protection against predators: A review of predation on members of the family Bathyergidae. Mamm. Biol. 2025, 1–14. [Google Scholar] [CrossRef]
- Liu, D.; Li, B.; Song, P.; Jiang, F.; Zhang, T. Captivity shifts gut microbiota communities in plateau zokor (Eospalax baileyi). Microorganisms 2024, 12, 789. [Google Scholar] [CrossRef]
- Ruckstuhl, K.E.; Neuhaus, P. Sexual segregation in ungulates: A comparative test of three hypotheses. Biol. Rev. 2002, 77, 77–96. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Z.; Liu, J. Burrowing rodents as ecosystem engineers: The ecology and management of plateau zokors Myospalax fontanierii in alpine meadow ecosystems on the Tibetan Plateau. Mammal Rev. 2003, 33, 284–294. [Google Scholar] [CrossRef]
- Reichman, O.J.; Smith, S.C. Burrows and burrowing behavior by mammals. Curr. Mammal. 1990, 2, 197–244. [Google Scholar]
- McPeek, M.A. The consequences of changing the top predator in a food web: A comparative experimental approach. Ecol. Monogr. 1998, 68, 1–23. [Google Scholar] [CrossRef]
- Renagül, E. Microscopy Histological Analysis of Diet and Trophic Niche of Four Sympatric Small Mammals in Altun Mountain National Nature Reserve. Master’s Thesis, Xinjiang Agricultural University, Urumchi, China, 2015. [Google Scholar]
- Jiang, Z.G.; Xia, W.P. Utilization of the food resources by plateau pika. Acta Theriol. Sin. 1985, 5, 251–262. [Google Scholar] [CrossRef]
- Post, D.M. Using stable isotopes to estimate trophic position: Models, methods, and assumptions. Ecology 2002, 83, 703–718. [Google Scholar] [CrossRef]
- Peterson, B.J.; Fry, B. Stable isotopes in ecosystem studies. Annu. Rev. Ecol. Syst. 1987, 18, 293–320. [Google Scholar] [CrossRef]
- Dawson, T.E.; Mambelli, S.; Plamboeck, A.H.; Templer, P.H.; Tu, K.P. Stable isotopes in plant ecology. Annu. Rev. Ecol. Syst. 2002, 33, 507–559. [Google Scholar] [CrossRef]
- Phillips, D.L.; Inger, R.; Bearhop, S.; Jackson, A.L.; Moore, J.W.; Parnell, A.C.; Semmens, B.X.; Ward, E.J. Best practices for use of stable isotope mixing models in food-web studies. Can. J. Zool. 2014, 92, 823–835. [Google Scholar] [CrossRef]
- Stock, B.C.; Semmens, B.X. Unifying error structures in commonly used biotracer mixing models. Ecology 2016, 97, 2562–2569. [Google Scholar] [CrossRef] [PubMed]








| Plant Species | Male Plateau Pika (%) | Female Plateau Pika (%) | U | r | p |
|---|---|---|---|---|---|
| Sphallerocarpus gracilis | 6.14 ± 3.56 | 1.06 ± 0.53 | 30 | 0.331 | 0.152 |
| Taraxacum mongolicum | 28.39 ± 9.33 | 20.23 ± 3.38 | 47 | 0.042 | 0.882 |
| Astragalus polycladus | 7.04 ± 2.07 | 6.53 ± 1.99 | 49 | 0.008 | 0.997 |
| Gueldenstaedtia verna | 0.91 ± 0.37 | 4.49 ± 2.50 | 33 | 0.280 | 0.230 |
| Medicago ruthenica | 1.91 ± 1.12 | 5.35 ± 2.48 | 29 | 0.348 | 0.131 |
| Geranium pylzowianum | 11.66 ± 4.78 | 3.86 ± 2.10 | 27.2 | 0.382 | 0.095 |
| Phlomoides umbrosa | 3.15 ± 2.52 | 0.05 ± 0.02 | 18 | 0.535 | 0.016 |
| Euphorbia esula | 4.75 ± 2.03 | 5.06 ± 3.31 | 38.1 | 0.195 | 0.412 |
| Poa pratensis | 8.87 ± 3.57 | 8.55 ± 1.92 | 37.2 | 0.212 | 0.370 |
| Anemone rivularis | 4.82 ± 3.22 | 4.94 ± 1.78 | 30.1 | 0.331 | 0.152 |
| Anemone trullifolia | 1.59 ± 0.48 | 4.50 ± 1.81 | 32 | 0.297 | 0.201 |
| Potentilla anserina | 3.66 ± 1.48 | 11.46 ± 4.33 | 27.5 | 0.382 | 0.095 |
| Potentilla discolor | 3.94 ± 1.37 | 9.18 ± 4.40 | 35.1 | 0.246 | 0.095 |
| Root Type | Male Plateau Pika (%) | Female Plateau Pika (%) | U | r | p |
|---|---|---|---|---|---|
| Rhizomatous root system type | 30.57 ± 5.44 | 30.62 ± 4.49 | 49 | 0.008 | 0.998 |
| Caespitose root system type | 0.76 ± 0.27 | 0.64 ± 0.25 | 48 | 0.025 | 0.941 |
| Taproot root system type | 45.42 ± 7.59 | 34.66 ± 4.86 | 40 | 0.161 | 0.503 |
| Fibrous root system type | 4.15 ± 3.03 | 1.88 ± 1.23 | 43 | 0.110 | 0.656 |
| Sucker root system type | 4.85 ± 2.01 | 5.09 ± 3.31 | 37 | 0.212 | 0.370 |
| Tuberous root system type | 8.92 ± 2.89 | 23.98 ± 5.33 | 16 | 0.569 | 0.010 |
| Others | 5.32 ± 4.05 | 3.12 ± 1.54 | 44 | 0.093 | 0.710 |
| Male Plateau Pika | Female Plateau Pika | p | |
|---|---|---|---|
| Trophic niche breadth | 4.20 ± 0.60 | 6.27 ± 0.57 | 0.038 |
| Trophic niche overlap | 0.87 | - | |
| Plant Species | Male Plateau Zokor (%) | Female Plateau Zokor (%) | U | r | p |
|---|---|---|---|---|---|
| Saussurea longifolia | 2.72 ± 2.56 | 6.91 ± 4.79 | 43 | 0.118 | 0.631 |
| Taraxacum mongolicum | 25.27 ± 9.55 | 32.81 ± 10.91 | 45.1 | 0.085 | 0.739 |
| Astragalus polycladus | 0.32 ± 0.27 | 2.86 ± 2.53 | 48.2 | 0.034 | 0.912 |
| Medicago ruthenica | 2.30 ± 1.75 | 1.33 ± 0.71 | 38 | 0.203 | 0.393 |
| Gentiana macrophylla | 0.05 ± 0.05 | 9.65 ± 6.35 | 21 | 0.506 | 0.029 |
| Geranium pylzowianum | 6.45 ± 5.92 | 0.05 ± 0.02 | 30 | 0.338 | 0.143 |
| Elsholtzia densa | 2.77 ± 2.76 | 1.88 ± 1.26 | 36 | 0.244 | 0.315 |
| Phlomoides umbrosa | 4.07 ± 2.21 | 1.09 ± 0.87 | 48.3 | 0.034 | 0.912 |
| Pedicularis kansuensis | 1.99 ± 1.86 | 4.95 ± 4.95 | 36.1 | 0.240 | 0.315 |
| Viola patrinii | 3.64 ± 2.25 | 2.67 ± 1.62 | 49.5 | 0.008 | 0.971 |
| Poa pratensis | 3.62 ± 2.61 | 2.46 ± 1.07 | 47.1 | 0.051 | 0.853 |
| Anemone rivularis | 0.97 ± 0.62 | 3.66 ± 1.94 | 49.1 | 0.017 | 0.971 |
| Ranunculus japonicus | 6.99 ± 3.90 | 0.09 ± 0.05 | 34 | 0.271 | 0.247 |
| Trollius ranunculoides | 6.48 ± 6.08 | 2.67 ± 2.41 | 50.1 | 0.001 | 0.998 |
| Potentilla anserina | 19.75 ± 5.46 | 22.43 ± 7.73 | 48.5 | 0.034 | 0.912 |
| Root Type | Male Plateau Zokor (%) | Female Plateau Zokor (%) | U | r | p |
|---|---|---|---|---|---|
| Rhizomatous root system type | 19.67 ± 6.24 | 10.76 ± 2.60 | 34 | 0.270 | 0.247 |
| Caespitose root system type | 0.93 ± 0.50 | 0.28 ± 0.10 | 39 | 0.186 | 0.436 |
| Taproot root system type | 28.58 ± 9.68 | 50.59 ± 9.67 | 32 | 0.304 | 0.190 |
| Fibrous root system type | 12.32 ± 6.18 | 10.14 ± 5.01 | 50 | 0.002 | 0.997 |
| Sucker root system type | 0.33 ± 0.24 | 0.54 ± 0.45 | 41 | 0.152 | 0.529 |
| Tuberous root system type | 34.73 ± 9.16 | 27.30 ± 8.95 | 42 | 0.135 | 0.579 |
| Others | 3.44 ± 1.79 | 0.38 ± 0.13 | 29 | 0.355 | 0.123 |
| Male Plateau Zokor | Female Plateau Zokor | p | |
|---|---|---|---|
| Trophic niche breadth | 3.39 ± 0.51 | 2.58 ± 0.29 | 0.393 |
| Trophic niche overlap | 0.91 | - | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xue, F.; Zhu, X.; Qin, L.; Guo, Y.; Sun, J.; Dang, Z.; Hua, L.; Chu, B.; Hua, R. Sex-Based Dietary Divergence in Plateau Pikas (Ochotona curzoniae) but Not Plateau Zokors (Eospalax baileyi). Animals 2025, 15, 3216. https://doi.org/10.3390/ani15213216
Xue F, Zhu X, Qin L, Guo Y, Sun J, Dang Z, Hua L, Chu B, Hua R. Sex-Based Dietary Divergence in Plateau Pikas (Ochotona curzoniae) but Not Plateau Zokors (Eospalax baileyi). Animals. 2025; 15(21):3216. https://doi.org/10.3390/ani15213216
Chicago/Turabian StyleXue, Feiyang, Xidong Zhu, Le Qin, Yanjun Guo, Jian Sun, Zhengqian Dang, Limin Hua, Bin Chu, and Rui Hua. 2025. "Sex-Based Dietary Divergence in Plateau Pikas (Ochotona curzoniae) but Not Plateau Zokors (Eospalax baileyi)" Animals 15, no. 21: 3216. https://doi.org/10.3390/ani15213216
APA StyleXue, F., Zhu, X., Qin, L., Guo, Y., Sun, J., Dang, Z., Hua, L., Chu, B., & Hua, R. (2025). Sex-Based Dietary Divergence in Plateau Pikas (Ochotona curzoniae) but Not Plateau Zokors (Eospalax baileyi). Animals, 15(21), 3216. https://doi.org/10.3390/ani15213216

