The Regulatory Effect and Molecular Mechanism of the Anti-Lipopolysaccharide Factor-like Gene on the Resistance of Shrimp (Litopenaeus vannamei) to White Spot Syndrome Virus Infection
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. WSSV Challenge and Sample Collection
2.2. Total RNA Extraction and cDNA Preparation
2.3. Molecular Cloning and Bioinformatic Analysis
2.4. Tissue Distribution and Expression Pattern Analysis
2.5. Double-Stranded RNA Preparation and RNA Interference
2.6. Detection of Immune Pathway Genes
2.7. Detection of Hemocytes Apoptosis Rate
2.8. Statistical Analysis
3. Results
3.1. Sequence Feature of Lv-ALF
3.2. Multiple Sequence Alignment and Phylogenetic Tree
3.3. Tissue Distribution and Lv-ALF like Gene mRNA Expression Pattern After WSSV Challenge
3.4. RNAi Interference Effect and Survival Rate Analysis
3.5. Lv-ALF-like Was Involved in Regulating the Antiviral Innate Immune Response
3.6. Apoptosis in Hemocytes
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, E.; Xu, C.; Wang, X.D.; Wang, S.F.; Zhao, Q.; Zhang, M.L.; Qin, J.G.; Chen, L.Q. Gut Microbiota and its Modulation for Healthy Farming of Pacific White Shrimp Litopenaeus vannamei. Rev. Fish. Sci. Aquac. 2018, 26, 381–399. [Google Scholar] [CrossRef]
- Yin, T.; Shi, L. Processing and Preservation of Aquatic Products. Foods 2023, 12, 2061. [Google Scholar] [CrossRef]
- Angthong, P.; Uengwetwanit, T.; Arayamethakorn, S.; Rungrassamee, W. Transcriptomic analysis of the black tiger shrimp (Penaeus monodon) reveals insights into immune development in their early life stages. Sci. Rep. 2021, 11, 13881. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Li, G.; Liu, B.; Zhou, C.; Wang, H.; Qin, W.; Jiang, Z.; Wan, X.; Ren, Q. Characterization and functional analysis of tandem threonine containing C-type lectin (Thr-Lec) from the ridgetail white prawn Exopalaemon carinicauda. Fish Shellfish Immunol. Rep. 2021, 2, 100018. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Chen, Y.; Zhao, Z.; Weng, S.; Yang, J.; Liu, S.; Liu, C.; Yuan, F.; Ai, B.; Zhang, H.; et al. A convenient polyculture system that controls a shrimp viral disease with a high transmission rate. Commun. Biol. 2021, 4, 1276. [Google Scholar] [CrossRef] [PubMed]
- Xue, Q.; Yang, B.; Luo, K.; Luan, S.; Kong, J.; Li, X.; Meng, X. Molecular Characterization and Expression Analysis of the C-Type Lectin Domain Family 4 Member F in Litopenaeus vannamei against White Spot Syndrome Virus. Animals 2024, 14, 1137. [Google Scholar] [CrossRef] [PubMed]
- Waring, A.L.; Hill, J.; Allen, B.M.; Bretz, N.M.; Le, N.; Kr, P.; Fuss, D.; Mortimer, N.T. Meta-Analysis of Immune Induced Gene Expression Changes in Diverse Drosophila melanogaster Innate Immune Responses. Insects 2022, 13, 490. [Google Scholar] [CrossRef]
- Shah, E.J.; Hüttemann, M.; Sanderson, T.H.; Gurdziel, K.; Ruden, D.M. Inhibiting Mitochondrial Cytochrome c Oxidase Downregulates Gene Transcription After Traumatic Brain Injury in Drosophila. Front. Physiol. 2021, 12, 628777. [Google Scholar] [CrossRef]
- van Alphen, B.; Stewart, S.; Iwanaszko, M.; Xu, F.; Li, K.; Rozenfeld, S.; Ramakrishnan, A.; Itoh, T.Q.; Sisobhan, S.; Qin, Z.; et al. Glial immune-related pathways mediate effects of closed head traumatic brain injury on behavior and lethality in Drosophila. PLoS Biol. 2022, 20, e3001456. [Google Scholar] [CrossRef]
- Zhang, H.; Zheng, J.; Cheng, W.; Mao, Y.; Yu, X. Antibacterial activity of an anti-lipopolysaccharide factor (MjALF-D) identified from kuruma prawn (Marsupenaeus japonicus). Fish Shellfish Immunol. 2022, 127, 295–305. [Google Scholar] [CrossRef]
- Marín-Parra, C.; Serna-Duque, J.A.; Espinosa-Ruiz, C.; Esteban, M.Á. Analysis of In Silico Properties and In Vitro Immunomodulatory Effects of Seven Synthetic Host Defence Peptides in Gilthead Seabream (Sparus aurata) Leucocytes. Mar. Biotechnol. 2025, 27, 109. [Google Scholar] [CrossRef]
- Tanaka, S.; Nakamura, T.; Morita, T.; Iwanaga, S. Limulus anti-LPS factor: An anticoagulant which inhibits the endotoxin mediated activation of Limulus coagulation system. Biochem. Biophys. Res. Commun. 1982, 105, 717–723. [Google Scholar] [CrossRef]
- Somboonwiwat, K.; Marcos, M.; Tassanakajon, A.; Klinbunga, S.; Aumelas, A.; Romestand, B.; Gueguen, Y.; Boze, H.; Moulin, G.; Bachère, E. Recombinant expression and anti-microbial activity of anti-lipopolysaccharide factor (ALF) from the black tiger shrimp Penaeus monodon. Dev. Comp. Immunol. 2005, 29, 841–851. [Google Scholar] [CrossRef]
- Ma, L.; Wang, H.; Liu, Y.; Sun, J.; Yan, X.; Lu, Z.; Hao, C.; Qie, X. Single von Willebrand factor C-domain protein-2 confers immune defense against bacterial infections in the silkworm, Bombyx mori. Int. J. Biol. Macromol. 2024, 279 Pt 2, 135241. [Google Scholar] [CrossRef] [PubMed]
- Supungul, P.; Klinbunga, S.; Pichyangkura, R.; Hirono, I.; Aoki, T.; Tassanakajon, A. Antimicrobial peptides discovered in the black tiger shrimp Penaeus monodon using the EST approach. Dis. Aquat. Organ. 2004, 61, 123–135. [Google Scholar] [CrossRef] [PubMed]
- de la Vega, E.; O’Leary, N.A.; Shockey, J.E.; Robalino, J.; Payne, C.; Browdy, C.L.; Warr, G.W.; Gross, P.S. Anti-lipopolysaccharide factor in Litopenaeus vannamei (LvALF): A broad spectrum antimicrobial peptide essential for shrimp immunity against bacterial and fungal infection. Mol. Immunol. 2008, 45, 1916–1925. [Google Scholar] [CrossRef]
- Li, S.H.; Zhang, X.J.; Sun, Z.; Li, F.H.; Xiang, J.H. Transcriptome analysis on Chinese shrimp Fenneropenaeus chinensis during WSSV acute infection. PLoS ONE 2013, 8, e58627. [Google Scholar] [CrossRef]
- Jimenez-Vega, F.; Vargas-Albores, F. Isoforms of Litopenaeus vannamei antilipopolysaccharide and its expression by bacterial challenge. J. Shellfish Res. 2007, 26, 1169–1175. [Google Scholar] [CrossRef]
- Gross, P.S.; Bartlett, T.C.; Browdy, C.L.; Chapman, R.W.; Warr, G.W. Immune gene discovery by expressed sequence tag analysis of hemocytes and hepatopancreas in the Pacific White Shrimp, Litopenaeus vannamei, and the Atlantic White Shrimp, L. setiferus. Dev. Comp. Immunol. 2001, 25, 565–577. [Google Scholar] [CrossRef]
- Ren, Q.; Zhang, Z.; Li, X.C.; Jie, D.; Hui, K.M.; Zhang, C.Y.; Wang, W. Three different anti-lipopolysaccharide factors identified from giant freshwater prawn, Macrobrachium rosenbergii. Fish Shellfish Immunol. 2012, 33, 766–774. [Google Scholar] [CrossRef]
- Li, S.H.; Guo, S.Y.; Li, F.H.; Xiang, J.H. Functional diversity of anti-lipopolysaccharide factor isoforms in shrimp and their characters related to antiviral activity. Mar. Drugs 2015, 13, 2602–2616. [Google Scholar] [CrossRef] [PubMed]
- Zhan, W.B.; He, L.Y.; Wei, X.M.; Wang, X.L.; Tang, X.Q. An Anti-Lipopolysaccharide Factor in Litopenaeus vannamei Par-ticipates in the Immune Defense Against WSSV and Vibrio Anguillarum. J. Crustac. Biology 2015, 35, 670–675. [Google Scholar] [CrossRef]
- Sun, M.; Li, S.; Lv, X.; Xiang, J.; Lu, Y.; Li, F. A Lymphoid Organ Specific Anti-Lipopolysaccharide Factor from Litopenaeus vannamei Exhibits Strong Antimicrobial Activities. Mar. Drugs 2021, 19, 250. [Google Scholar] [CrossRef]
- Liu, H.P.; Jiravanichpaisal, P.; Söderhäll, I.; Cerenius, L.; Söderhäll, K. Antilipopolysaccharide factor interferes with white spot syndrome virus replication in vitro and in vivo in the crayfish Pacifastacus leniusculus. J. Virol. 2006, 80, 10365–10371. [Google Scholar] [CrossRef]
- Yang, B.B.; Li, Q.Q.; Zhang, M.D.; Lin, S.H.; Shen, X.L.; Du, Z.Q. Molecular cloning and functional characterization of peroxiredoxin 4 (prx 4) in freshwater crayfish, Procambarus clarkii. Fish Shellfish Immunol. 2023, 137, 108781. [Google Scholar] [CrossRef]
- Chen, Y.C.; Yang, Y.; Zhang, C.; Chen, H.Y.; Chen, F.; Wang, K.J. A Novel Antimicrobial Peptide Sparamosin26-54 From the Mud Crab Scylla paramamosain Showing Potent Antifungal Activity Against Cryptococcus neoformans. Front. Microbiol. 2021, 12, 746006. [Google Scholar] [CrossRef]
- Lu, Y.; Su, F.; Li, Q.; Zhang, J.; Li, Y.; Tang, T.; Hu, Q.; Yu, X.Q. Pattern recognition receptors in Drosophila immune responses. Dev. Comp. Immunol. 2020, 102, 103468. [Google Scholar] [CrossRef]
- Wang, F.; Li, S.; Li, F. Different Immune Responses of the Lymphoid Organ in Shrimp at Early Challenge Stage of Vibrio parahaemolyticus and WSSV. Animals 2021, 11, 2160. [Google Scholar] [CrossRef]
- Nagoshi, H.; Inagawa, H.; Morii, K.; Harada, H.; Kohchi, C.; Nishizawa, T.; Taniguchi, Y.; Uenobe, M.; Honda, T.; Kondoh, M.; et al. Cloning and characterization of a LPS-regulatory gene having an LPS binding domain in kuruma prawn Marsupenaeus japonicus. Mol. Immunol. 2006, 43, 2061–2069. [Google Scholar] [CrossRef] [PubMed]
- Matos, G.M.; Schmitt, P.; Barreto, C.; Farias, N.D.; Toledo-Silva, G.; Guzmán, F.; Destoumieux-Garzón, D.; Perazzolo, L.M.; Rosa, R.D. Massive gene expansion and sequence diversification is associated with diverse tissue distribution, regulation and antimicrobial properties of Anti-Lipopolysaccharide Factors in Shrimp. Mar. Drugs. 2018, 16, 381. [Google Scholar] [CrossRef]
- Liu, J.; Yu, Y.; Li, F.; Zhang, X.; Xiang, J. A new anti-lipopolysaccharide factor (ALF) gene with its SNP polymorphisms related to WSSV-resistance of Litopenaeus vannamei. Fish Shellfish Immunol. 2014, 39, 24–33. [Google Scholar] [CrossRef]
- Shockey, J.E.; O’Leary, N.A.; de la Vega, E.; Browdy, C.L.; Baatz, J.E.; Gross, P.S. The role of crustins in Litopenaeus vannamei in response to infection with shrimp pathogens: An in vivo approach. Dev. Comp. Immunol. 2009, 33, 668–673. [Google Scholar] [CrossRef]
- Pushpanathan, M.; Gunasekaran, P.; Rajendhran, J. Antimicrobial peptides: Versatile biological properties. Int. J. Pept. 2013, 2013, 675391. [Google Scholar] [CrossRef]
- Pavlick, K.P.; Laroux, F.S.; Fuseler, J.; Wolf, R.E.; Gray, L.; Hoffman, J.; Grisham, M.B. Role of reactive metabolites of oxygen and nitrogen in inflammatory bowel disease. Free Radic. Biol. Med. 2002, 33, 311–322. [Google Scholar] [CrossRef]








| Primer Name | Sequence (5′~3′) |
|---|---|
| Amplified sequence | |
| Lv-ALF-F | ATCGTCCGTGAATTGTTTCGT |
| Lv-ALF-R | TATGGGTCAGTTTGGGATTAC |
| For qRT-PCR assay | |
| ALF-F | TATTCGCCTCTGTCTCAGCG |
| ALF-R | GATGGCATCCAGTTCCGAGT |
| 18 S-F | TATACGCTAGTGGAGCTGGAA |
| 18 S-R | GGGGAGGTAGTGACGAAAAAT |
| VP 28-F | TTCTTTCACTCTTTCGGTCGT |
| VP 28-R | GCCAACTTCATCCTCATCAAT |
| IE 1-F | TGGCACAACAACAGACCCTA |
| IE 1-R | CTTTCCTTGAAGTACGAGAC |
| Caspase 3-F | AGTTAGTACAAACAGATTGGAGCG |
| Caspase 3-R | GGCGACAAGATGAGGCAA |
| Caspase 8-F | GGCGACAAGATGAGGCAA |
| Caspase 8-R | CAGGGTGAGGGAGAGAAAACT |
| Bax-F | GGTGGAATCACAAGAGAGCGA |
| Bax-R | TGTTCTCCACGGTGTCTCAC |
| Bcl 2-F | CCTTGCTTGACACAGTCGGA |
| Bcl 2-R | CAGACAAGGTCGTGAGGTGG |
| CAT-F | AGAGGGTTGTGCATGCTAAG |
| CAT-R | CAGCTGATCCACTCTCACCT |
| GST-F | TAAGGCAGGCCAAACTGTAG |
| GST-R | AGCTGAGGAGACCCATTCTT |
| Prx-F | GAAGAGCAATGCCATACGTT |
| Prx-R | CTTGAGCTCACGGAACTCTC |
| GPX-F | CCAAAGTGCATCATTTGGAC |
| GPX-R | CAGCAAGTTTGCGATTTCAT |
| SOD-F | GCGTTGGAGTGAAAGGCTCT |
| SOD-R | TCACGTAATCTGCACGGAGG |
| For dsRNA synthesis | |
| dsGFP-Fi | GCGTAATACGACTCACTATAGGCATCTTCTTCAAGGACGACGG |
| dsGFP-Ri | GCGTAATACGACTCACTATAGGAGTTCACCTTGATGCCGTTCT |
| Lv-ALF-Fi | GCGTAATACGACTCACTATAGGCGTCCTTGGATCTGTCGTTG |
| Lv-ALF-Ri | GCGTAATACGACTCACTATAGGATCCAGTTCCGAGTTGGTAGG |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, B.; Zhang, L.; Fu, F.; Luo, K.; Luan, S.; Kong, J.; Fu, Q.; Cao, J.; Chen, B.; Dai, P.; et al. The Regulatory Effect and Molecular Mechanism of the Anti-Lipopolysaccharide Factor-like Gene on the Resistance of Shrimp (Litopenaeus vannamei) to White Spot Syndrome Virus Infection. Animals 2025, 15, 3069. https://doi.org/10.3390/ani15213069
Yang B, Zhang L, Fu F, Luo K, Luan S, Kong J, Fu Q, Cao J, Chen B, Dai P, et al. The Regulatory Effect and Molecular Mechanism of the Anti-Lipopolysaccharide Factor-like Gene on the Resistance of Shrimp (Litopenaeus vannamei) to White Spot Syndrome Virus Infection. Animals. 2025; 15(21):3069. https://doi.org/10.3390/ani15213069
Chicago/Turabian StyleYang, Bingbing, Li Zhang, Fanghui Fu, Kun Luo, Sheng Luan, Jie Kong, Qiang Fu, Jiawang Cao, Baolong Chen, Ping Dai, and et al. 2025. "The Regulatory Effect and Molecular Mechanism of the Anti-Lipopolysaccharide Factor-like Gene on the Resistance of Shrimp (Litopenaeus vannamei) to White Spot Syndrome Virus Infection" Animals 15, no. 21: 3069. https://doi.org/10.3390/ani15213069
APA StyleYang, B., Zhang, L., Fu, F., Luo, K., Luan, S., Kong, J., Fu, Q., Cao, J., Chen, B., Dai, P., Xing, Q., Li, X., & Meng, X. (2025). The Regulatory Effect and Molecular Mechanism of the Anti-Lipopolysaccharide Factor-like Gene on the Resistance of Shrimp (Litopenaeus vannamei) to White Spot Syndrome Virus Infection. Animals, 15(21), 3069. https://doi.org/10.3390/ani15213069

