In Vivo Ultrasonographic Assessment of Bone Mineral Density and Its Impact on Semen Quality in Boars
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethical Statement
2.2. Experimental Animals
2.3. BMD Measurement Method
2.4. Grouping of Boars
2.4.1. Grouping of Adult Boars
2.4.2. Grouping of 25-OH-D3 Test Boars
2.5. Semen Quality Analysis
2.6. Blood and Semen Collection and Reproductive Parameter Assessment in the 25-OH-D3 Experiment
2.7. Statistical Analysis
2.7.1. Calculation of Adult Boar Semen Data
2.7.2. Calculation of 25-OH-D3 Test Data
3. Results
3.1. Relationship Between Boar Semen Quality and BMD
3.1.1. Factors Affecting Boar BMD and Semen Quality
3.1.2. Comparison and Grouping of BMD in Adult Boars and Replacement Boars
3.1.3. Comparison of BMD Among Different Breeds of Boars
3.1.4. Comparison of Semen Quality Among Adult Boars in Different BMD Groups
3.2. Effects of 25-OH-D3 Supplementation in Feed on Boar Reproductive Performance
3.2.1. Effects of Different Doses of 25-OH-D3 on Boar Semen Quality
3.2.2. Effects of Different Doses of 25-OH-D3 on Reproductive Hormones in Boars
3.2.3. Effects of Different Doses of 25-OH-D3 on Bone Mass in Boars
4. Discussion
4.1. Differences in Bone Mineral Density (BMD) Measurement Methods
4.2. Relationship Between BMD and Boar Breeds
4.3. Relationship Between BMD and Boar Semen Quality
4.4. Effects of 25-OH-D3 on Boar Reproductive Performance
4.5. Relationship Between 25-OH-D3 and Boar Bone Structure
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Marshall, D.; Johnell, O.; Wedel, H. Meta-Analysis of How Well Measures of Bone Mineral Density Predict Occurrence of Osteoporotic Fractures. BMJ 1996, 312, 1254–1259. [Google Scholar] [CrossRef]
- Chevalley, T.; Rizzoli, R.; Nydegger, V.; Slosman, D.; Tkatch, L.; Rapin, C.-H.; Vasey, H.; Bonjour, J.-P. Preferential Low Bone Mineral Density of the Femoral Neck in Patients with a Recent Fracture of the Proximal Femur. Osteoporos. Int. 1991, 1, 147–154. [Google Scholar] [CrossRef]
- Storskrubb, A.; Sevón-Aimonen, M.-L.; Uimari, P. Genetic Parameters for Bone Strength, Osteochondrosis and Meat Percentage in Finnish Landrace and Yorkshire Pigs. Animal 2010, 4, 1319–1324. [Google Scholar] [CrossRef]
- Jensen, T.B.; Kristensen, H.H.; Toft, N. Quantifying the Impact of Lameness on Welfare and Profitability of Finisher Pigs Using Expert Opinions. Livest. Sci. 2012, 149, 209–214. [Google Scholar] [CrossRef]
- Wang, C.; Wang, M.; Liu, X.; Jiang, B.; Liu, X. Correlation Analysis of Breed and Parity with the Health Status of the Female Pig’s Hoof Nail. Heilongjiang Anim. Sci. Vet. 2019, 55–58+168–169. [Google Scholar] [CrossRef]
- Fukawa, K.; Sugiyama, T.; Kusuhara, S.; Kudoh, O.; Kameyama, K. Estimation of Genetic Parameters on Leg Score and Joint Cartilage Lesion Scores in a Closed Population of Duroc Pig. Nihon Chikusan Gakkaiho 2000, 71, 353–362. [Google Scholar] [CrossRef]
- Guo, Y.M.; Zhang, X.F.; Ren, J.; Ai, H.S.; Ma, J.W.; Huang, L.S. A Joint Genomewide Association Analysis of Pig Leg Weakness and Its Related Traits in an F2 Population and a Sutai Population1. J. Anim. Sci. 2013, 91, 4060–4068. [Google Scholar] [CrossRef]
- Mitchell, A.D.; Scholz, A.M.; Pursel, V.G. Total Body and Regional Measurements of Bone Mineral Content and Bone Mineral Density in Pigs by Dual Energy X-Ray Absorptiometry. J. Anim. Sci. 2001, 79, 2594–2604. [Google Scholar] [CrossRef] [PubMed]
- Lundeheim, N. Genetic Analysis of Osteochondrosis and Leg Weakness in the Swedish Pig Progeny Testing Scheme. Acta Agric. Scand. 1987, 37, 159–173. [Google Scholar] [CrossRef]
- Rothammer, S.; Kremer, P.V.; Bernau, M.; Fernandez-Figares, I.; Pfister-Schär, J.; Medugorac, I.; Scholz, A.M. Genome-Wide QTL Mapping of Nine Body Composition and Bone Mineral Density Traits in Pigs. Genet. Sel. Evol. 2014, 46, 68. [Google Scholar] [CrossRef] [PubMed]
- Kaufman, J.J.; Luo, G.; Siffert, R.S. A Portable Real-Time Ultrasonic Bone Densitometer. Ultrasound Med. Biol. 2007, 33, 1445–1452. [Google Scholar] [CrossRef]
- Wu, C.; Hans, D.; He, Y.; Fan, B.; Njeh, C.F.; Augat, P.; Richards, J.; Genant, H.K. Prediction of Bone Strength of Distal Forearm Using Radius Bone Mineral Density and Phalangeal Speed of Sound. Bone 2000, 26, 529–533. [Google Scholar] [CrossRef]
- Hans, D.; Baim, S. Quantitative Ultrasound (QUS) in the Management of Osteoporosis and Assessment of Fracture Risk. J. Clin. Densitom. 2017, 20, 322–333. [Google Scholar] [CrossRef]
- Bertani, G.R.; Scheid, I.R.; Irgang, R.; Barioni, W.; Wentz, I.; Afonso, S.B. Gonadal Sperm Reserve in Purebred Landrace and Large White Boars of High Average Daily Gain. Theriogenology 2002, 57, 859–867. [Google Scholar] [CrossRef] [PubMed]
- Oury, F.; Sumara, G.; Sumara, O.; Ferron, M.; Chang, H.; Smith, C.E.; Hermo, L.; Suarez, S.; Roth, B.L.; Ducy, P.; et al. Endocrine Regulation of Male Fertility by the Skeleton. Cell 2011, 144, 796–809. [Google Scholar] [CrossRef] [PubMed]
- Lee, N.K.; Sowa, H.; Hinoi, E.; Ferron, M.; Ahn, J.D.; Confavreux, C.; Dacquin, R.; Mee, P.J.; McKee, M.D.; Jung, D.Y.; et al. Endocrine Regulation of Energy Metabolism by the Skeleton. Cell 2007, 130, 456–469. [Google Scholar] [CrossRef]
- Mera, P.; Laue, K.; Ferron, M.; Confavreux, C.; Wei, J.; Galán-Díez, M.; Lacampagne, A.; Mitchell, S.J.; Mattison, J.A.; Chen, Y.; et al. Osteocalcin Signaling in Myofibers Is Necessary and Sufficient for Optimum Adaptation to Exercise. Cell Metab. 2016, 23, 1078–1092. [Google Scholar] [CrossRef]
- Szulc, P.; Arlot, M.; Chapuy, M.; Duboeuf, F.; Meunier, P.J.; Delmas, P.D.D. Serum Undercarboxylated Osteocalcin Correlates with Hip Bone Mineral Density in Elderly Women. J. Bone Miner. Res. 1994, 9, 1591–1595. [Google Scholar] [CrossRef] [PubMed]
- Rezayat, A.A.; Asadpour, A.A.; Yarahmadi, A.; Ahmadnia, H.; Hakkak, A.M.; Soltani, S. Association Between Serum Vitamin D Concentration with Spermiogram Parameters and Reproductive Hormones Among Infertile Iranian Males: A Cross-Sectional Study. Reprod. Sci. 2022, 29, 270–276. [Google Scholar] [CrossRef]
- Arab, A.; Hadi, A.; Moosavian, S.P.; Askari, G.; Nasirian, M. The Association between Serum Vitamin D, Fertility and Semen Quality: A Systematic Review and Meta-Analysis. Int. J. Surg. 2019, 71, 101–109. [Google Scholar] [CrossRef]
- Blomberg Jensen, M.; Bjerrum, P.J.; Jessen, T.E.; Nielsen, J.E.; Joensen, U.N.; Olesen, I.A.; Petersen, J.H.; Juul, A.; Dissing, S.; Jørgensen, N. Vitamin D Is Positively Associated with Sperm Motility and Increases Intracellular Calcium in Human Spermatozoa. Hum. Reprod. 2011, 26, 1307–1317. [Google Scholar] [CrossRef]
- Johnson, B.H.; Welsh, T.H., Jr.; Juniewicz, P.E. Suppression of Luteinizing Hormone and Testosterone Secretion in Bulls Following Adrenocorticotropin Hormone Treatment1. Biol. Reprod. 1982, 26, 305–310. [Google Scholar] [CrossRef]
- GB 23238-2021; Technical Specification for Production and Preservation of Fresh Boar Semen. Standards Press of China: Beijing, China, 2021.
- Baroncelli, G.I. Quantitative Ultrasound Methods to Assess Bone Mineral Status in Children: Technical Characteristics, Performance, and Clinical Application. Pediatr. Res. 2008, 63, 220–228. [Google Scholar] [CrossRef] [PubMed]
- Shim, M.Y.; Karnuah, A.B.; Mitchell, A.D.; Anthony, N.B.; Pesti, G.M.; Aggrey, S.E. The Effects of Growth Rate on Leg Morphology and Tibia Breaking Strength, Mineral Density, Mineral Content, and Bone Ash in Broilers. Poult. Sci. 2012, 91, 1790–1795. [Google Scholar] [CrossRef]
- Damaziak, K.; Charuta, A.; Niemiec, J.; Tatara, M.R.; Krupski, W.; Gozdowski, D.; Kruzińska, B. Femur and Tibia Development in Meat-Type Chickens with Different Growth Potential for 56 Days of Rearing Period. Poult. Sci. 2019, 98, 7063–7075. [Google Scholar] [CrossRef] [PubMed]
- Zotti, A.; Gianesella, M.; Ceccato, C.; Morgante, M. Physiological Values and Factors Affecting the Metacarpal Bone Density of Healthy Feedlot Beef Cattle as Measured by Dual-Energy X-Ray Absorptiometry. J. Anim. Physiol. Anim. Nutr. 2010, 94, 615–622. [Google Scholar] [CrossRef]
- Kumar, K.; Mogha, I.V.; Aithal, H.P.; Amarpal; Kinjavdekar, P.; Singh, G.R.; Pawde, A.M.; Setia, H.C. Determinants of Bone Mass, Density and Growth in Growing Dogs with Normal and Osteopenic Bones. Vet. Res. Commun. 2009, 33, 57–66. [Google Scholar] [CrossRef] [PubMed]
- Anil, S.S.; Anil, L.; Deen, J. Challenges of Pain Assessment in Domestic Animals. J. Am. Vet. Med. Assoc. 2002, 220, 313–319. [Google Scholar] [CrossRef]
- Flowers, W. Factors Affecting the Efficient Production of Boar Sperm. Reprod. Domest. Anim. 2015, 50, 25–30. [Google Scholar] [CrossRef]
- Oku, Y.; Noda, S.; Yamada, A.; Nakaoka, K.; Goseki-Sone, M. Twenty-Eight Days of Vitamin D Restriction and/or a High-Fat Diet Influenced Bone Mineral Density and Body Composition in Young Adult Female Rats. Ann. Anat. Anat. Anz. 2022, 243, 151945. [Google Scholar] [CrossRef]
- Shahreza, F.D.; Hajian, M.; Gharagozloo, P.; Drevet, J.R.; Nasr-Esfahani, M.H. Impact of Vitamin D Deficiency on Mouse Sperm Structure and Function. Andrology 2020, 8, 1442–1455. [Google Scholar] [CrossRef]
- Kolp, E.; Wilkens, M.R.; Pendl, W.; Eichenberger, B.; Liesegang, A. Vitamin D Metabolism in Growing Pigs: Influence of UVB Irradiation and Dietary Vitamin D Supply on Calcium Homeostasis, Its Regulation and Bone Metabolism. J. Anim. Physiol. Anim. Nutr. 2017, 101, 79–94. [Google Scholar] [CrossRef]
- Dittmer, K.E.; Thompson, K.G. Vitamin D Metabolism and Rickets in Domestic Animals: A Review. Vet. Pathol. 2011, 48, 389–407. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Lv, G.; Dong, H.-J.; Wu, D.; Tao, Z.-Y.; Xu, S.-Y.; Che, L.-Q.; Fang, Z.-F.; Bai, S.-P.; Feng, B.; et al. Effects of the Different Levels of Dietary Vitamin D on Boar Performance and Semen Quality. Livest. Sci. 2017, 203, 63–68. [Google Scholar] [CrossRef]
- Jensen, M.B. Vitamin D Metabolism, Sex Hormones, and Male Reproductive Function. Reproduction 2012, 144, 135–152. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Sun, H.; Wan, Y.; Wang, H.; Qin, W.; Yang, L.; Zhao, H.; Yuan, J.; Yao, B. Associations between Testosterone, Bone Mineral Density, Vitamin D and Semen Quality in Fertile and Infertile Chinese Men. Int. J. Androl. 2012, 35, 783–792. [Google Scholar] [CrossRef]
- Ferlin, A.; Garolla, A.; Ghezzi, M.; Selice, R.; Palego, P.; Caretta, N.; Mambro, A.D.; Valente, U.; Ponce, M.D.R.; Dipresa, S.; et al. Sperm Count and Hypogonadism as Markers of General Male Health. Eur. Urol. Focus 2021, 7, 205–213. [Google Scholar] [CrossRef] [PubMed]
- Bobjer, J.; Bogefors, K.; Isaksson, S.; Leijonhufvud, I.; Åkesson, K.; Giwercman, Y.L.; Giwercman, A. High Prevalence of Hypogonadism and Associated Impaired Metabolic and Bone Mineral Status in Subfertile Men. Clin. Endocrinol. 2016, 85, 189–195. [Google Scholar] [CrossRef]
- Blomberg Jensen, M.; Gerner Lawaetz, J.; Andersson, A.-M.; Petersen, J.H.; Nordkap, L.; Bang, A.K.; Ekbom, P.; Joensen, U.N.; Prætorius, L.; Lundstrøm, P.; et al. Vitamin D Deficiency and Low Ionized Calcium Are Linked with Semen Quality and Sex Steroid Levels in Infertile Men. Hum. Reprod. 2016, 31, 1875–1885. [Google Scholar] [CrossRef]
- Jensen, M.B. Vitamin D and Male Reproduction. Nat. Rev. Endocrinol. 2014, 10, 175–186. [Google Scholar] [CrossRef]
- Hofer, D.; Münzker, J.; Schwetz, V.; Ulbing, M.; Hutz, K.; Stiegler, P.; Zigeuner, R.; Pieber, T.R.; Müller, H.; Obermayer-Pietsch, B. Testicular Synthesis and Vitamin D Action. J. Clin. Endocrinol. Metab. 2014, 99, 3766–3773. [Google Scholar] [CrossRef] [PubMed]
- Johnson, J.A.; Grande, J.P.; Roche, P.C.; Kumar, R. Immunohistochemical Detection and Distribution of the 1,25-Dihydroxyvitamin D3 Receptor in Rat Reproductive Tissues. Histochem. Cell Biol. 1996, 105, 7–15. [Google Scholar] [CrossRef]
- Yang, P.; Ma, Y. Recent advances of vitamin D in immune, reproduction, performance for pig: A review. Anim. Health Res. Rev. 2021, 22, 85–95. [Google Scholar] [CrossRef]
- Clark, A.M.; Chuzel, F.; Sanchez, P.; Saez, J.M. Regulation by Gonadotropins of the Messenger Ribonucleic Acid for P450 Side-Chain Cleavage, P45017α-Hydroxylase/C17,20-Lyase, and 3β-Hydroxysteroid Dehydrogenase in Cultured Pig Leydig Cells1. Biol. Reprod. 1996, 55, 347–354. [Google Scholar] [CrossRef]
- Minoru, K.; Susumu, G. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 2000, 28, 27–30. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Bühler, K.; Zhu, Y.; Nie, X.; Liu, W. Proteomics Analysis Reveals the Effect of 1α,25(OH)2VD3-Glycosides on Development of Early Testes in Piglets. Sci. Rep. 2021, 11, 11341. [Google Scholar] [CrossRef]
- Keane, K.N.; Cruzat, V.F.; Calton, E.K.; Hart, P.H.; Soares, M.J.; Newsholme, P.; Yovich, J.L. Molecular Actions of Vitamin D in Reproductive Cell Biology. Reproduction 2017, 153, R29–R42. [Google Scholar] [CrossRef]
- Kinuta, K.; Tanaka, H.; Moriwake, T.; Aya, K.; Kato, S.; Seino, Y. Vitamin D Is an Important Factor in Estrogen Biosynthesis of Both Female and Male Gonads. Endocrinology 2000, 141, 1317–1324. [Google Scholar] [CrossRef]
- Almeida, S.; Rato, L.; Sousa, M.; Alves, M.G.; Oliveira, P.F. Fertility and Sperm Quality in the Aging Male. Curr. Pharm. Des. 2017, 23, 4429–4437. [Google Scholar] [CrossRef]
- Dixson, A.F.; Anderson, M.J. Sexual Selection, Seminal Coagulation and Copulatory Plug Formation in Primates. Folia Primatol. 2002, 73, 63–69. [Google Scholar] [CrossRef] [PubMed]
- Kaprara, A.; Huhtaniemi, I.T. The Hypothalamus-Pituitary-Gonad Axis: Tales of Mice and Men. Metab. Clin. Exp. 2018, 86, 3–17. [Google Scholar] [CrossRef] [PubMed]
- Jefferies, D.; Farquharson, C.; Thomson, J.; Smith, W.; Seawright, E.; McCormack, H.; Whitehead, C. Differences in Metabolic Parameters and Gene Expression Related to Osteochondrosis/Osteoarthrosis in Pigs Fed 25-Hydroxyvitamin D3. Vet. Res. 2002, 33, 383–396. [Google Scholar] [CrossRef] [PubMed]
- Sugiyama, T.; Kusuhara, S.; Chung, T.K.; Yonekura, H.; Azem, E.; Hayakawa, T. Effects of 25-Hydroxy-Cholecalciferol on the Development of Osteochondrosis in Swine. Anim. Sci. J. 2013, 84, 341–349. [Google Scholar] [CrossRef] [PubMed]



| Nutritional Composition | Ratio, % | Raw Material Composition | Ratio, % |
|---|---|---|---|
| Crude Protein | 17.03 | Cornmeal | 45.0 |
| Crude Fibre | 2.84 | Soybean Meal | 17.5 |
| Crude Ash | 5.47 | Broken Rice | 12.5 |
| Crude Fat | 3.34 | Bran | 5.5 |
| Calcium | 0.90 | Expanded Soybean | 7.5 |
| Total phosphorus | 0.55 | Beet Pulp | 5.5 |
| Fish Meal | 2.5 | ||
| Others | 6.0 |
| Items | Age in Months | Breed | Age in Months × Breed |
|---|---|---|---|
| BMD | 0.0054 | 0.2340 | 0.0888 |
| Items | Semen Volume | Semen Concentration | Sperm Motility | Sperm Abnormality Rate |
|---|---|---|---|---|
| Breed | 0.503 | 0.116 | 0.609 | 0.545 |
| BMD | 0.304 | 0.866 | 0.638 | 0.00001 |
| Breed × BMD | 0.700 | 0.125 | 0.667 | 0.736 |
| Items | Number | Age in Months | Average Value of BMD |
|---|---|---|---|
| Adult boars | 492 | 24.28 ± 1.85 | 4141.19 ± 192.16 |
| Replacement boars | 208 | 10.60 ± 0.60 | 4108.23 ± 210.30 |
| p-value | 0.053 | ||
| Items/Breeds | Adult Boars | Replacement Boars | ||||
|---|---|---|---|---|---|---|
| Duroc | Landrace | Yorkshire | Duroc | Landrace | Yorkshire | |
| Number | 217 | 123 | 152 | 165 | 12 | 31 |
| Age in months | 24.27 ± 1.21 | 26.05 ± 1.87 | 25.90 ± 1.93 | 10.11 ± 0.65 | 10.56 ± 0.06 | 10.04 ± 0.05 |
| Average value of BMD | 4114.23 ± 191.34 a | 4116.25 ± 196.41 a | 4199.86 ± 177.53 b | 4112.01 ± 210.54 | 4037.33 ± 204.54 | 4115.52 ± 212.99 |
| p-value | 0.00003 | 0.485 | ||||
| Items/Breeds | Duroc | Landrace | Yorkshire | |||
|---|---|---|---|---|---|---|
| Adult Boars | Replacement Boars | Adult Boars | Replacement Boars | Adult Boars | Replacement Boars | |
| Number | 217 | 165 | 123 | 12 | 152 | 31 |
| Age in months | 24.27 ± 1.21 | 10.11 ± 0.65 | 26.05 ± 1.87 | 10.56 ± 0.06 | 25.90 ± 1.93 | 10.04 ± 0.05 |
| Average value of BMD | 4114.23 ± 191.34 | 4112.01 ± 210.54 | 4116.25 ± 196.41 | 4037.33 ± 204.54 | 4199.86 ± 177.53 | 4115.52 ± 212.99 |
| p-value | 0.069 | 0.258 | 0.046 | |||
| Items/Breeds | Number | Semen Volume, mL | Semen Concentration, 108/mL | Sperm Motility | Sperm Abnormality Rate |
|---|---|---|---|---|---|
| A | 123 | 224.577 ± 83.275 | 2.079 ± 0.847 | 0.85 ± 0.08 | 0.264 ± 0.136 a |
| B | 123 | 209.213 ± 80.986 | 2.112 ± 0.879 | 0.85 ± 0.08 | 0.272 ± 0.147 a |
| C | 123 | 226.785 ± 97.382 | 2.156 ± 0.893 | 0.83 ± 0.11 | 0.296 ± 0.128 ab |
| D | 123 | 216.218 ± 100.711 | 2.142 ± 1.03 | 0.83 ± 0.09 | 0.309 ± 0.1272 b |
| p-value | 0.284 | 0.307 | 0.221 | 0.032 |
| Breeds | Items/Groups | A | B | C | D | p-Value |
|---|---|---|---|---|---|---|
| Duroc | Number | 45 | 59 | 51 | 62 | |
| Semen volume, mL | 161.72 ± 40.69 | 166.17 ± 34.51 | 165.12 ± 47.96 | 164.94 ± 51.24 | 0.809 | |
| Semen concentration, 108/mL | 2.13 ± 0.87 | 2.46 ± 0.84 | 2.34 ± 0.90 | 2.36 ± 1.12 | 0.490 | |
| Sperm motility | 0.82 ± 0.09 | 0.83 ± 0.09 | 0.81 ± 0.11 | 0.82 ± 0.09 | 0.861 | |
| Sperm abnormality rate | 0.313 ± 0.14 a | 0.326 ± 0.143 a | 0.351 ± 0.107 b | 0.38 ± 0.131 c | 0.043 | |
| Landrace | Number | 30 | 22 | 33 | 38 | |
| Semen volume, mL | 281.56 ± 67.51 | 275.02 ± 74.84 | 277.26 ± 81.67 | 281.68 ± 84.91 | 0.957 | |
| Semen concentration, 108/mL | 2.08 ± 0.61 | 1.94 ± 0.51 | 1.91 ± 0.64 | 2.04 ± 0.69 | 0.784 | |
| Sperm motility | 0.85 ± 0.05 | 0.82 ± 0.08 | 0.80 ± 0.12 | 0.82 ± 0.08 | 0.081 | |
| Sperm abnormality rate | 0.208 ± 0.149 a | 0.247 ± 0.113 b | 0.274 ± 0.122 bc | 0.3 ± 0.104 c | 0.029 | |
| Yorkshire | Number | 54 | 43 | 30 | 25 | |
| Semen volume, mL | 251.46 ± 70.17 | 254.06 ± 76.36 | 261.62 ± 77.75 | 243.96 ± 81.72 | 0.991 | |
| Semen concentration, 108/mL | 2.00 ± 0.64 | 2.13 ± 0.74 | 2.43 ± 1.08 | 1.97 ± 0.67 | 0.303 | |
| Sperm motility | 0.87 ± 0.07 | 0.88 ± 0.06 | 0.89 ± 0.06 | 0.86 ± 0.10 | 0.966 | |
| Sperm abnormality rate | 0.192 ± 0.116 a | 0.21 ± 0.111 a | 0.234 ± 0.1 b | 0.264 ± 0.116 c | 0.031 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liao, M.; Liu, X.; Wei, H.; Li, L.; Zhang, S. In Vivo Ultrasonographic Assessment of Bone Mineral Density and Its Impact on Semen Quality in Boars. Animals 2025, 15, 3072. https://doi.org/10.3390/ani15213072
Liao M, Liu X, Wei H, Li L, Zhang S. In Vivo Ultrasonographic Assessment of Bone Mineral Density and Its Impact on Semen Quality in Boars. Animals. 2025; 15(21):3072. https://doi.org/10.3390/ani15213072
Chicago/Turabian StyleLiao, Miaomiao, Xinyu Liu, Hengxi Wei, Li Li, and Shouquan Zhang. 2025. "In Vivo Ultrasonographic Assessment of Bone Mineral Density and Its Impact on Semen Quality in Boars" Animals 15, no. 21: 3072. https://doi.org/10.3390/ani15213072
APA StyleLiao, M., Liu, X., Wei, H., Li, L., & Zhang, S. (2025). In Vivo Ultrasonographic Assessment of Bone Mineral Density and Its Impact on Semen Quality in Boars. Animals, 15(21), 3072. https://doi.org/10.3390/ani15213072

