Herd-Level Prevalence of High Fat-to-Protein Ratio and Associated Factors During Early Lactation in Irish Spring-Calving Dairy Herds
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethical Approval
2.2. Data
2.3. Data Cleaning and Analysis
2.4. Statistical Analysis
2.5. Statistical Models
3. Results
3.1. Descriptive Statistics
3.2. Herd-Level Prevalence of High FPR
3.3. Herd-Level Prevalence of High-Fat-to-Protein Ratio Models
3.3.1. <30 DIM Model
3.3.2. ≥30 to <60 DIM Model
4. Discussion
4.1. Herd-Level Prevalence of High FPR in Early Lactation
4.2. Risk Factors Associated with Herd-Level Prevalence of High FPR
4.2.1. Month of the Year
4.2.2. 305-Day-Yield
4.2.3. Genetic PTA
4.2.4. Percentage of Parity 1 and Parity 4+ Cows
4.2.5. Number of Cows per Milk-Recording Test Day
4.3. Practical Implications
4.4. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Dillon, P.; Hennessy, T.; Shalloo, L.; Thorne, F.; Horan, B. Future Outlook for the Irish Dairy Industry: A Study of International Competitiveness, Influence of International Trade Reform and Requirement for Change. Int. J. Dairy Technol. 2008, 61, 16–29. [Google Scholar] [CrossRef]
- Shalloo, L.; Cromie, A.; McHugh, N. Effect of Fertility on the Economics of Pasture-Based Dairy Systems. Animal 2014, 8, 222–231. [Google Scholar] [CrossRef] [PubMed]
- Mulkerrins, M.; Beecher, M.; McAloon, C.G.; Macken-Walsh, Á. Implementation of Compact Calving at the Farm Level: A Qualitative Analysis of Farmers Operating Pasture-Based Dairy Systems in Ireland. J. Dairy Sci. 2022, 105, 5822–5835. [Google Scholar] [CrossRef] [PubMed]
- Dillon, P.; Crosse, S.; Stakelum, G.; Flynn, F. The Effect of Calving Date and Stocking Rate on the Performance of Spring-Calving Dairy Cows. Grass Forage Sci. 1995, 50, 286–299. [Google Scholar] [CrossRef]
- Roche, J.R.; Macdonald, K.A.; Burke, C.R.; Lee, J.M.; Berry, D.P. Associations Among Body Condition Score, Body Weight, and Reproductive Performance in Seasonal-Calving Dairy Cattle. J. Dairy Sci. 2007, 90, 376–391. [Google Scholar] [CrossRef]
- Ramsbottom, G.; Horan, B.; Berry, D.P.; Roche, J.R. Factors Associated with the Financial Performance of Spring-Calving, Pasture-Based Dairy Farms. J. Dairy Sci. 2015, 98, 3526–3540. [Google Scholar] [CrossRef]
- ICBF 2022 Calving Stats. Available online: https://www.icbf.com/wp-content/uploads/2022/08/2022-Calving-Stats-full.pdf (accessed on 31 March 2025).
- Butler, S.T. Nutritional Management to Optimize Fertility of Dairy Cows in Pasture-Based Systems. Animal 2014, 8, 15–26. [Google Scholar] [CrossRef]
- European Food Safety Authority (EFSA). Scientific Report on the Effects of Farming Systems on Dairy Cow Welfare and Disease. EFSA J. 2009, 7, 1143r. [Google Scholar] [CrossRef]
- O’Brien, B.; Hennessy, D. Scientific Appraisal of the Irish Grass-Based Milk Production System as a Sustainable Source of Premium Quality Milk and Dairy Products. Ir. J. Agric. Food Res. 2017, 56, 120–129. [Google Scholar] [CrossRef]
- Claffey, A.; Delaby, L.; Galvin, N.; Boland, T.M.; Egan, M. The Effect of Spring Grass Availability and Grazing Rotation Length on the Production and Quality of Herbage and Milk in Early Spring. J. Agric. Sci. 2019, 157, 434–448. [Google Scholar] [CrossRef]
- Kennedy, E.; Curran, J.; Mayes, B.; McEvoy, M.; Murphy, J.P.; O’Donovan, M. Restricting Dairy Cow Access Time to Pasture in Early Lactation: The Effects on Milk Production, Grazing Behaviour and Dry Matter Intake. Animal 2011, 5, 1805–1813. [Google Scholar] [CrossRef]
- Bargo, F.; Muller, L.D.; Kolver, E.S.; Delahoy, J.E. Invited Review: Production and Digestion of Supplemented Dairy Cows on Pasture. J. Dairy Sci. 2003, 86, 1–42. [Google Scholar] [CrossRef]
- Walsh, S.; Delaby, L.; Kennedy, M.; Galvin, N.; McKay, Z.C.; Egan, M. Intake Profile, Milk Production, and Energy Balance of Early-Lactation Spring-Calving Holstein Friesian and Jersey × Holstein Friesian Dairy Cows in High-Utilization Pasture-Based Systems. J. Dairy Sci. 2024, 107, 8058–8071. [Google Scholar] [CrossRef] [PubMed]
- Mann, S.; McArt, J.A.A. Hyperketonemia. Vet. Clin. North Am. Food Anim. Pract. 2023, 39, 307–324. [Google Scholar] [CrossRef] [PubMed]
- Cameron, R.E.B.; Dyk, P.B.; Herdt, T.H.; Kaneene, J.B.; Miller, R.; Bucholtz, H.F.; Liesman, J.S.; Vandehaar, M.J.; Emery, R.S. Dry Cow Diet, Management, and Energy Balance as Risk Factors for Displaced Abomasum in High Producing Dairy Herds. J. Dairy Sci. 1998, 81, 132–139. [Google Scholar] [CrossRef]
- Drackley, J.K. Biology of Dairy Cows During the Transition Period: The Final Frontier? J. Dairy Sci. 1999, 82, 2259–2273. [Google Scholar] [CrossRef]
- Bertoni, G.; Minuti, A.; Trevisi, E. Immune System, Inflammation and Nutrition in Dairy Cattle. Anim. Prod. Sci. 2015, 55, 943–948. [Google Scholar] [CrossRef]
- Butler, W.R. Energy Balance Relationships with Follicular Development, Ovulation and Fertility in Postpartum Dairy Cows. Livest. Prod. Sci. 2003, 83, 211–218. [Google Scholar] [CrossRef]
- Roche, J.R.; Burke, C.R.; Crookenden, M.A.; Heiser, A.; Loor, J.L.; Meier, S.; Mitchell, M.D.; Phyn, C.V.C.; Turner, S.-A. Fertility and the Transition Dairy Cow. Reprod. Fertil. Dev. 2018, 30, 85–100. [Google Scholar] [CrossRef]
- Collard, B.L.; Boettcher, P.J.; Dekkers, J.C.M.; Petitclerc, D.; Schaeffer, L.R. Relationships Between Energy Balance and Health Traits of Dairy Cattle in Early Lactation. J. Dairy Sci. 2000, 83, 2683–2690. [Google Scholar] [CrossRef]
- Jukna, V.; Meškinytė, E.; Urbonavičius, G.; Bilskis, R.; Antanaitis, R.; Kajokienė, L.; Juozaitienė, V. Association of Lameness Prevalence and Severity in Early-Lactation Cows with Milk Traits, Metabolic Profile, and Dry Period. Agriculture 2024, 14, 2030. [Google Scholar] [CrossRef]
- Mulligan, F.J.; O’Grady, L.; Rice, D.A.; Doherty, M.L. A Herd Health Approach to Dairy Cow Nutrition and Production Diseases of the Transition Cow. Anim. Reprod. Sci. 2006, 96, 331–353. [Google Scholar] [CrossRef] [PubMed]
- Duffield, T.F.; Lissemore, K.D.; McBride, B.W.; Leslie, K.E. Impact of Hyperketonemia in Early Lactation Dairy Cows on Health and Production. J. Dairy Sci. 2009, 92, 571–580. [Google Scholar] [CrossRef] [PubMed]
- Ospina, P.A.; McArt, J.A.; Overton, T.R.; Stokol, T.; Nydam, D.V. Using Nonesterified Fatty Acids and β-Hydroxybutyrate Concentrations During the Transition Period for Herd-Level Monitoring of Increased Risk of Disease and Decreased Reproductive and Milking Performance. Vet. Clin. North Am. Food Anim. Pract. 2013, 29, 387–412. [Google Scholar] [CrossRef] [PubMed]
- Ingvartsen, K.L.; Andersen, J.B. Integration of Metabolism and Intake Regulation: A Review Focusing on Periparturient Animals. J. Dairy Sci. 2000, 83, 1573–1597. [Google Scholar] [CrossRef]
- Ospina, P.A.; Nydam, D.V.; Stokol, T.; Overton, T.R. Evaluation of Nonesterified Fatty Acids and β-Hydroxybutyrate in Transition Dairy Cattle in the Northeastern United States: Critical Thresholds for Prediction of Clinical Diseases. J. Dairy Sci. 2010, 93, 546–554. [Google Scholar] [CrossRef]
- Macrae, A.I.; Burrough, E.; Forrest, J.; Corbishley, A.; Russell, G.; Shaw, D.J. Prevalence of Excessive Negative Energy Balance in Commercial United Kingdom Dairy Herds. Vet. J. 2019, 248, 51–57. [Google Scholar] [CrossRef]
- Heuer, C.; Van Straalen, W.M.; Schukken, Y.H.; Dirkzwager, A.; Noordhuizen, J.P.T.M. Prediction of Energy Balance in High Yielding Dairy Cows with Test-Day Information. J. Dairy Sci. 2001, 84, 471–481. [Google Scholar] [CrossRef]
- Valldecabres, A.; Horan, L.; Masson, J.; García-Muñoz, A.; Pinedo, P.; Dineen, M.; Hendriks, S.J. Milk Component Ratios and Their Associations with Energy Balance Indicators and Serum Calcium Concentration in Early-Lactation Spring-Calving Pasture-Based Dairy Cows. J. Dairy Sci. 2024, 107, 11477–11488. [Google Scholar] [CrossRef]
- Carty, C.I.; McAloon, C.G.; O’Grady, L.; Ryan, E.G.; Mulligan, F.J. Relative Effect of Milk Constituents on Fertility Performance of Milk-Recorded, Spring-Calving Dairy Cows in Ireland. J. Dairy Sci. 2020, 103, 940–953. [Google Scholar] [CrossRef]
- Heuer, C.; Van Straalen, W.M.; Schukken, Y.H.; Dirkzwager, A.; Noordhuizen, J.P.T.M. Prediction of Energy Balance in a High Yielding Dairy Herd in Early Lactation: Model Development and Precision. Livest. Prod. Sci. 2000, 65, 91–105. [Google Scholar] [CrossRef]
- Cabezas-Garcia, E.H.; Gordon, A.W.; Mulligan, F.J.; Ferris, C.P. Revisiting the Relationships between Fat-to-Protein Ratio in Milk and Energy Balance in Dairy Cows of Different Parities, and at Different Stages of Lactation. Animals 2021, 11, 3256. [Google Scholar] [CrossRef]
- Grieve, D.G.; Korver, S.; Rijpkema, Y.S.; Hof, G. Relationship between Milk Composition and Some Nutritional Parameters in Early Lactation. Livest. Prod. Sci. 1986, 14, 239–254. [Google Scholar] [CrossRef]
- Brandt, M.; Haeussermann, A.; Hartung, E. Invited Review: Technical Solutions for Analysis of Milk Constituents and Abnormal Milk. J. Dairy Sci. 2010, 93, 427–436. [Google Scholar] [CrossRef] [PubMed]
- Buttchereit, N.; Stamer, E.; Junge, W.; Thaller, G. Evaluation of Five Lactation Curve Models Fitted for Fat:Protein Ratio of Milk and Daily Energy Balance. J. Dairy Sci. 2010, 93, 1702–1712. [Google Scholar] [CrossRef] [PubMed]
- Duffield, T.F.; Kelton, D.F.; Leslie, K.E.; Lissemore, K.D.; Lumsden, J.H. Use of Test Day Milk Fat and Milk Protein to Detect Subclinical Ketosis in Dairy Cattle in Ontario. Can. Vet. J. 1997, 38, 713–718. [Google Scholar]
- Heuer, C.; Schukken, Y.H.; Dobbelaar, P. Postpartum Body Condition Score and Results from the First Test Day Milk as Predictors of Disease, Fertility, Yield, and Culling in Commercial Dairy Herds. J. Dairy Sci. 1999, 82, 295–304. [Google Scholar] [CrossRef]
- Jenkins, N.T.; Peña, G.; Risco, C.; Barbosa, C.C.; Vieira-Neto, A.; Galvão, K.N. Utility of Inline Milk Fat and Protein Ratio to Diagnose Subclinical Ketosis and to Assign Propylene Glycol Treatment in Lactating Dairy Cows. Can. Vet. J. 2015, 56, 850–854. [Google Scholar]
- Animal Health Ireland Animal Health Ireland Report 2023. Available online: https://animalhealthireland.ie/assets/uploads/2024/07/AHI_AR_2023_V1_Web_Version_FINAL_10_7_24.pdf (accessed on 23 March 2025).
- Berry, D.; Shalloo, L.; Cromie, A.; Olori, V.; Veerkamp, R.; Dillon, P.; Amer, P.; Evans, R.; Kearney, F.; Wickham, B. The Economic Breeding Index: A Generation On. Ir. Cattle Breed. Fed. 2007, 29–34. [Google Scholar]
- Kennedy, E. Interpreting EBI for Genetic Advancement. Available online: https://www.icbf.com/interpreting-ebi-for-genetic-advancement/ (accessed on 27 May 2025).
- Coleman, J.; Pierce, K.M.; Berry, D.P.; Brennan, A.; Horan, B. Increasing Milk Solids Production across Lactation through Genetic Selection and Intensive Pasture-Based Feed System. J. Dairy Sci. 2010, 93, 4302–4317. [Google Scholar] [CrossRef]
- O’Sullivan, M.; Horan, B.; Pierce, K.M.; McParland, S.; O’Sullivan, K.; Buckley, F. Milk Production of Holstein-Friesian Cows of Divergent Economic Breeding Index Evaluated under Seasonal Pasture-Based Management. J. Dairy Sci. 2019, 102, 2560–2577. [Google Scholar] [CrossRef] [PubMed]
- O’Sullivan, M.; Butler, S.T.; Pierce, K.M.; Crowe, M.A.; O’Sullivan, K.; Fitzgerald, R.; Buckley, F. Reproductive Efficiency and Survival of Holstein-Friesian Cows of Divergent Economic Breeding Index, Evaluated under Seasonal Calving Pasture-Based Management. J. Dairy Sci. 2020, 103, 1685–1700. [Google Scholar] [CrossRef] [PubMed]
- Ramsbottom, G.; Horan, B.; Pierce, K.M.; Roche, J.R. Dairy Expansion: A Case Study of Spring-Calving Pasture-Based Dairy Production Systems in Ireland. J. Agric. Sci. 2020, 158, 406–415. [Google Scholar] [CrossRef]
- Shalloo, L.; O Connor, D.; Cele, L.; Thorne, F. An Analysis of the Irish Dairy Sector Post Quota. Available online: https://www.teagasc.ie/media/website/publications/2020/An-Analysis-of-the-Irish-Dairy-Sector-Post-Quota.pdf (accessed on 3 June 2025).
- Van Arendonk, J.A.M.; Nieuwhof, G.J.; Vos, H.; Korver, S. Genetic Aspects of Feed Intake and Efficiency in Lactating Dairy Heifers. Livest. Prod. Sci. 1991, 29, 263–275. [Google Scholar] [CrossRef]
- Esposito, G.; Irons, P.C.; Webb, E.C.; Chapwanya, A. Interactions between Negative Energy Balance, Metabolic Diseases, Uterine Health and Immune Response in Transition Dairy Cows. Anim. Reprod. Sci. 2014, 144, 60–71. [Google Scholar] [CrossRef]
- Dillon, P.; Berry, D.P.; Evans, R.D.; Buckley, F.; Horan, B. Consequences of Genetic Selection for Increased Milk Production in European Seasonal Pasture Based Systems of Milk Production. Livest. Sci. 2006, 99, 141–158. [Google Scholar] [CrossRef]
- Džermeikaitė, K.; Krištolaitytė, J.; Antanaitis, R. Relationship between Dairy Cow Health and Intensity of Greenhouse Gas Emissions. Animals 2024, 14, 829. [Google Scholar] [CrossRef]
- ICBF Introduction of the Test Day Model in Dairy Evaluations. Available online: https://www.icbf.com/introduction-of-the-test-day-model-in-dairy-evaluations/ (accessed on 23 May 2025).
- Microsoft Corporation. Microsoft Excel, Version 2411 (Microsoft 365); Microsoft Corporation: Redmond, WA, USA, 2024.
- Posit Team. RStudio: Integrated Development Environment for R, Version 2025; Posit Software, PBC: Boston, MA, USA, 2025. Available online: https://posit.co/products/open-source/rstudio/ (accessed on 29 May 2025).
- Wickham, H.; Henry, L.; François, F.; Müller, K. dplyr: A Grammar of Data Manipulation, Version 2025; Posit Software, PBC: Boston, MA, USA, 2025. Available online: https://dplyr.tidyverse.org/ (accessed on 4 August 2025).
- Dowle, M.; Srinivasan, A.; Barrett, T. data.table: Extension of “data.frame”, Version 2025; Posit Software, PBC: Boston, MA, USA, 2025. Available online: https://r-datatable.com/ (accessed on 4 August 2025).
- Wickham, H.; Averick, M.; Bryan, J.; Chang, W.; McGowan, L.D.; François, R.; Grolemund, G.; Hayes, A.; Henry, L.; Hester, J.; et al. Welcome to the Tidyverse. J. Open Source Softw. 2019, 4, 1686. [Google Scholar] [CrossRef]
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting Linear Mixed-Effects Models Using Lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- Nakagawa, S.; Johnson, P.C.D.; Schielzeth, H. The Coefficient of Determination R2 and Intra-Class Correlation Coefficient from Generalized Linear Mixed-Effects Models Revisited and Expanded. J. R. Soc. Interface 2017, 14, 20170213. [Google Scholar] [CrossRef]
- Toni, F.; Vincenti, L.; Grigoletto, L.; Ricci, A.; Schukken, Y.H. Early Lactation Ratio of Fat and Protein Percentage in Milk Is Associated with Health, Milk Production, and Survival. J. Dairy Sci. 2011, 94, 1772–1783. [Google Scholar] [CrossRef] [PubMed]
- Brady, E.L.; Kelly, E.T.; Lynch, M.B.; Fahey, A.G.; Pierce, K.M.; Mulligan, F.J. The Effect of Concentrate Feeding Strategy and Dairy Cow Genotype on Milk Production, Pasture Intake, Body Condition Score and Metabolic Status under Restricted Grazing Conditions. Livest. Sci. 2022, 256, 104815. [Google Scholar] [CrossRef]
- Friggens, N.C.; Ridder, C.; Løvendahl, P. On the Use of Milk Composition Measures to Predict the Energy Balance of Dairy Cows. J. Dairy Sci. 2007, 90, 5453–5467. [Google Scholar] [CrossRef] [PubMed]
- Buttchereit, N.; Stamer, E.; Junge, W.; Thaller, G. Short Communication: Genetic Relationships among Daily Energy Balance, Feed Intake, Body Condition Score, and Fat to Protein Ratio of Milk in Dairy Cows. J. Dairy Sci. 2011, 94, 1586–1591. [Google Scholar] [CrossRef]
- Denis-Robichaud, J.; Dubuc, J.; Lefebvre, D.; DesCôteaux, L. Accuracy of Milk Ketone Bodies from Flow-Injection Analysis for the Diagnosis of Hyperketonemia in Dairy Cows. J. Dairy Sci. 2014, 97, 3364–3370. [Google Scholar] [CrossRef]
- Klein, S.-L.; Scheper, C.; Brügemann, K.; Swalve, H.H.; König, S. Phenotypic Relationships, Genetic Parameters, Genome-Wide Associations, and Identification of Potential Candidate Genes for Ketosis and Fat-to-Protein Ratio in German Holstein Cows. J. Dairy Sci. 2019, 102, 6276–6287. [Google Scholar] [CrossRef]
- Glatz-Hoppe, J.; Boldt, A.; Spiekers, H.; Mohr, E.; Losand, B. Relationship between Milk Constituents from Milk Testing and Health, Feeding, and Metabolic Data of Dairy Cows. J. Dairy Sci. 2020, 103, 10175–10194. [Google Scholar] [CrossRef]
- Tsai, I.C.; Mayo, L.M.; Jones, B.W.; Stone, A.E.; Janse, S.A.; Bewley, J.M. Precision Dairy Monitoring Technologies Use in Disease Detection: Differences in Behavioral and Physiological Variables Measured with Precision Dairy Monitoring Technologies between Cows with or without Metritis, Hyperketonemia, and Hypocalcemia. Livest. Sci. 2021, 244, 104334. [Google Scholar] [CrossRef]
- Zoche-Golob, V.; Heuwieser, W.; Krömker, V. Investigation of the Association between the Test Day Milk Fat–Protein Ratio and Clinical Mastitis Using a Poisson Regression Approach for Analysis of Time-to-Event Data. Prev. Vet. Med. 2015, 121, 64–73. [Google Scholar] [CrossRef]
- King, M.T.M.; Duffield, T.F.; DeVries, T.J. Short Communication: Assessing the Accuracy of Inline Milk Fat-to-Protein Ratio Data as an Indicator of Hyperketonemia in Dairy Cows in Herds with Automated Milking Systems. J. Dairy Sci. 2019, 102, 8417–8422. [Google Scholar] [CrossRef]
- Compton, C.W.R.; McDougall, S.; Young, L.; Bryan, M.A. Prevalence of Subclinical Ketosis in Mainly Pasture-Grazed Dairy Cows in New Zealand in Early Lactation. New Zealand Vet. J. 2014, 62, 30–37. [Google Scholar] [CrossRef]
- Buckley, F.; O’Sullivan, K.; Mee, J.F.; Evans, R.D.; Dillon, P. Relationships Among Milk Yield, Body Condition, Cow Weight, and Reproduction in Spring-Calved Holstein-Friesians. J. Dairy Sci. 2003, 86, 2308–2319. [Google Scholar] [CrossRef] [PubMed]
- Suthar, V.S.; Canelas-Raposo, J.; Deniz, A.; Heuwieser, W. Prevalence of Subclinical Ketosis and Relationships with Postpartum Diseases in European Dairy Cows. J. Dairy Sci. 2013, 96, 2925–2938. [Google Scholar] [CrossRef] [PubMed]
- Berge, A.C.; Vertenten, G. A Field Study to Determine the Prevalence, Dairy Herd Management Systems, and Fresh Cow Clinical Conditions Associated with Ketosis in Western European Dairy Herds. J. Dairy Sci. 2014, 97, 2145–2154. [Google Scholar] [CrossRef]
- Met Éireann. Available online: https://www.met.ie/storm-emma (accessed on 27 May 2025).
- O’Brien, D.; Moran, B.; Shalloo, L. A National Methodology to Quantify the Diet of Grazing Dairy Cows. J. Dairy Sci. 2018, 101, 8595–8604. [Google Scholar] [CrossRef]
- Krawczel, P.D.; Klaiber, L.B.; Butzler, R.E.; Klaiber, L.M.; Dann, H.M.; Mooney, C.S.; Grant, R.J. Short-Term Increases in Stocking Density Affect the Lying and Social Behavior, but Not the Productivity, of Lactating Holstein Dairy Cows. J. Dairy Sci. 2012, 95, 4298–4308. [Google Scholar] [CrossRef]
- Charlton, G.L.; Haley, D.B.; Rushen, J.; de Passillé, A.M. Stocking Density, Milking Duration, and Lying Times of Lactating Cows on Canadian Freestall Dairy Farms. J. Dairy Sci. 2014, 97, 2694–2700. [Google Scholar] [CrossRef]
- Kaufman, E.I.; LeBlanc, S.J.; McBride, B.W.; Duffield, T.F.; DeVries, T.J. Association of Rumination Time with Subclinical Ketosis in Transition Dairy Cows. J. Dairy Sci. 2016, 99, 5604–5618. [Google Scholar] [CrossRef]
- Crossley, R.E.; Bokkers, E.A.M.; Browne, N.; Sugrue, K.; Kennedy, E.; de Boer, I.J.M.; Conneely, M. Assessing Dairy Cow Welfare during the Grazing and Housing Periods on Spring-Calving, Pasture-Based Dairy Farms. J. Anim. Sci. 2021, 99, skab093. [Google Scholar] [CrossRef]
- Farm Animal Welfare Advisory Council Animal Welfare Guidelines for Dairy Herds. Available online: http://www.fawac.ie/media/fawac/content/publications/animalwelfare/DairyWelfareBookletA5100419.pdf (accessed on 3 June 2025).
- Grant, R.J.; Ferraretto, L.F. Silage Review: Silage Feeding Management: Silage Characteristics and Dairy Cow Feeding Behavior. J. Dairy Sci. 2018, 101, 4111–4121. [Google Scholar] [CrossRef]
- Hurtado-Uria, C.; Hennessy, D.; Shalloo, L.; O’Connor, D.; Delaby, L. Relationships between Meteorological Data and Grass Growth over Time in the South of Ireland. Ir. Geogr. 2013, 46, 175–201. [Google Scholar] [CrossRef]
- Nagelmüller, S.; Kirchgessner, N.; Yates, S.; Hiltpold, M.; Walter, A. Leaf Length Tracker: A Novel Approach to Analyse Leaf Elongation Close to the Thermal Limit of Growth in the Field. J. Exp. Bot. 2016, 67, 1897–1906. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, E.; O’Donovan, M.; Murphy, J.-P.; Delaby, L.; O’Mara, F. Effects of Grass Pasture and Concentrate-Based Feeding Systems for Spring-Calving Dairy Cows in Early Spring on Performance during Lactation. Grass Forage Sci. 2005, 60, 310–318. [Google Scholar] [CrossRef]
- Carty, C.I.; Fahey, A.G.; Sheehy, M.R.; Taylor, S.; Lean, I.J.; McAloon, C.G.; O’Grady, L.; Mulligan, F.J. The Prevalence, Temporal and Spatial Trends in Bulk Tank Equivalent Milk Fat Depression in Irish Milk Recorded Herds. Ir. Vet. J. 2017, 70, 14. [Google Scholar] [CrossRef]
- Teagasc. Available online: https://www.teagasc.ie/search/?q=factsheet (accessed on 27 May 2025).
- Vanholder, T.; Papen, J.; Bemers, R.; Vertenten, G.; Berge, A.C.B. Risk Factors for Subclinical and Clinical Ketosis and Association with Production Parameters in Dairy Cows in The Netherlands. J. Dairy Sci. 2015, 98, 880–888. [Google Scholar] [CrossRef]
- Macrae, A.I.; Burrough, E.; Forrest, J.; Corbishley, A.; Russell, G.; Shaw, D.J. Risk Factors Associated with Excessive Negative Energy Balance in Commercial United Kingdom Dairy Herds. Vet. J. 2019, 250, 15–23. [Google Scholar] [CrossRef]
- O’Sullivan, M.; Dillon, P.; O’Sullivan, K.; Pierce, K.M.; Galvin, N.; Egan, M.; Buckley, F. Intake, Efficiency, and Feeding Behavior Characteristics of Holstein-Friesian Cows of Divergent Economic Breeding Index Evaluated under Contrasting Pasture-Based Feeding Treatments. J. Dairy Sci. 2019, 102, 8234–8246. [Google Scholar] [CrossRef]
- O’Donoghue, C.; Heanue, K. The Impact of Formal Agricultural Education on Farm Level Innovation and Management Practices. J. Technol. Transf. 2018, 43, 844–863. [Google Scholar] [CrossRef]
- Balaine, L. Can Technology Help Achieve Sustainable Intensification? Evidence from Milk Recording on Irish Dairy Farms. Land Use Policy 2020, 92, 104437. [Google Scholar] [CrossRef]
- ICBF Economic Breeding Index Base Change. Available online: https://www.icbf.com/economic-breeding-index-base-change/ (accessed on 23 May 2025).
- National Milk Agency National Milk Agency. Available online: https://nationalmilkagency.ie/ (accessed on 27 May 2025).
- Lim, D.-H.; Mayakrishnan, V.; Lee, H.-J.; Ki, K.-S.; Kim, T.-I.; Kim, Y. A Comparative Study on Milk Composition of Jersey and Holstein Dairy Cows during the Early Lactation. J. Anim. Sci. Technol. 2020, 62, 565–576. [Google Scholar] [CrossRef]
- Palladino, R.A.; Buckley, F.; Prendiville, R.; Murphy, J.J.; Callan, J.; Kenny, D.A. A Comparison between Holstein-Friesian and Jersey Dairy Cows and Their F1 Hybrid on Milk Fatty Acid Composition under Grazing Conditions. J. Dairy Sci. 2010, 93, 2176–2184. [Google Scholar] [CrossRef]
- Department of Agriculture, Food and the Marine AIM Bovine Statistics Report 2023. Available online: https://assets.gov.ie/static/documents/AIM_Bovine_Statistics_Report_2023_260424.pdf (accessed on 26 May 2025).
- Johnson, T.; Eketone, K.; McNaughton, L.; Tiplady, K.; Voogt, J.; Sherlock, R.; Anderson, G.; Keehan, M.; Davis, S.R.; Spelman, R.J.; et al. Mating Strategies to Maximize Genetic Merit in Dairy Cattle Herds. J. Dairy Sci. 2018, 101, 4650–4659. [Google Scholar] [CrossRef] [PubMed]
- Brady, E.L.; Pierce, K.M.; Lynch, M.B.; Fahey, A.G.; Mulligan, F.J. The Effect of Nutritional Management in Early Lactation and Dairy Cow Genotype on Milk Production, Metabolic Status, and Uterine Recovery in a Pasture-Based System. J. Dairy Sci. 2021, 104, 5522–5538. [Google Scholar] [CrossRef] [PubMed]
- Buckley, F.; Dillon, P.; Rath, M.; Veerkamp, R.F. The Relationship Between Genetic Merit for Yield and Live Weight, Condition Score, and Energy Balance of Spring Calving Holstein Friesian Dairy Cows on Grass Based Systems of Milk Production. J. Dairy Sci. 2000, 83, 1878–1886. [Google Scholar] [CrossRef] [PubMed]
- Bines, J.A. Regulation of Food Intake in Dairy Cows in Relation to Milk Production. Livest. Prod. Sci. 1976, 3, 115–128. [Google Scholar] [CrossRef]
- Beauchemin, K.A.; Maekawa, M.; Christensen, D.A. Effect of Diet and Parity on Meal Patterns of Lactating Dairy Cows. Can. J. Anim. Sci. 2002, 82, 215–223. [Google Scholar] [CrossRef]
- Reshalaitihan, M.; Wynn, S.; Teramura, M.; Sato, T.; Hanada, M. Effect of Parity Number on the Dry Matter Intake of Dairy Cows during the First Week after Calving. Anim. Sci. J. 2020, 91, e13314. [Google Scholar] [CrossRef]
- Proudfoot, K.L.; Veira, D.M.; Weary, D.M.; von Keyserlingk, M.A.G. Competition at the Feed Bunk Changes the Feeding, Standing, and Social Behavior of Transition Dairy Cows. J. Dairy Sci. 2009, 92, 3116–3123. [Google Scholar] [CrossRef]
- Neave, H.W.; Lomb, J.; von Keyserlingk, M.A.G.; Behnam-Shabahang, A.; Weary, D.M. Parity Differences in the Behavior of Transition Dairy Cows. J. Dairy Sci. 2017, 100, 548–561. [Google Scholar] [CrossRef]
- Mazer, K.A.; Knickerbocker, P.L.; Kutina, K.L.; Huzzey, J.M. Changes in Behavior and Fecal Cortisol Metabolites When Dairy Cattle Are Regrouped in Pairs versus Individually after Calving. J. Dairy Sci. 2020, 103, 4681–4690. [Google Scholar] [CrossRef]
- Brock, J.; Lange, M.; Tratalos, J.A.; Meunier, N.; Guelbenzu-Gonzalo, M.; More, S.J.; Thulke, H.-H.; Graham, D.A. The Irish Cattle Population Structured by Enterprise Type: Overview, Trade & Trends. Ir. Vet. J. 2022, 75, 6. [Google Scholar] [CrossRef]
- Statista. 2025. Available online: https://www.statista.com/statistics/1192315/dairy-cow-numbers-ireland/ (accessed on 27 May 2025).
- Hayirli, A.; Grummer, R.R.; Nordheim, E.V.; Crump, P.M. Animal and Dietary Factors Affecting Feed Intake During the Prefresh Transition Period in Holsteins. J. Dairy Sci. 2002, 85, 3430–3443. [Google Scholar] [CrossRef]
- Contreras, L.L.; Ryan, C.M.; Overton, T.R. Effects of Dry Cow Grouping Strategy and Prepartum Body Condition Score on Performance and Health of Transition Dairy Cows. J. Dairy Sci. 2004, 87, 517–523. [Google Scholar] [CrossRef]
- Morales Piñeyrúa, J.T.; Fariña, S.R.; Mendoza, A. Effects of Parity on Productive, Reproductive, Metabolic and Hormonal Responses of Holstein Cows. Anim. Reprod. Sci. 2018, 191, 9–21. [Google Scholar] [CrossRef] [PubMed]
- Eurostat. 2025. Available online: https://ec.europa.eu/eurostat/databrowser/view/tag00014/default/table?lang=en (accessed on 27 May 2025).
- Bórawski, P.; Pawlewicz, A.; Parzonko, A.; Harper, J.; Holden, L. Factors Shaping Cow’s Milk Production in the EU. Sustainability 2020, 12, 420. [Google Scholar] [CrossRef]
- Regulation—2019/6—EN—EUR-Lex. Available online: https://eur-lex.europa.eu/eli/reg/2019/6/oj/eng (accessed on 26 March 2025).
- Martin, H.; Gribben, L.; Regan, Á.; Manzanilla, E.G.; McAloon, C.G.; Burrell, A.M.G. Recording Antimicrobial Use on Irish Dairy Farms: Barriers and Facilitators to Using Technology and Sharing Data. J. Dairy Sci. 2024, 107, 5001–5015. [Google Scholar] [CrossRef] [PubMed]
- Burrell, A.M.; Balaine, L.; Clifford, S.; McGrath, M.; Graham, D.A.; McCoy, F.; Dillon, E.; Regan, Á. A Multi-Methods, Multi-Actor Exploration of the Benefits and Barriers to Milk Recording on Irish Farms Using the COM-B Model. Prev. Vet. Med. 2024, 227, 106195. [Google Scholar] [CrossRef]
- Tatone, E.H.; Duffield, T.F.; LeBlanc, S.J.; DeVries, T.J.; Gordon, J.L. Investigating the Within-Herd Prevalence and Risk Factors for Ketosis in Dairy Cattle in Ontario as Diagnosed by the Test-Day Concentration of β-Hydroxybutyrate in Milk. J. Dairy Sci. 2017, 100, 1308–1318. [Google Scholar] [CrossRef]
- Jenkins, T.C.; McGuire, M.A. Major Advances in Nutrition: Impact on Milk Composition. J. Dairy Sci. 2006, 89, 1302–1310. [Google Scholar] [CrossRef]
- Boutinaud, M.; Herve, L.; Quesnel, H.; Lollivier, V.; Finot, L.; Dessauge, F.; Chanat, E.; Lacasse, P.; Charton, C.; Guinard-Flament, J. Review: The Cellular Mechanisms Underlying Mammary Tissue Plasticity during Lactation in Ruminants. Animal 2019, 13, s52–s64. [Google Scholar] [CrossRef]
- ICAR. Available online: https://my.icar.org/stats/list (accessed on 12 March 2025).
- Caballero-Villalobos, J.; Ryan, E.G.; McGrath, M.; O’Grady, L.; McAloon, C.G.; Graham, D.A.; McCoy, F. Udder Health Outcomes in Irish Herds Participating in CellCheck Dry Cow Consults. J. Dairy Sci. 2024, 107, 8387–8401. [Google Scholar] [CrossRef]



| Year | nREC | %Parity1 | %Parity4 | Mean305 (kg) | Median305 (kg) | Min305 (kg) | Max305 (kg) | SD305 (kg) | Range305 (kg) | Mean EBI/PTA Milk kg | Mean EBI/PTA Prot kg | Mean EBI/PTA Fat kg |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 2014 | 69.56 | 27.7% | 32.6% | 6560.72 | 6550.20 | 4670.33 | 8536.70 | 863.07 | 3866.37 | 51.82 | 2.31 | 2.68 |
| 2015 | 75.72 | 29.2% | 32.3% | 6538.40 | 6528.33 | 4612.15 | 8540.51 | 873.04 | 3928.36 | 55.36 | 2.78 | 3.34 |
| 2016 | 81.20 | 27.0% | 33.7% | 6590.46 | 6585.60 | 4625.67 | 8625.48 | 882.91 | 3999.81 | 63.21 | 3.33 | 4.02 |
| 2017 | 85.13 | 25.9% | 34.8% | 6598.98 | 6599.32 | 4623.48 | 8599.65 | 865.24 | 3976.17 | 66.20 | 3.82 | 4.63 |
| 2018 | 89.51 | 25.8% | 36.4% | 6487.46 | 6495.09 | 4488.90 | 8512.23 | 877.19 | 4023.33 | 72.70 | 4.40 | 5.21 |
| 2019 | 90.31 | 24.2% | 38.2% | 6772.22 | 6799.40 | 4683.00 | 8794.78 | 895.64 | 4111.79 | 71.21 | 4.77 | 5.67 |
| 2020 | 97.43 | 24.6% | 38.4% | 6643.95 | 6662.52 | 4500.01 | 8753.88 | 925.04 | 4253.88 | 69.06 | 5.18 | 6.14 |
| 2021 | 96.90 | 24.2% | 39.2% | 6712.76 | 6739.94 | 4603.58 | 8754.09 | 902.17 | 4150.51 | 69.86 | 5.61 | 6.60 |
| 2022 | 98.64 | 23.9% | 39.5% | 6570.67 | 6594.03 | 4472.19 | 8647.43 | 907.58 | 4175.24 | 72.92 | 6.14 | 7.20 |
| 2023 | 100.05 | 24.7% | 39.4% | 6444.08 | 6463.46 | 4379.45 | 8530.24 | 901.45 | 4150.79 | 78.36 | 6.80 | 7.98 |
| Average | 88.45 | 25.7% | 36.4% | 6591.97 | 6601.79 | 4565.87 | 8629.50 | 889.33 | 4063.62 | 67.07 | 4.51 | 5.35 |
| Year | Median Prevalence FPR 30 | IQR Prevalence FPR 30 | Median Prevalence FPR 3060 | IQR Prevalence FPR 3060 |
|---|---|---|---|---|
| 2014 | 13.04% | 22.92% (4.35–27.27%) | 7.23% | 18.75% (0.00–18.75%) |
| 2015 | 13.33% | 24.07% (4.76–28.83%) | 6.25% | 16.67% (0.00–16.67%) |
| 2016 | 18.75% | 29.71% (7.69–37.40%) | 10.00% | 27.27% (0.00–27.27%) |
| 2017 | 14.29% | 25.45% (4.55–30.00%) | 7.14% | 19.36% (0.00–19.36%) |
| 2018 | 20.00% | 30.96% (8.33–39.29%) | 12.90% | 27.92% (3.33–31.25%) |
| 2019 | 10.81% | 21.77% (3.23–25.00%) | 6.09% | 16.28% (0.00–16.28%) |
| 2020 | 12.50% | 22.88% (4.55–27.43%) | 6.67% | 17.74% (0.00–17.74%) |
| 2021 | 14.29% | 23.01% (5.56–28.57%) | 8.00% | 20.00% (0.00–20.00%) |
| 2022 | 14.29% | 23.91% (5.26–29.17%) | 8.33% | 20.00% (0.00–20.00%) |
| 2023 | 16.75% | 26.19% (7.14–33.33%) | 10.74% | 21.55% (3.45–25.00%) |
| Mean | 14.57% | 25.01% (5.33–30.34%) | 8.10% | 20.08% (0.68–20.76%) |
| <30 DIM | ≥30 to <60 DIM | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|
| Variable | Estimate | SE | p-Value | OR | 95% CI | Estimate | SE | p-Value | OR | 95% CI |
| %Parity4+ (10%) 1 | 0.008 | 0.003 | 0.003 | 1.008 | 1.003–1.014 | |||||
| %Parity1 (10%) 1 | 0.015 | 0.003 | <0.001 | 1.015 | 1.010–1.020 | 0.007 | 0.003 | <0.001 | 1.007 | 1.001–1.012 |
| Month February | 0.213 | 0.020 | <0.001 | 1.237 | 1.199–1.276 | 0.240 | 0.024 | <0.001 | 1.272 | 1.225–1.318 |
| Month March | 0.131 | 0.020 | <0.001 | 1.140 | 1.100–1.179 | −0.101 | 0.022 | <0.001 | 0.904 | 0.861–0.948 |
| Month April | −0.452 | 0.021 | <0.001 | 0.636 | 0.596–0.677 | −0.835 | 0.022 | <0.001 | 0.434 | 0.390–0.478 |
| Month May | −0.786 | 0.024 | <0.001 | 0.455 | 0.409–0.502 | −1.198 | 0.023 | <0.001 | 0.302 | 0.257–0.347 |
| Month June | −0.741 | 0.038 | <0.001 | 0.476 | 0.402–0.551 | −1.029 | 0.026 | <0.001 | 0.357 | 0.307–0.408 |
| Mean 305-day-yield (1000 kg) 2 | −0.453 | 0.006 | <0.001 | 0.636 | 0.624–0.647 | −0.610 | 0.005 | <0.001 | 0.543 | 0.533–0.553 |
| Range 305-day-yield (1000 kg) 2 | −0.022 | 0.004 | <0.001 | 0.978 | 0.971–0.985 | |||||
| SD 305-day-yield (1000 kg) 2 | −0.155 | 0.020 | <0.001 | 0.857 | 0.817–0.896 | |||||
| Mean EBI/PTA Fat kg | 0.056 | 0.002 | <0.001 | 1.058 | 1.054–1.062 | 0.039 | 0.002 | <0.001 | 1.040 | 1.036–1.044 |
| Mean EBI/PTA Milk kg | 0.000 | 0.000 | <0.001 | 1.000 | 1.000–1.001 | |||||
| No. of cows recorded (10 cows) 3 | −0.006 | 0.001 | <0.001 | 0.994 | 0.993–0.996 | −0.015 | 0.001 | <0.001 | 0.985 | 0.984–0.986 |
| Mean 305-day-yield × Mean EBI/PTA Fat kg | −0.054 | <0.001 | −0.042 | <0.001 | ||||||
| Range 305-day-yield × Mean EBI/PTA Fat kg | 0.015 | <0.001 | ||||||||
| Mean 305-day-yield × Mean EBI/PTA Milk kg | 0.045 | <0.001 | ||||||||
| SD 305-day-yield × Mean EBI/PTA Milk kg | 0.049 | <0.001 | ||||||||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marian, R.; McAloon, C.G.; Kelly, E.T.; McAloon, C.I.; Mulligan, F.J.; O’Grady, L.; Beltman, M.; Ryan, E.G. Herd-Level Prevalence of High Fat-to-Protein Ratio and Associated Factors During Early Lactation in Irish Spring-Calving Dairy Herds. Animals 2025, 15, 3068. https://doi.org/10.3390/ani15213068
Marian R, McAloon CG, Kelly ET, McAloon CI, Mulligan FJ, O’Grady L, Beltman M, Ryan EG. Herd-Level Prevalence of High Fat-to-Protein Ratio and Associated Factors During Early Lactation in Irish Spring-Calving Dairy Herds. Animals. 2025; 15(21):3068. https://doi.org/10.3390/ani15213068
Chicago/Turabian StyleMarian, Raffaela, Conor G. McAloon, Emmet T. Kelly, Catherine I. McAloon, Finbar J. Mulligan, Luke O’Grady, Marijke Beltman, and Eoin G. Ryan. 2025. "Herd-Level Prevalence of High Fat-to-Protein Ratio and Associated Factors During Early Lactation in Irish Spring-Calving Dairy Herds" Animals 15, no. 21: 3068. https://doi.org/10.3390/ani15213068
APA StyleMarian, R., McAloon, C. G., Kelly, E. T., McAloon, C. I., Mulligan, F. J., O’Grady, L., Beltman, M., & Ryan, E. G. (2025). Herd-Level Prevalence of High Fat-to-Protein Ratio and Associated Factors During Early Lactation in Irish Spring-Calving Dairy Herds. Animals, 15(21), 3068. https://doi.org/10.3390/ani15213068

