Dynamic Changes in Amino Acid Release Patterns of Different Plant Protein Sources During In Vitro Digestion and Their Nutritional Value Assessment
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Materials
2.2. In Vitro Digestive Enzymes
2.3. Experimental Instruments
2.4. Continuous In Vitro Digestion Simulation Steps
2.5. Chemical Analysis
2.6. Calculation of Digestive Dynamics Parameters
2.7. Determination of Amino Acid Release and Calculation of Amino Acid Synchronicity
2.8. Statistical Analyses
3. Results
3.1. Nutritional Composition and Protein Hydrolysis Degree Characteristics of Different Raw Materials
3.2. Nitrogen Release Patterns and Digestion Kinetic Parameters of Different Raw Materials During In Vitro Digestion Process
3.3. Analysis of Amino Acid Release Patterns and Nutritional Value Assessment
4. Discussion
4.1. The Impact of Nutritional Composition on Digestive Characteristics
4.2. The Correlation Between Digestive Phase Differences and Protein Source Characteristics
4.3. Nutritional Value Assessment and Implications for Practical Application
4.4. Translation of In Vitro Findings to In Vivo Performance
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Smith, K.; Watson, A.W.; Lonnie, M.; Peeters, W.M.; Oonincx, D.; Tsoutsoura, N.; Simon-Miquel, G.; Szepe, K.; Cochetel, N.; Pearson, A.G.; et al. Meeting the Global Protein Supply Requirements of a Growing and Ageing Population. Eur. J. Nutr. 2024, 63, 1425–1433. [Google Scholar] [CrossRef] [PubMed]
- Partanen, M.; Liikonen, V.; Väkeväinen, K.; Gómez Gallego, C.; Kolehmainen, M. Digestion, Metabolism, and Health Effects of Plant Proteins and Their Food Formulations: A Systematic Scoping Review of Clinical Postprandial Studies and in Vitro Methods. Food Rev. Int. 2025, 41, 1–30. [Google Scholar] [CrossRef]
- Opazo-Navarrete, M.; Burgos-Díaz, C.; Bravo-Reyes, C.; Gajardo-Poblete, I.; Chacón-Fuentes, M.; Reyes, J.E.; Mojica, L. Comprehensive Review of Plant Protein Digestibility: Challenges, Assessment Methods, and Improvement Strategies. Appl. Sci. 2025, 15, 3538. [Google Scholar] [CrossRef]
- Tanklevska, N.; Petrenko, V.; Karnaushenko, A.; Melnykova, K. World Corn Market: Analysis, Trends and Prospects of Its Deep Processing. Agric. Resour. Econ. Int. Sci. E-J. 2020, 6, 96–111. [Google Scholar] [CrossRef]
- Almeida, A.G.S.; Silva, D.C.D.; Pacheco, M.T.B.; Moreno, Y.M.F.; Carciofi, B.A.M. Oilseed By-Products as Plant-Based Protein Sources: Amino Acid Profile and Digestibility. Future Foods 2021, 3, 100023. [Google Scholar] [CrossRef]
- Somaratne, G.; Ferrua, M.J.; Ye, A.; Nau, F.; Floury, J.; Dupont, D.; Singh, J. Food Material Properties as Determining Factors in Nutrient Release during Human Gastric Digestion: A Review. Crit. Rev. Food Sci. Nutr. 2020, 60, 3753–3769. [Google Scholar] [CrossRef]
- Hu, R.; Dunmire, K.M.; Truelock, C.N.; Paulk, C.B.; Aldrich, G.; Li, Y. Antioxidant Performances of Corn Gluten Meal and DDGS Protein Hydrolysates in Food, Pet Food, and Feed Systems. J. Agric. Food Res. 2020, 2, 100030. [Google Scholar] [CrossRef]
- Deepak, T.S.; Jayadeep, P.A. Prospects of Maize (Corn) Wet Milling By-Products as a Source of Functional Food Ingredients and Nutraceuticals. Food Technol. Biotechnol. 2022, 60, 109–120. [Google Scholar] [CrossRef]
- Zhang, R.; Ma, S.; Li, L.; Zhang, M.; Tian, S.; Wang, D.; Liu, K.; Liu, H.; Zhu, W.; Wang, X. Comprehensive Utilization of Corn Starch Processing By-Products: A Review. Grain Oil Sci. Technol. 2021, 4, 89–107. [Google Scholar] [CrossRef]
- Yu, P.; Nuez-Ortín, W.G. Relationship of Protein Molecular Structure to Metabolisable Proteins in Different Types of Dried Distillers Grains with Solubles: A Novel Approach. Br. J. Nutr. 2010, 104, 1429–1437. [Google Scholar] [CrossRef]
- Sousa, R.; Portmann, R.; Dubois, S.; Recio, I.; Egger, L. Protein Digestion of Different Protein Sources Using the INFOGEST Static Digestion Model. Food Res. Int. 2020, 130, 108996. [Google Scholar] [CrossRef]
- Santos-Hernández, M.; Alfieri, F.; Gallo, V.; Miralles, B.; Masi, P.; Romano, A.; Ferranti, P.; Recio, I. Compared Digestibility of Plant Protein Isolates by Using the INFOGEST Digestion Protocol. Food Res. Int. 2020, 137, 109708. [Google Scholar] [CrossRef] [PubMed]
- Kaur, L.; Mao, B.; Kaur, R.; Beniwal, A.S.; Chian, F.M.; Singh, J. Alternative Proteins vs Animal Proteins: The Influence of Structure and Processing on Their Gastro-Small Intestinal Digestion. Trends Food Sci. Technol. 2022, 122, 275–286. [Google Scholar] [CrossRef]
- Mackie, A. Insights and Gaps on Protein Digestion. Curr. Opin. Food Sci. 2020, 31, 96–101. [Google Scholar] [CrossRef]
- Boisen, S.; Fernández, J.A. Fernández Prediction of the Total Tract Digestibility of Energy in Feedstuffs and Pig Diets by in Vitro Analyses. Anim. Feed. Sci. Technol. 1997, 68, 277–286. [Google Scholar] [CrossRef]
- Chen, H.; Wierenga, P.A.; Hendriks, W.H.; Jansman, A.J.M. In Vitro Protein Digestion Kinetics of Protein Sources for Pigs. Animal 2019, 13, 1154–1164. [Google Scholar] [CrossRef]
- Wang, B.; Mi, M.M.; Zhang, Q.Y.; Bao, N.; Pan, L.; Zhao, Y.; Qin, G.X. Relationship between the Amino Acid Release Kinetics of Feed Proteins and Nitrogen Balance in Finishing Pigs. Animal 2021, 15, 100359. [Google Scholar] [CrossRef]
- INFOGEST. Static in Vitro Simulation of Gastrointestinal Food Digestion. Nat. Protoc. 2019, 14, 991–1014. [Google Scholar] [CrossRef]
- GB/T 6438-2007; Determination of Crude Ash in Feeds. Standards Press of China: Beijing, China, 2007.
- GB/T 6433-2025; Determination of Crude Fat in Feeds. Standards Press of China: Beijing, China, 2025.
- GB/T 6435-2014; Determination of Moisture and Other Volatile Matter Content in Feeds. Standards Press of China: Beijing, China, 2015.
- GB/T 6434-2022; Determination of Crude Fiber Content in Feeds—Method with Intermediate Filtration. Standards Press of China: Beijing, China, 2022.
- GB/T 6432-2018; Determination of Crude Protein in Feeds—Kjeldahl Method. Standards Press of China: Beijing, China, 2019.
- Dai, Z.; Wu, Z.; Jia, S.; Wu, G. Analysis of Amino Acid Composition in Proteins of Animal Tissues and Foods as Pre-Column o-Phthaldialdehyde Derivatives by HPLC with Fluorescence Detection. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2014, 964, 116–127. [Google Scholar] [CrossRef]
- Hou, Y.; Hu, S.; Jia, S.; Nawaratna, G.; Che, D.; Wang, F.; Bazer, F.W.; Wu, G. Whole-Body Synthesis of L-Homoarginine in Pigs and Rats Supplemented with L-Arginine. Amino Acids 2016, 48, 993–1001. [Google Scholar] [CrossRef]
- Kong, F.; Singh, R.P. A Model Stomach System to Investigate Disintegration Kinetics of Solid Foods during Gastric Digestion. J. Food Sci. 2010, 73, E202–E210. [Google Scholar] [CrossRef]
- Tavano, O.L. Protein Hydrolysis Using Proteases: An Important Tool for Food Biotechnology. J. Mol. Catal. B Enzym. 2013, 90, 1–11. [Google Scholar] [CrossRef]
- Putri, E.M.; Zain, M.; Warly, L.; Hermon, H. Effects of Rumen-Degradable-to-Undegradable Protein Ratio in Ruminant Diet on in Vitro Digestibility, Rumen Fermentation, and Microbial Protein Synthesis. Vet. World 2021, 14, 640–648. [Google Scholar] [CrossRef] [PubMed]
- Herreman, L.; Nommensen, P.; Pennings, B.; Laus, M.C. Comprehensive Overview of the Quality of Plant- And Animal-Sourced Proteins Based on the Digestible Indispensable Amino Acid Score. Food Sci. Nutr. 2020, 8, 5379–5391. [Google Scholar] [CrossRef] [PubMed]
- Hughes, G.J.; Ryan, D.J.; Mukherjea, R.; Schasteen, C.S. Protein Digestibility-Corrected Amino Acid Scores (PDCAAS) for Soy Protein Isolates and Concentrate: Criteria for Evaluation. J. Agric. Food Chem. 2011, 59, 12707–12712. [Google Scholar] [CrossRef]
- Joint WHO/FAO/UNU Expert Consultation. Protein and Amino Acid Requirements in Human Nutrition; World Health Organization Technical Report Series; WHO: Geneva, Switzerland, 2007; Volume 935, pp. 1–256.
- Wijethunga, A.M.; Wang, H.; Sun, X. Starch Removal Treatment, Not the Specific Thermal Processing Techniques, Improved Protein Digestibility of Corn (Zea mays) Gluten Meal. Food Hydrocoll. 2024, 149, 109619. [Google Scholar] [CrossRef]
- Mainieri, D.; Morandini, F.; Maîtrejean, M.; Saccani, A.; Pedrazzini, E.; Alessandro, V. Protein Body Formation in the Endoplasmic Reticulum as an Evolution of Storage Protein Sorting to Vacuoles: Insights from Maize γ-Zein. Front. Plant Sci. 2014, 5, 331. [Google Scholar] [CrossRef]
- Mattice, K.D.; Marangoni, A.G. Physical Properties of Zein Networks Treated with Microbial Transglutaminase. Food Chem. 2021, 338, 128010. [Google Scholar] [CrossRef]
- Li, W.; Yu, Y.; Gong, S.; Zhang, W.; Gu, X.; Wu, J.; Wang, Z. Effects of Endogenous and Exogenous Corn Protein and Its Hydrolysates on the Structural Change and Starch Digestibility of Fried Corn Starch. Int. J. Food Sci. Technol. 2021, 56, 2732–2741. [Google Scholar] [CrossRef]
- Li, W.; Gu, Z.; Cheng, L.; Li, Z.; Li, C.; Ban, X.; Hong, Y. Effect of Endogenous Proteins and Heat Treatment on the in Vitro Digestibility and Physicochemical Properties of Corn Flour. Food Hydrocoll. 2023, 135, 108220. [Google Scholar] [CrossRef]
- Yang, Z.; Huang, Z.; Cao, L. Biotransformation Technology and High-Value Application of Rapeseed Meal: A Review. Bioresour. Bioprocess. 2022, 9, 103. [Google Scholar] [CrossRef]
- Feng, Y.; Li, M.; Lu, Y.; Tian, C.; Zhao, Y.; Li, J.; Wen, Z.; Zhu, Y. Dietary Fermented Rapeseed Meal During the Grower Period Affects Growth Performance, Intestinal Health, and Antioxidant Status in Sansui Ducks. Animals 2025, 15, 2078. [Google Scholar] [CrossRef] [PubMed]
- Francis, G.; Makkar, H.P.S.; Becker, K. Antinutritional factors present in plant-derived alternate fish feed ingredients and their effects in fish. Aquaculture 2001, 199, 197–227. [Google Scholar] [CrossRef]
- Geron, L.J.V.; Garcia, J.; Coelho, K.S.M.; de Aguiar, S.C.; Zanine, A.D.M.; Souza, A.L.D.; de Carvalho, J.T.H.; Roberto, L.S.; Sousa Neto, E.L.D.; Ferreira, D.D.J. In Vitro Digestibility and Nutritional Characterization of Distillers Dried Grains with Solubles According to the Cornell Net Carbohydrate and Protein System. Semin. Ciên Agrár. 2017, 38, 2029. [Google Scholar] [CrossRef]
- Singh, H.; Ye, A. Structural and Biochemical Factors Affecting the Digestion of Protein-Stabilized Emulsions. Curr. Opin. Colloid Interface Sci. 2013, 18, 360–370. [Google Scholar] [CrossRef]
- Chen, W.S.; Soucie, W.G. Modification of Surface Charges of Soy Protein by Phospholipids. J. Am. Oil Chem. Soc. 1985, 62, 1686–1689. [Google Scholar] [CrossRef]
- Su, W.; Jiang, Z.; Hao, L.; Li, W.; Gong, T.; Zhang, Y.; Du, S.; Wang, C.; Lu, Z.; Jin, M.; et al. Variations of Soybean Meal and Corn Mixed Substrates in Physicochemical Characteristics and Microbiota During Two-Stage Solid-State Fermentation. Front. Microbiol. 2021, 12, 688839. [Google Scholar] [CrossRef]
- Din, J.U.; Sarwar, A.; Li, Y.; Aziz, T.; Hussain, F.; Shah, S.M.M.; Yi, G.; Liu, X. Separation of Storage Proteins (7S and 11S) from Soybean Seed, Meals and Protein Isolate Using an Optimized Method Via Comparison of Yield and Purity. Protein J. 2021, 40, 396–405. [Google Scholar] [CrossRef]
- Geng, M.; Liu, J.; Hu, H.; Qin, L.; Taha, A.; Zhang, Z. A Comprehensive Study on Structures and Characterizations of 7S Protein Treated by High Intensity Ultrasound at Different pH and Ionic Strengths. Food Chem. 2022, 373, 131378. [Google Scholar] [CrossRef]
- Luo, Z.; Zhu, Y.; Xiang, H.; Wang, Z.; Jiang, Z.; Zhao, X.; Sun, X.; Guo, Z. Advancements in Inactivation of Soybean Trypsin Inhibitors. Foods 2025, 14, 975. [Google Scholar] [CrossRef]
- Okedigba, A.O.; Ng, E.L.; Deegbey, M.; Rosso, M.L.; Ngo, W.; Xiao, R.; Huang, H.; Zhang, B.; Welborn, V.V.; Capelluto, D.G.S. Soybean Lectin Cross-Links Membranes by Binding Sulfatide in a Curvature-Dependent Manner. J. Agric. Food Chem. 2025, 73, 14020–14031. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Du, H.; Dang, X.; Zhao, Y.; Zhang, J.; Liu, R.; Ge, Z.; Zhong, Q.; Sun, Z. Enzymatic Hydrolysis Processing of Soybean Meal Altered Its Structure and in Vitro Protein Digestive Dynamics in Pigs. Front. Vet. Sci. 2024, 11, 1503817. [Google Scholar] [CrossRef] [PubMed]
- Zheng, M.; Bai, Y.; Sun, Y.; An, J.; Chen, Q.; Zhang, T. Effects of Different Proteases on Protein Digestion In Vitro and In Vivo and Growth Performance of Broilers Fed Corn–Soybean Meal Diets. Animals 2023, 13, 1746. [Google Scholar] [CrossRef] [PubMed]
- Lyman, R.L. The Effect of Raw Soybean Meal and Trypsin Inhibitor Diets on the Intestinal and Pancreatic Nitrogen in the Rat. J. Nutr. 1957, 62, 285–294. [Google Scholar] [CrossRef]
- Mirzaee, H.; Gavlighi, H.A.; Nikoo, M.; Udenigwe, C.C.; Khodaiyan, F. Relation of Amino Acid Composition, Hydrophobicity, and Molecular Weight with Antidiabetic, Antihypertensive, and Antioxidant Properties of Mixtures of Corn Gluten and Soy Protein Hydrolysates. Food Sci. Nutr. 2023, 11, 1257–1271. [Google Scholar] [CrossRef]
- Van den Berg, L.A.; Mes, J.J.; Mensink, M.; Wanders, A.J. Protein Quality of Soy and the Effect of Processing: A Quantitative Review. Front. Nutr. 2022, 9, 1004754. [Google Scholar] [CrossRef]
- Dai, C.; Zhang, W.; He, R.; Xiong, F.; Ma, H. Protein Breakdown and Release of Antioxidant Peptides during Simulated Gastrointestinal Digestion and the Absorption by Everted Intestinal Sac of Rapeseed Proteins. LWT 2017, 86, 424–429. [Google Scholar] [CrossRef]
- Bos, C.; Airinei, G.; Mariotti, F.; Benamouzig, R.; Bérot, S.; Evrard, J.; Fénart, E.; Tomé, D.; Gaudichon, C. The Poor Digestibility of Rapeseed Protein Is Balanced by Its Very High Metabolic Utilization in Humans. J. Nutr. 2007, 137, 594–600. [Google Scholar] [CrossRef]
- Zhu, X.; Chen, Y.; Hao, S.; Jin, S.; Li, X. Improvement of the Nutritional Quality of Rapeseed Meal through Solid-State Fermentation with B. subtilis, S. cerevisiae, and B. amyloliquefaciens. Fermentation 2023, 9, 492. [Google Scholar] [CrossRef]
- Zhang, Z.; Wen, M.; Chang, Y. Degradation of Glucosinolates in Rapeseed Meal by Lactobacillus Delbrueckii and Bacillus Subtilis. Grain Oil Sci. Technol. 2020, 3, 70–76. [Google Scholar] [CrossRef]
- Li, G.; Liu, W.; Wang, Y.; Jia, F.; Wang, Y.; Ma, Y.; Gu, R.; Lu, J. Functions and Applications of Bioactive Peptides from Corn Gluten Meal. Adv. Food Nutr. Res. 2019, 87, 1–41. [Google Scholar] [CrossRef]
- Martinez Amezcua, C.; Parsons, C.M.; Singh, V.; Srinivasan, R.; Murthy, G.S. Nutritional Characteristics of Corn Distillers Dried Grains with Solubles as Affected by the Amounts of Grains Versus Solubles and Different Processing Techniques. Poult. Sci. 2007, 86, 2624–2630. [Google Scholar] [CrossRef] [PubMed]
- Dimina, L.; Rémond, D.; Huneau, J.-F.; Mariotti, F. Combining Plant Proteins to Achieve Amino Acid Profiles Adapted to Various Nutritional Objectives—An Exploratory Analysis Using Linear Programming. Front. Nutr. 2022, 8, 809685. [Google Scholar] [CrossRef] [PubMed]
- Broucke, K.; Van De Walle, S.; Mefleh, M.; Duquenne, B.; Van Royen, G.; Boukid, F. Optimizing Protein Quality: Synergies and Comparisons of Single and Combined Alternative Proteins from Diverse Sources. Eur. Food Res. Technol. 2025, 251, 31–43. [Google Scholar] [CrossRef]
- Bryan, D.; Abbott, D.A.; Classen, H.L. Digestion Kinetics of Protein Sources Determined Using an in Vitro Chicken Model. Anim. Feed. Sci. Technol. 2019, 248, 106–113. [Google Scholar] [CrossRef]
- Wang, Y.; Zheng, Z.; Zhang, C.; Wu, C.; Tan, C.-P.; Liu, Y. Comparative Structural, Digestion and Absorption Characterization of Three Common Extruded Plant Proteins. Food Res. Int. 2024, 177, 113852. [Google Scholar] [CrossRef]
- Duque-Estrada, P.; Hardiman, K.; Dam, A.B.; Dodge, N.; Aaslyng, M.D.; Petersen, I.L. Protein Blends and Extrusion Processing to Improve the Nutritional Quality of Plant Proteins. Food Funct. 2023, 14, 7361–7374. [Google Scholar] [CrossRef]
- Li, R.; Raak, N.; Roman, L. Recent Advances in Processing-Induced Changes in the Structure, Techno-Functional Properties and Nutritional Quality of Animal- and Plant-Based Food Proteins. Foods 2025, 14, 764. [Google Scholar] [CrossRef]
- Kamiloglu, S.; Tomas, M.; Ozkan, G.; Ozdal, T.; Capanoglu, E. In Vitro Digestibility of Plant Proteins: Strategies for Improvement and Health Implications. Curr. Opin. Food Sci. 2024, 57, 101148. [Google Scholar] [CrossRef]
- Tu, J.; Chen, Q.; Zhou, J.; Fan, Y.; Li, Y.; Ma, Y.; Zeng, X.; Qiao, S.; Cai, S. Characteristics of Amino Acid and Glucose Digestion and Metabolism in Energy and Protein Feedstuffs for Pigs. Animals 2025, 15, 1510. [Google Scholar] [CrossRef]
- Zhang, S.; De Jonge, L.; De Vries, S.; Gerrits, W.J. Quantifying Protein Digestion Kinetics of Feed Ingredients Using a Modified in Vitro Incubation Assay. J. Anim. Sci. 2025, 103, skaf190. [Google Scholar] [CrossRef]
- Li, J.; Cao, Y.; Yu, X.; Huang, J.; Jiang, R.; Huang, M.; Zhao, J.; Han, D.; Wang, J. Digestion Kinetics of Protein Feed Ingredients and Their Impact on Nitrogen Utilization in Growing Pigs. Anim. Nutr. 2025, 21, 292–301. [Google Scholar] [CrossRef]


| M (%) | CP (%) | CF (%) | EE (%) | Ash (%) | NFE (%) | |
|---|---|---|---|---|---|---|
| Soybean meal | 8.42 ± 0.79 bc | 47.23 ± 0.31 b | 5.39 ± 0.57 c | 1.15 ± 0.41 c | 6.18 ± 0.23 b | 31.62 ± 1.02 c |
| Rapeseed meal | 8.46 ± 1.46 bc | 38.95 ± 1.65 c | 11.55 ± 1.05 a | 1.95 ± 0.35 bc | 7.71 ± 0.21 a | 31.37 ± 0.85 c |
| Corn DDGS | 11.46 ± 0.84 a | 27.75 ± 0.57 d | 5.85 ± 0.65 c | 8.51 ± 0.67 a | 4.54 ± 0.30 c | 41.88 ± 2.13 b |
| Corn gluten meal | 7.26 ± 0.53 c | 61.17 ± 0.60 a | 2.59 ± 0.35 d | 2.71 ± 0.24 b | 2.04 ± 0.07 e | 24.23 ± 0.22 d |
| Corn germ meal | 9.78 ± 0.33 ab | 19.40 ± 0.41 e | 9.29 ± 0.22 b | 2.01 ± 0.30 bc | 2.78 ± 0.05 d | 56.75 ± 0.65 a |
| SEM | 0.429 | 3.914 | 0.850 | 0.719 | 0.563 | 3.028 |
| p-value | 0.002 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
| Item | t/min | Soybean Meal | Rapeseed Meal | Corn DDGS | Corn Gluten Meal | Corn Germ Meal | SEM | p-Value |
|---|---|---|---|---|---|---|---|---|
| Gastric digestion (2 h) | 0 | 4.56 ± 0.63 c | 8.16 ± 1.07 b | 7.89 ± 0.81 b | 1.73 ± 0.09 d | 16.90 ± 1.62 a | 1.378 | <0.001 |
| 30 | 14.32 ± 3.29 b | 10.49 ± 1.02 bc | 11.02 ± 2.12 bc | 7.65 ± 0.96 c | 21.21 ± 0.88 a | 1.311 | <0.001 | |
| 60 | 15.80 ± 1.53 b | 12.42 ± 0.93 bc | 11.57 ± 2.59 bc | 9.07 ± 1.13 c | 21.91 ± 2.32 a | 1.249 | <0.001 | |
| 90 | 22.53 ± 1.94 b | 14.17 ± 1.21 c | 15.25 ± 2.59 c | 12.73 ± 1.84 c | 27.90 ± 1.54 a | 1.603 | <0.001 | |
| 120 | 61.84 ± 0.57 a | 43.75 ± 1.23 b | 30.96 ± 5.37 c | 13.99 ± 2.89 d | 39.51 ± 2.66 b | 4.241 | <0.001 | |
| Intestinal digestion (4 h) | 0 | 70.86 ± 0.78 a | 49.13 ± 1.23 b | 38.55 ± 5.11 c | 25.52 ± 4.09 d | 45.30 ± 1.56 bc | 4.028 | <0.001 |
| 30 | 73.99 ± 0.82 a | 49.35 ± 1.44 b | 39.42 ± 1.65 c | 27.52 ± 5.33 d | 47.48 ± 2.75 b | 4.139 | <0.001 | |
| 60 | 76.78 ± 2.73 a | 51.70 ± 1.25 b | 40.32 ± 3.16 c | 29.96 ± 3.39 d | 50.86 ± 1.45 b | 4.211 | <0.001 | |
| 120 | 80.32 ± 0.95 a | 52.62 ± 1.47 b | 41.05 ± 4.39 c | 31.34 ± 3.10 d | 50.79 ± 1.71 b | 4.429 | <0.001 | |
| 180 | 80.68 ± 0.87 a | 53.81 ± 4.88 b | 42.16 ± 1.16 c | 40.64 ± 1.54 c | 55.63 ± 1.86 b | 3.878 | <0.001 | |
| 240 | 82.04 ± 0.53 a | 57.83 ± 3.71 b | 42.36 ± 0.53 c | 44.28 ± 1.89 c | 58.74 ± 1.79 b | 3.822 | <0.001 |
| Item | t/min | Soybean Meal | Rapeseed Meal | Corn DDGS | Corn Gluten Meal | Corn Germ Meal | SEM | p-Value |
|---|---|---|---|---|---|---|---|---|
| N Gastric digestion (2 h) | 0 | 4.50 ± 0.86 c | 17.01 ± 0.44 a | 4.82 ± 0.44 c | 7.51 ± 0.94 b | 8.28 ± 0.98 b | 0.852 | <0.001 |
| 30 | 6.83 ± 1.23 cd | 20.88 ± 0.52 a | 6.55 ± 1.15 d | 11.79 ± 0.74 b | 10.04 ± 0.57 c | 0.981 | <0.001 | |
| 60 | 8.48 ± 1.05 cd | 23.51 ± 0.32 a | 6.84 ± 1.40 d | 13.70 ± 1.53 b | 10.80 ± 2.14 c | 1.120 | <0.001 | |
| 90 | 10.59 ± 0.80 d | 26.07 ± 0.73 a | 8.03 ± 0.86 d | 15.67 ± 1.10 b | 11.98 ± 1.10 c | 1.181 | <0.001 | |
| 120 | 11.08 ± 1.48 c | 26.83 ± 0.38 a | 9.04 ± 1.40 d | 15.93 ± 1.48 b | 13.37 ± 1.31 c | 1.177 | <0.001 | |
| N Intestinal digestion (4 h) | 0 | 37.36 ± 0.32 b | 30.16 ± 0.67 a | 12.80 ± 2.04 d | 35.93 ± 1.20 b | 13.36 ± 1.71 c | 2.012 | <0.001 |
| 30 | 50.11 ± 0.99 a | 34.50 ± 1.18 a | 16.00 ± 1.94 b | 41.68 ± 1.50 a | 15.02 ± 0.91 b | 2.597 | <0.001 | |
| 60 | 51.79 ± 2.33 a | 36.96 ± 1.80 a | 16.62 ± 0.62 b | 42.14 ± 2.39 a | 15.97 ± 1.77 b | 2.659 | <0.001 | |
| 120 | 58.19 ± 2.04 a | 43.67 ± 0.59 b | 17.11 ± 1.66 c | 46.21 ± 1.69 b | 16.82 ± 0.92 c | 3.095 | <0.001 | |
| 180 | 59.87 ± 2.04 a | 45.79 ± 1.32 b | 17.80 ± 0.44 c | 48.09 ± 1.70 b | 18.44 ± 1.09 d | 3.151 | <0.001 | |
| 240 | 61.84 ± 2.44 b | 46.83 ± 1.40 c | 17.89 ± 0.21 d | 49.11 ± 1.64 a | 19.45 ± 1.08 e | 3.241 | <0.001 |
| Item | t/min | Soybean Meal | Rapeseed Meal | Corn DDGS | Corn Gluten Meal | Corn Germ Meal | SEM | p-Value |
|---|---|---|---|---|---|---|---|---|
| LMW Gastric digestion (2 h) | 0 | 1.42 ± 0.33 c | 15.07 ± 1.34 a | 0.16 ± 0.03 c | 4.35 ± 0.78 b | 5.23 ± 0.97 b | 0.986 | <0.001 |
| 30 | 6.56 ± 1.23 d | 18.27 ± 0.77 a | 5.83 ± 0.73 d | 9.45 ± 0.59 b | 7.42 ± 0.47 c | 0.855 | <0.001 | |
| 60 | 7.15 ± 0.31 cd | 20.87 ± 1.43 a | 6.82 ± 0.40 d | 11.07 ± 0.67 b | 8.42 ± 0.70 c | 0.979 | <0.001 | |
| 90 | 8.31 ± 0.53 c | 21.08 ± 0.55 a | 7.03 ± 0.65 d | 12.58 ± 1.02 b | 10.05 ± 1.36 c | 0.939 | <0.001 | |
| 120 | 10.64 ± 0.53 d | 22.10 ± 0.41 a | 7.53 ± 0.30 d | 15.65 ± 1.11 b | 11.79 ± 2.22 c | 0.950 | <0.001 | |
| LMW Intestinal digestion (4 h) | 0 | 19.10 ± 1.57 a | 21.91 ± 0.86 b | 7.22 ± 0.54 c | 18.93 ± 1.39 a | 10.11 ± 0.60 c | 1.077 | <0.001 |
| 30 | 27.05 ± 0.92 a | 27.43 ± 0.88 c | 11.62 ± 1.31 d | 27.22 ± 1.02 b | 11.17 ± 0.41 d | 1.450 | <0.001 | |
| 60 | 27.73 ± 1.11 a | 29.16 ± 0.29 c | 12.40 ± 1.01 d | 27.98 ± 1.04 b | 11.34 ± 0.77 d | 1.505 | <0.001 | |
| 120 | 37.71 ± 1.63 a | 32.55 ± 1.87 c | 13.39 ± 1.01 d | 31.07 ± 1.20 b | 11.78 ± 0.70 d | 1.987 | <0.001 | |
| 180 | 40.04 ± 1.97 a | 35.78 ± 0.45 b | 17.36 ± 1.12 c | 36.78 ± 1.27 b | 12.65 ± 0.72 c | 2.095 | <0.001 | |
| 240 | 42.85 ± 1.187 a | 35.78 ± 0.74 b | 17.43 ± 1.04 c | 44.89 ± 0.84 b | 12.93 ± 0.93 c | 2.450 | <0.001 |
| Item | Parameter | Soybean Meal | Rapeseed Meal | Corn DDGS | Corn Gluten Meal | Corn Germ Meal | p-Value | |
|---|---|---|---|---|---|---|---|---|
| Gastric digestion (2 h) | Nsolubility | D0 (%) | 8.62 ± 0.57 b | 6.68 ± 0.42 bc | 8.02 ± 0.68 b | 1.86 ± 0.23 d | 17.29 ± 1.12 a | <0.001 |
| ΔD (%) | 6.09 ± 0.38 c | 22.24 ± 0.75 a | 7.00 ± 0.43 c | 2.97 ± 0.20 c | 11.42 ± 0.59 b | <0.001 | ||
| Dmax (%) | 14.71 ± 0.82 b | 28.92 ± 0.94 a | 15.02 ± 0.90 b | 4.83 ± 0.30 c | 28.71 ± 1.01 a | <0.001 | ||
| k (min−1) | 1.81 ± 0.09 b | 2.02 ± 0.11 b | 0.53 ± 0.05 c | 1.18 ± 0.08 b | 0.41 ± 0.03 c | <0.001 | ||
| R2 | 0.94 ± 0.02 | 0.98 ± 0.01 | 0.94 ± 0.02 | 0.97 ± 0.01 | 0.92 ± 0.03 | – | ||
| Intestinal digestion (4 h) | Nsolubility | D0 (%) | 44.07 ± 1.76 b | 63.25 ± 2.04 a | 30.41 ± 1.22 c | 15.38 ± 0.97 d | 40.99 ± 1.61 b | <0.001 |
| ΔD (%) | 15.80 ± 0.90 b | 27.19 ± 1.02 a | 12.08 ± 0.73 bc | 29.94 ± 1.31 a | 18.70 ± 0.95 b | <0.001 | ||
| Dmax (%) | 59.87 ± 1.35 b | 90.45 ± 2.31 a | 42.49 ± 1.10 c | 45.32 ± 1.12 c | 59.69 ± 1.48 b | <0.001 | ||
| k (min−1) | 1.68 ± 0.08 b | 1.23 ± 0.06 c | 0.10 ± 0.01ᵉ | 3.22 ± 0.13 a | 2.30 ± 0.11 ab | <0.001 | ||
| R2 | 0.97 ± 0.01 | 0.98 ± 0.01 | 0.89 ± 0.03 | 0.97 ± 0.01 | 0.95 ± 0.02 | – | ||
| Gastric digestion (2 h) | LMW | D0 (%) | 6.74 ± 0.45 bc | 3.34 ± 0.27 c | 0.26 ± 0.03 d | 0.75 ± 0.08 d | 10.92 ± 0.61 a | <0.001 |
| ΔD (%) | 3.43 ± 0.28 c | 23.58 ± 0.95 a | 12.25 ± 0.64 b | 3.90 ± 0.31 c | 14.41 ± 0.70 b | <0.001 | ||
| Dmax (%) | 10.17 ± 0.54 b | 26.92 ± 1.03 a | 12.51 ± 0.68 b | 4.65 ± 0.26 c | 25.33 ± 0.91 a | <0.001 | ||
| k (min−1) | 2.04 ± 0.10 b | 2.16 ± 0.11 b | 4.87 ± 0.19 a | 1.21 ± 0.07 c | 0.66 ± 0.04 c | <0.001 | ||
| R2 | 0.95 ± 0.02 | 0.97 ± 0.01 | 0.98 ± 0.01 | 0.96 ± 0.01 | 0.94 ± 0.02 | – | ||
| Intestinal digestion (4 h) | LMW | D0 (%) | 20.68 ± 0.83 b | 24.00 ± 0.91 a | 17.16 ± 0.72 c | 7.29 ± 0.45 d | 31.03 ± 1.12 a | <0.001 |
| ΔD (%) | 20.18 ± 0.88 b | 42.02 ± 1.35 a | 24.24 ± 0.96 b | 32.24 ± 1.12 a | 8.64 ± 0.54 c | <0.001 | ||
| Dmax (%) | 40.85 ± 1.31 b | 66.03 ± 1.82 a | 41.40 ± 1.33 b | 39.53 ± 1.25 b | 39.67 ± 1.26 b | <0.001 | ||
| k (min−1) | 1.19 ± 0.06 bc | 1.41 ± 0.07 b | 4.28 ± 0.18 a | 3.99 ± 0.17 a | 1.24 ± 0.07 b | <0.001 | ||
| R2 | 0.97 ± 0.01 | 0.97 ± 0.01 | 0.91 ± 0.02 | 0.85 ± 0.03 | 0.90 ± 0.02 | – |
| Total Amino Acid Release (g/100 g) | t/min | Soybean Meal | Rapeseed Meal | Corn DDGS | Corn Gluten Meal | Corn Germ Meal | p-Value |
|---|---|---|---|---|---|---|---|
| Gastric digestion (2 h) | 0 | 2.47 ± 0.12 b | 1.49 ± 0.09 c | 0.83 ± 0.05 d | 0.96 ± 0.06 d | 1.34 ± 0.08 c | <0.001 |
| 30 | 4.75 ± 0.21 b | 3.03 ± 0.15 c | 0.94 ± 0.07 d | 1.25 ± 0.08 d | 2.03 ± 0.12 c | <0.001 | |
| 60 | 5.36 ± 0.24 b | 3.12 ± 0.17 c | 1.15 ± 0.08 d | 1.34 ± 0.09 d | 2.38 ± 0.14 c | <0.001 | |
| 90 | 5.77 ± 0.28 b | 3.30 ± 0.18 c | 1.40 ± 0.09 d | 1.58 ± 0.10 cd | 2.69 ± 0.15 c | <0.001 | |
| 120 | 6.13 ± 0.30 b | 3.52 ± 0.20 c | 1.54 ± 0.10 d | 1.75 ± 0.11 cd | 3.02 ± 0.18 c | <0.001 | |
| Intestinal digestion (4 h) | 0 | 9.85 ± 0.45 b | 6.46 ± 0.31 c | 4.07 ± 0.25 d | 4.93 ± 0.27 d | 4.72 ± 0.26 d | <0.001 |
| 30 | 13.47 ± 0.61 b | 12.44 ± 0.55 b | 6.74 ± 0.33 c | 9.49 ± 0.43 c | 6.17 ± 0.31 c | <0.001 | |
| 60 | 14.45 ± 0.66 b | 14.03 ± 0.64 b | 7.70 ± 0.38 c | 10.22 ± 0.49 c | 6.55 ± 0.33 c | <0.001 | |
| 120 | 17.36 ± 0.80 b | 16.37 ± 0.75 b | 9.18 ± 0.46 c | 13.07 ± 0.63 c | 8.18 ± 0.41 c | <0.001 | |
| 180 | 23.47 ± 1.04 b | 18.85 ± 0.94 c | 12.68 ± 0.63 d | 17.26 ± 0.86 c | 9.80 ± 0.49 d | <0.001 | |
| 240 | 37.86 ± 1.65 a | 22.04 ± 1.05 b | 11.68 ± 0.59 c | 26.79 ± 1.28 b | 11.08 ± 0.57 c | <0.001 |
| mg/g | Soybean Meal | Rapeseed Meal | Corn DDGS | Corn Gluten Meal | Corn Germ Meal | FAO/WHO Pattern | p-Value |
|---|---|---|---|---|---|---|---|
| Thr | 17.89 ± 0.51 a | 9.56 ± 1.28 d | 9.23 ± 0.64 e | 8.22 ± 0.43 b | 4.51 ± 0.94 c | 40 | <0.001 |
| Val | 12.77 ± 0.32 a | 6.57 ± 0.44 b | 4.14 ± 0.21 c | 7.63 ± 0.41 b | 4.41 ± 0.49 c | 50 | <0.001 |
| Met + Cys | 23.09 ± 0.41 a | 9.80 ± 0.78 c | 8.02 ± 0.13 d | 14.98 ± 0.82 b | 5.26 ± 0.81 d | 35 | <0.001 |
| Ile | 10.33 ± 0.61 a | 5.83 ± 0.45 b | 3.42 ± 1.03 c | 6.92 ± 0.31 b | 2.90 ± 0.89 c | 40 | <0.001 |
| Leu | 51.23 ± 1.34 a | 32.16 ± 0.39 c | 12.73 ± 0.37 d | 42.66 ± 0.45 b | 8.24 ± 0.98 d | 70 | <0.001 |
| Phe + Tyr | 78.68 ± 1.77 a | 38.44 ± 0.58 c | 15.27 ± 1.67 d | 55.74 ± 0.91 b | 26.32 ± 0.75 d | 60 | <0.001 |
| Lys | 32.98 ± 0.54 a | 16.73 ± 0.37 b | 15.37 ± 0.45 b | 16.45 ± 0.62 b | 8.81 ± 0.69 c | 50 | <0.001 |
| Total | 226.98 ± 1.89 a | 119.09 ± 1.49 c | 68.19 ± 2.28 d | 152.60 ± 1.26 b | 60.45 ± 2.94 d | 345 | <0.001 |
| AAS | Soybean Meal | Rapeseed Meal | Corn DDGS | Corn Gluten Meal | Corn Germ Meal | p-Value |
|---|---|---|---|---|---|---|
| Thr | 0.45 ± 0.01 a | 0.24 ± 0.03 c | 0.23 ± 0.02 c | 0.21 ± 0.01 c | 0.11 ± 0.02 d | <0.001 |
| Val | 0.26 ± 0.01 a | 0.13 ± 0.01 b | 0.08 ± 0.00 c | 0.15 ± 0.01 b | 0.09 ± 0.01 c | <0.001 |
| Met + Cys | 0.66 ± 0.01 a | 0.28 ± 0.02 c | 0.23 ± 0.00 c | 0.43 ± 0.02 b | 0.15 ± 0.02 d | <0.001 |
| Ile | 0.26 ± 0.02 a | 0.15 ± 0.01 b | 0.09 ± 0.03 c | 0.17 ± 0.01 b | 0.07 ± 0.02 c | <0.001 |
| Leu | 0.73 ± 0.02 a | 0.46 ± 0.01 b | 0.18 ± 0.01 c | 0.61 ± 0.01 b | 0.12 ± 0.01 c | <0.001 |
| Phe + Tyr | 1.31 ± 0.03 a | 0.64 ± 0.01 c | 0.25 ± 0.03 d | 0.93 ± 0.02 b | 0.44 ± 0.01 e | <0.001 |
| Lys | 0.66 ± 0.01 a | 0.33 ± 0.01 b | 0.31 ± 0.01 b | 0.33 ± 0.01 b | 0.18 ± 0.01 c | <0.001 |
| Total | 0.66 ± 0.01 a | 0.35 ± 0.00 c | 0.20 ± 0.01 d | 0.44 ± 0.00 b | 0.18 ± 0.01 d | <0.001 |
| MEQ(%). | t/min | Soybean Meal | Rapeseed Meal | Corn DDGS | Corn Gluten Meal | Corn Germ Meal | p-Value |
|---|---|---|---|---|---|---|---|
| Gastric digestion (2 h) | 0 | 100.00 a | 32.17 ± 1.55 b | 6.69 ± 0.38 c | 15.62 ± 0.79 bc | 32.72 ± 1.61 b | <0.001 |
| 30 | 100.00 a | 30.22 ± 1.41 b | 2.71 ± 0.15 c | 5.38 ± 0.25 c | 12.79 ± 0.67 bc | <0.001 | |
| 60 | 100.00 a | 22.04 ± 1.09 b | 2.76 ± 0.16 c | 4.17 ± 0.22 c | 16.70 ± 0.83 b | <0.001 | |
| 90 | 100.00 a | 21.92 ± 1.08 b | 6.37 ± 0.36 c | 4.70 ± 0.25 c | 20.36 ± 1.02 b | <0.001 | |
| 120 | 100.00 a | 20.20 ± 0.99 b | 53.35 ± 2.42 ab | 4.86 ± 0.26 c | 22.95 ± 1.14 b | <0.001 | |
| Intestinal digestion (4 h) | 0 | 100.00 a | 63.64 ± 3.02 b | 23.23 ± 1.12 c | 32.50 ± 1.64 c | 23.11 ± 1.11 c | <0.001 |
| 30 | 100.00 a | 94.52 ± 4.49 a | 34.92 ± 1.71 b | 58.80 ± 2.84 b | 20.83 ± 1.01 c | <0.001 | |
| 60 | 100.00 a | 99.45 ± 0.36 a | 39.78 ± 3.13 b | 59.02 ± 3.62 b | 20.88 ± 2.14 c | <0.001 | |
| 120 | 100.00 a | 97.44 ± 2.66 a | 45.49 ± 2.03 b | 62.87 ± 2.57 b | 23.00 ± 2.11 c | <0.001 | |
| 180 | 100.00 a | 75.76 ± 3.79 b | 47.58 ± 2.37 c | 62.48 ± 3.12 b | 19.00 ± 0.95 c | <0.001 | |
| 240 | 100.00 a | 29.52 ± 1.48 c | 11.10 ± 0.56 d | 35.30 ± 1.76 b | 7.82 ± 0.39 d | <0.001 |
| Protein Source | Structural Traits | Anti-Nutritional Factors | Processing Improvement | Characteristics During Digestion |
|---|---|---|---|---|
| Soybean meal | mainly 7S/11S globulins; compact tertiary structure | Trypsin inhibitors (low), residual oligosaccharides | Starch removal; disulfide bond reduction; extrusion or fermentation | Fast gastric hydrolysis; high intestinal degree of hydrolysis (DH) |
| Rapeseed meal | High fiber, presence of glucosinolates; globulin- and albumin-rich | Trypsin inhibitors, phenolic compounds, glucosinolates | Heat treatment; enzymatic or microbial pre-treatment to degrade ANFs | Rapid gastric digestion, but intestinal digestion inhibited due to phenolics |
| Corn gluten meal | High zein content, strong disulfide cross-linking network | Low, but limited by hydrophobic protein matrix | Fiber reduction, enzymatic hydrolysis, microbial fermentation | Weak gastric digestion, strong intestinal digestion after pepsin exposure |
| Corn DDGS | Heat-damaged proteins, lipid–protein complex formation | Possible Maillard reaction products | Protein blending; mild enzymatic hydrolysis; solvent extraction | Low gastric and intestinal digestibility due to crosslinking |
| Corn germ meal | High fiber, low crude protein (CP), unbalanced amino acids | Non-starch polysaccharides (NSP), phytates | Fine grinding; carbohydrase supplementation; dehulling | Poor overall digestion; limited enzyme accessibility |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, Y.; Kou, Z.; Cao, J.; Wang, Z.; Zhang, T.; Han, R.; Che, D. Dynamic Changes in Amino Acid Release Patterns of Different Plant Protein Sources During In Vitro Digestion and Their Nutritional Value Assessment. Animals 2025, 15, 3094. https://doi.org/10.3390/ani15213094
Fan Y, Kou Z, Cao J, Wang Z, Zhang T, Han R, Che D. Dynamic Changes in Amino Acid Release Patterns of Different Plant Protein Sources During In Vitro Digestion and Their Nutritional Value Assessment. Animals. 2025; 15(21):3094. https://doi.org/10.3390/ani15213094
Chicago/Turabian StyleFan, Yueli, Zehua Kou, Jiahua Cao, Zhongshen Wang, Tianrui Zhang, Rui Han, and Dongsheng Che. 2025. "Dynamic Changes in Amino Acid Release Patterns of Different Plant Protein Sources During In Vitro Digestion and Their Nutritional Value Assessment" Animals 15, no. 21: 3094. https://doi.org/10.3390/ani15213094
APA StyleFan, Y., Kou, Z., Cao, J., Wang, Z., Zhang, T., Han, R., & Che, D. (2025). Dynamic Changes in Amino Acid Release Patterns of Different Plant Protein Sources During In Vitro Digestion and Their Nutritional Value Assessment. Animals, 15(21), 3094. https://doi.org/10.3390/ani15213094

