The Effect of Chelated Trace Mineral Supplementation in the Form of Proteinates on Broiler Performance Parameters and Mineral Excretion: A Meta-Analysis
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Literature Search and Selection Criteria
2.2. Data Extraction
2.3. Statistical Analysis
2.4. Heterogeneity
2.5. Publication Bias
2.6. Life Cycle Assessment
2.6.1. Scope
2.6.2. Production System and Scenarios
2.6.3. Inventory Analysis
2.6.4. Impact Assessment
3. Results and Discussion
3.1. Study Characteristics
3.2. Production Performance and Mineral Excretion
| Parameter | Effect Size Estimates | Heterogeneity Tests | |||||
|---|---|---|---|---|---|---|---|
| N | Control Mean (SD) | RMD (95% CI) | SE | p-Value | I2 (%) | p-Value | |
| Production performance | |||||||
| Total Feed Intake (kg/bird) | 190 | 2.72 (1.90) | −0.006 (−0.011, −0.001) | 0.002 | 0.014 | 92.106 | <0.001 |
| ADFI (g/day/bird) | 94 | 86.99 (40.16) | −0.426 (−0.794, −0.059) | 0.187 | 0.023 | 98.662 | <0.001 |
| ADG (g) | 89 | 48.23 (18.24) | 0.358 (0.048, 0.669) | 0.158 | 0.024 | 98.577 | <0.001 |
| BWG (g/bird) | 163 | 1292.01 (878.8) | 4.292 (2.821, 5.763) | 0.750 | <0.001 | 95.742 | <0.001 |
| FCR (g feed/g BWG) | 233 | 1.699 (0.61) | −0.021 (−0.029, −0.009) | 0.002 | 0.001 | 99.032 | <0.001 |
| Final body weight (g/bird) | 148 | 1967.31 (1120.12) | 7.501 (1.036, 13.965) | 3.298 | 0.023 | 99.998 | <0.001 |
| Mortality (%) | 96 | 6.64 (8.19) | −0.727 (−1.339, −0.115) | 0.312 | 0.020 | 99.810 | <0.001 |
| Mineral Excretion | |||||||
| Cu (mg/kg) | 78 | 54.85 (23.15) | −8.241 (−9.855, −6.628) | 0.823 | <0.001 | 99.678 | <0.001 |
| Fe (mg/kg) | 76 | 1198.54 (942.32) | −30.008 (−32.527, −27.489) | 1.285 | <0.001 | 98.539 | <0.001 |
| Mn (mg/kg) | 80 | 330.00 (175.05) | −43.434 (−45.902, −40.967) | 1.259 | <0.001 | 99.790 | <0.001 |
| Zn (mg/kg) | 76 | 309.21 (144.89) | −27.759 (−29.367, −26.151) | 0.820 | <0.001 | 99.431 | <0.001 |
| Item | Effect Size Estimates | Heterogeneity Tests | |||||
|---|---|---|---|---|---|---|---|
| N | Control Mean (SD) | RMD (95% CI) | SE | p-Value | I2 (%) | p-Value | |
| Production performance | |||||||
| Total Feed Intake (kg/bird) | 51 | 2.30 (1.69) | −0.007 (−0.015, 0.000) | 0.004 | 0.054 | 90.256 | <0.001 |
| ADFI (g/day/bird) | 31 | 98.77 (43.32) | −1.068 (−2.367, 0.232) | 0.663 | 0.107 | 99.228 | <0.001 |
| ADG (g) | 29 | 46.53 (18.14) | 1.666 (0.712, 2.620) | 0.487 | 0.001 | 98.801 | <0.001 |
| BWG (g/bird) | 47 | 1240.97 (875.06) | 2.649 (0.276, 5.022) | 1.211 | 0.029 | 94.280 | <0.001 |
| FCR (g feed/g BWG) | 71 | 1.699 (0.96) | −0.076 (−0.081, −0.023) | 0.004 | 0.018 | 96.527 | <0.001 |
| Mortality (%) | 25 | 5.76 (5.29) | −0.639 (−2.513, 1.235) | 0.956 | 0.504 | 99.632 | <0.001 |
3.3. Subgroup Analyses—Location, Year of Study, Breed/Strain, Age of Birds, Number of Birds and Study Duration
3.4. Simulated Environmental Impact
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- OECD; FAO. OECD-FAO Agricultural Outlook 2022–2031. 2022. Available online: https://policycommons.net/artifacts/2652558/oecd-fao-agricultural-outlook-2022-2031/ (accessed on 18 October 2025).
- Henchion, M.; McCarthy, M.; Resconi, V.C.; Troy, D. Meat consumption: Trends and quality matters. Meat Sci. 2014, 98, 561–568. [Google Scholar] [CrossRef]
- Korver, D.R. Review: Current challenges in poultry nutrition, health, and welfare. Animal 2023, 17, 100755. [Google Scholar] [CrossRef]
- Gocsik, É.; Silvera, A.; Hansson, H.; Saatkamp, H.; Blokhuis, H. Exploring the economic potential of reducing broiler lameness. Br. Poult. Sci. 2017, 58, 337–347. [Google Scholar] [CrossRef]
- Ravindran, V. Advances and future directions in poultry nutrition: An overview. Korean J. Poult. Sci. 2012, 39, 53–62. [Google Scholar] [CrossRef]
- Byrne, L.; Murphy, R.A. Relative Bioavailability of Trace Minerals in Production Animal Nutrition: A Review. Animals 2022, 12, 1981. [Google Scholar] [CrossRef]
- Ao, T.; Pierce, J. The replacement of inorganic mineral salts with mineral proteinates in poultry diets. World’s Poult. Sci. J. 2013, 69, 5–16. [Google Scholar] [CrossRef]
- Kong, J.; Qiu, T.; Yan, X.; Wang, L.; Chen, Z.; Xiao, G.; Feng, X.; Zhang, H. Effect of replacing inorganic minerals with small peptide chelated minerals on production performance, some biochemical parameters and antioxidant status in broiler chickens. Front. Physiol. 2022, 13, 1027834. [Google Scholar] [CrossRef] [PubMed]
- Zafar, M.H.; Fatima, M. Efficiency Comparison of Organic and Inorganic Minerals in Poultry Nutrition: A Review. PSM Vet. Res. 2018, 3, 53–59. [Google Scholar]
- Bao, Y.M.; Choct, M. Trace mineral nutrition for broiler chickens and prospects of application of organically complexed trace minerals: A review. Anim. Prod. Sci. 2009, 49, 269–282. [Google Scholar] [CrossRef]
- Santos, V.L.; Bueno da Silva, J.; de Figueiredo, F.C.; Ronchi, C.P.H.; Lecznieski, J. Total Replacement of Inorganic Minerals with Organic Ones Improves the Productive Performance of Broilers. Int. J. Poult. Sci. 2023, 22, 40–45. [Google Scholar] [CrossRef]
- Zhao, J.; Shirley, R.B.; Vazquez-Anon, M.; Dibner, J.J.; Richards, J.D.; Fisher, P.; Hampton, T.; Christensen, K.D.; Allard, J.P.; Giesen, A.F. Effects of chelated trace minerals on growth performance, breast meat yield, and footpad health in commercial meat broilers. J. Appl. Poult. Res. 2010, 19, 365–372. [Google Scholar] [CrossRef]
- Byrne, L.; Hynes, M.J.; Connolly, C.D.; Murphy, R.A. Influence of the Chelation Process on the Stability of Organic Trace Mineral Supplements Used in Animal Nutrition. Animals 2021, 11, 1730. [Google Scholar] [CrossRef]
- Suttle, N.F. Mineral Nutrition of Livestock, 5th ed.; CAB International: Wallingford, UK, 2022; ISBN 9781789240924. [Google Scholar]
- Kleyn, R.J.; Ciacciariello, M. Mineral nutrition in broilers: Where are we at? Proc. Ark. Nutr. Conf. 2021, 2021, 1. Available online: https://scholarworks.uark.edu/panc/vol2021/iss1/1 (accessed on 18 October 2025).
- Vieira, R.; Ferket, P.; Malheiros, R.; Hannas, M.; Crivellari, R.; Moraes, V.; Elliott, S. Feeding low dietary levels of organic trace minerals improves broiler performance and reduces excretion of minerals in litter. Br. Poult. Sci. 2020, 61, 574–582. [Google Scholar] [CrossRef]
- Pelletier, N. Environmental performance in the US broiler poultry sector: Life cycle energy use and greenhouse gas, ozone depleting, acidifying and eutrophying emissions. Agric. Syst. 2008, 98, 67–73. [Google Scholar] [CrossRef]
- Leinonen, I.; Williams, A.G.; Wiseman, J.; Guy, J.; Kyriazakis, I. Predicting the environmental impacts of chicken systems in the United Kingdom through a life cycle assessment: Broiler production systems. Poult. Sci. 2012, 91, 8–25. [Google Scholar] [CrossRef]
- Leinonen, I.; Williams, A.G.; Waller, A.H.; Kyriazakis, I. Comparing the environmental impacts of alternative protein crops in poultry diets: The consequences of uncertainty. Agric. Syst. 2013, 121, 33–42. [Google Scholar] [CrossRef]
- Prudêncio da Silva, V.; van der Werf, H.M.G.; Soares, S.R.; Corson, M.S. Environmental impacts of French and Brazilian broiler chicken production scenarios: An LCA approach. J. Environ. Manag. 2014, 133, 222–231. [Google Scholar] [CrossRef]
- Tallentire, C.W.; Leinonen, I.; Kyriazakis, I. Breeding for efficiency in the broiler chicken: A review. Agron. Sustain. Dev. 2016, 36, 66. [Google Scholar] [CrossRef]
- Wathes, C.M.; Kristensen, H.H.; Aerts, J.M.; Berckmans, D. Is precision livestock farming an engineer’s daydream or nightmare, an animal’s friend or foe, and a farmer’s panacea or pitfall. Comput. Electron. Agric. 2008, 64, 2–10. [Google Scholar] [CrossRef]
- Brassó, L.D.; Komlósi, I.; Várszegi, Z. Modern Technologies for Improving Broiler Production and Welfare: A Review. Animals 2025, 15, 493. [Google Scholar] [CrossRef]
- Maharjan, P.; Martinez, D.A.; Weil, J.; Suesuttajit, N.; Umberson, C.; Mullenix, G.; Hilton, K.M.; Beitia, A.; Coon, C.N. Review: Physiological growth trend of current meat broilers and dietary protein and energy management approaches for sustainable broiler production. Animal 2021, 15, 100284. [Google Scholar] [CrossRef] [PubMed]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. BMJ 2009, 339, b2535. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; Moher, D.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. PRISMA 2020 explanation and elaboration: Updated guidance and exemplars for reporting systematic reviews. BMJ 2021, 372, n160. [Google Scholar] [CrossRef]
- Adegbenjo, A.; Idowu, O.; Oso, A.; Adeyemi, O.; Sobayo, R.; Akinloye, O.; Adebayo, J.; Osho, S.; Gabriel, W. Effects of dietary supplementation with copper sulphate and copper proteinate on plasma trace minerals, copper residues in meat tissues, organs, excreta and tibia bone of cockerels. Slovak J. Anim. Sci. 2014, 47, 164–171. [Google Scholar]
- Bao, Y.M.; Choct, M.; Iji, P.A.; Bruerton, K. The absorption of Bioplex trace minerals. In Proceedings of the Australian Poultry Science Symposium, Sydney, Australia, 12–14 February 2007; pp. 98–101. Available online: https://hdl.handle.net/1959.11/4387 (accessed on 18 October 2025).
- Aksu, T.; Ozsoy, B.; Aksu, D.; Yörük, M.; Gül, M. The Effects of Lower Levels of Organically Complexed Zinc, Copper and Manganese in Broiler Diets on Performance, Mineral Concentration of Tibia and Mineral Excretion. Kafkas Univ. Vet. Fak. Derg. 2011, 17, 141–146. [Google Scholar] [CrossRef]
- Abdallah, A.G.; El-Husseiny, O.M.; Abdel-Latif, K.O. Influence of some dietary organic mineral supplementations. Int. J. Poult. Sci. 2009, 8, 291–298. [Google Scholar] [CrossRef]
- Nollet, L.; Van der Klis, J.; Lensing, M.; Spring, P. The effect of replacing inorganic with organic trace minerals in broiler diets on productive performance and mineral excretion. J. Appl. Poult. Res. 2007, 16, 592–597. [Google Scholar] [CrossRef]
- Zhu, Z.; Yan, L.; Hu, S.; An, S.; Lv, Z.; Wang, Z.; Wu, Y.; Zhu, Y.; Zhao, M.; Gu, C.; et al. Effects of the different levels of dietary trace elements from organic or inorganic sources on growth performance, carcass traits, meat quality, and faecal mineral excretion of broilers. Arch. Anim. Nutr. 2019, 73, 324–337. [Google Scholar] [CrossRef] [PubMed]
- El-Husseiny, O.M.; Hashish, S.M.; Ali, R.A.; Arafa, S.A.; Abd El-Samee, L.D.; Olemy, A.A. Effects of feeding organic zinc, manganese and copper on broiler growth, carcass characteristics, bone quality and mineral content in bone, liver and excreta. Int. J. Poult. Sci. 2012, 11, 368. [Google Scholar] [CrossRef]
- Ivanišinová, O.; Grešáková, Ľ.; Ryzner, M.; Oceľová, V.; Čobanová, K. Effects of feed supplementation with various zinc sources on mineral concentration and selected antioxidant indices in tissues and plasma of broiler chickens. Acta Vet. Brno 2016, 85, 285–291. [Google Scholar] [CrossRef]
- Lippens, M.; Huyghebaert, G.; Nollet, L. Inorganic vs. Bioplex trace minerals for broilers: Effects on performance and mineral excretion. In Proceedings of the Alltech’s 22nd Annual Symposium, Lexington, KY, USA, 23–26 April 2006; Available online: https://www.cabi.org/Uploads/animal-science/worlds-poultry-science-association/WPSA-italy-2006/10145.pdf (accessed on 18 October 2025).
- Bao, Y.; Choct, M.; Iji, P.; Bruerton, K. Effect of organically complexed copper, iron, manganese, and zinc on broiler performance, mineral excretion, and accumulation in tissues. J. Appl. Poult. Res. 2007, 16, 448–455. [Google Scholar] [CrossRef]
- Ao, T.; Pierce, J.; Power, R.; Dawson, K.; Pescatore, A.; Cantor, A.; Ford, M. Evaluation of Bioplex Zn® as an organic zinc source for chicks. Int. J. Poult. Sci. 2006, 5, 808–811. [Google Scholar] [CrossRef]
- Ao, T.; Pierce, J. Investigation of Relative Bioavailability Values and Requirement for Bioplex® Organic Zinc in Broiler Chicks; Alltech-University of Kentucky Nutrition Research Alliance: Lexington, KY, USA, 2006; pp. 227–232. [Google Scholar]
- Ao, T. Reduce, Replace, Reformulate: Strategies for maximizing broiler performance and meat quality: 1. Oxidative stress and performance. In Alltech’s 27th Annual Symposium; Alltech-University of Kentucky Research Alliance: Lexington, KY, USA, 2011. [Google Scholar]
- Ao, T.; Pierce, J.; Power, R.; Pescatore, A.; Cantor, A.; Dawson, K.; Ford, M. Effects of feeding different forms of zinc and copper on the performance and tissue mineral content of chicks. Poult. Sci. 2009, 88, 2171–2175. [Google Scholar] [CrossRef] [PubMed]
- Ao, T.; Pierce, J.; Pescatore, A.; Cantor, A.; Dawson, K.; Ford, M.; Paul, M. Effects of feeding different concentration and forms of zinc on the performance and tissue mineral status of broiler chicks. Br. Poult. Sci. 2011, 52, 466–471. [Google Scholar] [CrossRef]
- Ao, T.; Macalintal, L.; Paul, M.; Pescatore, A.; Delles, R.; Cantor, A.; Ford, M.; Dawson, K. Effects of dietary supplementation of organic minerals on the performance of broiler chicks fed oxidised soybean oil. J. Appl. Anim. Nutr. 2017, 5, e13. [Google Scholar] [CrossRef]
- Ao, T.; Paul, M.; Pescatore, A.; Macalintal, L.; Ford, M.; Dawson, K. Growth performance and bone characteristics of broiler chickens fed corn-soy diet supplemented with different levels of vitamin premix and sources of mineral premix. J. Appl. Anim. Nutr. 2019, 7, e6. [Google Scholar] [CrossRef]
- Azad, S.; Shariatmadari, F.; Torshizi, M.; Chiba, L. Comparative effect of zinc concentration and sources on growth performance, accumulation in tissues, tibia status, mineral excretion and immunity of broiler chickens. Braz. J. Poult. Sci. 2020, 22, eRBCA-2019-1245. [Google Scholar] [CrossRef]
- Bao, Y.M.; Choct, M.; Iji, P.; Bruerton, K. Trace mineral interactions in broiler chicken diets. Br. Poult. Sci. 2010, 51, 109–117. [Google Scholar] [CrossRef] [PubMed]
- Bao, Y.; Choct, M.; Iji, P.; Bruerton, K. The digestibility of organic trace minerals along the small intestine in broiler chickens. Asian-Australas. J. Anim. Sci. 2010, 23, 90–97. [Google Scholar] [CrossRef]
- Bao, Y.; Choct, M.; Iji, P.; Bruerton, K. Optimal dietary inclusion of organically complexed zinc for broiler chickens. Br. Poult. Sci. 2009, 50, 95–102. [Google Scholar] [CrossRef]
- Baloch, Z.; Yasmeen, N.; Pasha, T.N.; Ahmad, A.; Taj, M.K.; Khosa, A.N.; Marghazani, I.B.; Bangulzai, N.; Ahmad, I.; Hua, Y.S. Effect of replacing inorganic with organic trace minerals on growth performance, carcass characteristics and chemical composition of broiler thigh meat. Afr. J. Agric. Res. 2017, 12, 1570–1575. [Google Scholar] [CrossRef]
- Bortoluzzi, C.; Vieira, B.; Lumpkins, B.; Mathis, G.; King, W.; Graugnard, D.; Dawson, K.; Applegate, T. Can dietary zinc diminish the impact of necrotic enteritis on growth performance of broiler chickens by modulating the intestinal immune-system and microbiota? Poult. Sci. 2019, 98, 3181–3193. [Google Scholar] [CrossRef]
- de Carvalho, B.R. Nutritional Requirements and Bioavailability of Different Sources of Zinc and Manganese for Broilers. Ph.D. Thesis, Universidade Federal de Viçosa, Minas Gerais, Brazil, 2017. Available online: https://locus.ufv.br/server/api/core/bitstreams/c9e00dcd-1941-4daf-9246-8d8606886181/content (accessed on 18 October 2025).
- de Carvalho, B.R.; Hélvio da Cruz Ferreira, J.; da Silva Viana, G.; Alves, W.J.; Muniz, J.C.L.; Rostagno, H.S.; Pettigrew, J.E.; Hannas, M.I. In-feed organic and inorganic manganese supplementation on broiler performance and physiological responses. Anim. Biosci. 2021, 34, 1811. [Google Scholar] [CrossRef] [PubMed]
- Das, T.; Mondal, M.; Biswas, P.; Bairagi, B.; Samanta, C. Influence of level of dietary inorganic and organic copper and energy level on the performance and nutrient utilization of broiler chickens. Asian-Australas. J. Anim. Sci. 2010, 23, 82–89. [Google Scholar] [CrossRef]
- Dudley, M.M.; Samuel, R.S.; Ao, T.; Ford, M.J.; Pescatore, A.J.; Brennan, K.M. Interaction of dietary microalgae and trace mineral source in 14-day old broiler chicks. In Proceedings of the Alltech’s 32nd Annual Symposium, Lexington, KY, USA, 22–24 May 2023. [Google Scholar]
- Vieira, R.; Ribeiro, V.; de Araujo, W.; Salquero, S.; Teixeira Albino, L.; Hannas, M. The effects of chelated, organic trace minerals and selenium yeast on broiler performance. J. Poult. Sci. 2013, 92 (Suppl. S1), 145. [Google Scholar]
- Arnaut, P.R.; da Silva Viana, G.; da Fonseca, L.; Alves, W.J.; Muniz, J.C.L.; Pettigrew, J.E.; e Silva, F.F.; Rostagno, H.S.; Hannas, M.I. Selenium source and level on performance, selenium retention and biochemical responses of young broiler chicks. BMC Vet. Res. 2021, 17, 151. [Google Scholar] [CrossRef]
- Bueno, F.; Silva, C.; Oba, A.; Almeida, M.; Medeiros, L.; Pitarello, A.; Shinyashike, A. Performance, carcass yield, and meat quality of broilers supplemented with organic or inorganic zinc. Arq. Bras. De Med. Veterinária E Zootec. 2020, 72, 224–232. [Google Scholar] [CrossRef]
- Eivakpour, A.; Moravej, H.; Ghaffarzadeh, M.; Esfahani, M.B. Comparison of manganese sulfate and manganese threonine based on bioavailability and performance of broiler chicks. World J. Vet. Sci. 2021, 3, 12–17. Available online: https://www.medtextpublications.com/open-access/comparison-of-manganese-sulfate-and-manganese-threonine-based-on-bioavailability-954.pdf (accessed on 18 October 2025).
- da Cruz Ferreira Júnior, H.; da Silva, D.L.; de Carvalho, B.R.; de Oliveira, H.C.; Cunha Lima Muniz, J.; Junior Alves, W.; Eugene Pettigrew, J.; Eliza Facione Guimarães, S.; da Silva Viana, G.; Hannas, M.I. Broiler responses to copper levels and sources: Growth, tissue mineral content, antioxidant status and mRNA expression of genes involved in lipid and protein metabolism. BMC Vet. Res. 2022, 18, 223. [Google Scholar] [CrossRef] [PubMed]
- Glebocka, K.; Spring, P.; Nollet, L. Efficacy of replacing inorganic trace minerals with organic forms in broiler nutrition—Summary of trials. In Proceedings of the Alltech’s 24th Annual Symposium, Lexington, KY, USA, 20–23 April 2008. [Google Scholar]
- Hu, Y.; Wang, C.; Wu, W.; Qu, Y.; Zhang, W.; Li, D.; Zhu, L.; Gao, F.; Wu, B.; Zhang, L. Organic zinc with moderate chelation strength enhances zinc absorption in the small intestine and expression of related transporters in the duodenum of broilers. Front. Physiol. 2022, 13, 952941. [Google Scholar] [CrossRef]
- Institut De Recerca I Tecnologia Agromalimentaries. Practical Replacement of Inorganic Minerals with Organic Sources in Poultry Diets. II. Responses in Floor pen Trials; Institut De Recerca I Tecnologia Agromalimentaries, Department of Animal Nutrition, Cent Re Mas Bové: Reus, Spain, 2004. [Google Scholar]
- Jain, A.K.; Mishra, A.; Caesar, D.D.; Shakkarpude, J.; Mourya, A.; Baghel, R.; Sharma, R. Can different concentration of chelated and inorganic trace minerals (Zn, Se and Cr) be an effective supplement for better production performance and carcass traits in broilers. J. Entomol. Zool. Stud 2020, 8, 197–204. Available online: https://www.entomoljournal.com/archives/?year=2020&vol=8&issue=5&ArticleId=7498 (accessed on 18 October 2025).
- Farhadi, J.; Siavash, M.; Moravej, H.; Ghaffarzadeh, M.; Esfahani, M.B. Comparison of zinc sulfate and zinc threonine based on Zn bioavailability and performance of broiler chicks. Biol. Trace Elem. Res. 2021, 199, 2303–2311. [Google Scholar] [CrossRef]
- Jegede, A.; Oduguwa, O.; Bamgbose, A.; Fanimo, A.; Nollet, L. Growth response, blood characteristics and copper accumulation in organs of broilers fed on diets supplemented with organic and inorganic dietary copper sources. Br. Poult. Sci. 2011, 52, 133–139. [Google Scholar] [CrossRef] [PubMed]
- Lensing, M.; Klis, J.v.d. The Effect of Bioplexed Trace Minerals in Broiler Diets on Production Performance and Mineral Retention. 2006. Available online: https://www.cabi.org/Uploads/animal-science/worlds-poultry-science-association/WPSA-italy-2006/10493.pdf (accessed on 18 October 2025).
- Liu, Z.; Lu, L.; Li, S.; Zhang, L.; Xi, L.; Zhang, K.; Luo, X. Effects of supplemental zinc source and level on growth performance, carcass traits, and meat quality of broilers. Poult. Sci. 2011, 90, 1782–1790. [Google Scholar] [CrossRef]
- Liu, S.; Lu, L.; Li, S.; Xie, J.; Zhang, L.; Wang, R.; Luo, X. Copper in organic proteinate or inorganic sulfate form is equally bioavailable for broiler chicks fed a conventional corn–soybean meal diet. Biol. Trace Elem. Res. 2012, 147, 142–148. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Li, S.; Lu, L.; Xie, J.; Zhang, L.; Wang, R.; Luo, X. The effectiveness of zinc proteinate for chicks fed a conventional corn-soybean meal diet. J. Appl. Poult. Res. 2013, 22, 396–403. [Google Scholar] [CrossRef]
- Liu, Z.; Lu, L.; Wang, R.; Lei, H.; Li, S.; Zhang, L.; Luo, X. Effects of supplemental zinc source and level on antioxidant ability and fat metabolism-related enzymes of broilers. Poult. Sci. 2015, 94, 2686–2694. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Liu, S.; Lu, L.; Li, S.; Xie, J.; Zhang, L.; Zhang, J.; Luo, X. Relative bioavailability of iron proteinate for broilers fed a casein-dextrose diet. Poult. Sci. 2014, 93, 556–563. [Google Scholar] [CrossRef]
- Midilli, M.; Salman, M.; MUĞLALI, Ö.H.; Öğretmen, T.; Cenesiz, S.; Ormanci, N. The effects of organic or inorganic zinc and microbial phytase, alone or in combination, on the performance, biochemical parameters and nutrient utilization of broilers fed a diet low in available phosphorus. Kafkas Üniversitesi Vet. Fakültesi Derg. 2014, 20, 99–106. [Google Scholar] [CrossRef]
- Mwangi, S.; Timmons, J.; Ao, T.; Paul, M.; Macalintal, L.; Pescatore, A.; Cantor, A.; Ford, M.; Dawson, K. Effect of zinc imprinting and replacing inorganic zinc with organic zinc on early performance of broiler chicks. Poult. Sci. 2017, 96, 861–868. [Google Scholar] [CrossRef] [PubMed]
- Mwangi, S.; Timmons, J.; Ao, T.; Paul, M.; Macalintal, L.; Pescatore, A.; Cantor, A.; Dawson, K. Effect of manganese preconditioning and replacing inorganic manganese with organic manganese on performance of male broiler chicks. Poult. Sci. 2019, 98, 2105–2113. [Google Scholar] [CrossRef] [PubMed]
- Nollet, L.; Huyghebaert, G.; Spring, P. Effect of different levels of dietary organic (Bioplex) trace minerals on live performance of broiler chickens by growth phases. J. Appl. Poult. Res. 2008, 17, 109–115. [Google Scholar] [CrossRef]
- Núñez, R.; Elliott, S.; Riboty, R. The effect of dietary supplementation of organic trace minerals on performance, mineral retention, lymphoid organs and antibody titres of broilers. J. Appl. Anim. Nutr. 2023, 11, 23–32. [Google Scholar] [CrossRef]
- Perić, L.; Nollet, L.; Milošević, N.; Žikić, D. Effect of Bioplex and Sel-Plex substituting inorganic trace mineral sources on performance of broilers. Eur. Poult. Sci. 2007, 71, 122–129. [Google Scholar] [CrossRef]
- Petrovič, V.; Nollet, L.; Kováč, G. Effect of dietary supplementation of trace elements on the growth performance and their distribution in the breast and thigh muscles depending on the age of broiler chickens. Acta Vet. Brno 2010, 79, 203–209. [Google Scholar] [CrossRef]
- Puangmalee, T.; Junlapho, W.; Ruangpanit, Y. Effect of organic trace mineral on gene expression of antioxidant enzyme and meat quality responsible enzyme in young chick. Khon Kaen Agric. J. 2020, 48, 897–926. [Google Scholar] [CrossRef]
- Riboty, R.; Gaibor, J.; Ponce-de-Leon, C.; Martinez, D. Organic zinc sources in broiler production at high altitude under on-top supplementation or total or partial replacement: 2. Effects on tibia and blood characteristics. Anim.-Open Space 2024, 3, 100062. [Google Scholar] [CrossRef]
- Sahraei, M.; Janmohammadi, H. Relative Bioavailability of Different Zinc Sources Based on Tissue Zinc Concentration in Broiler Chickens. Iran. J. Appl. Anim. Sci. 2014, 4. Available online: https://journals.iau.ir/article_513489.html (accessed on 18 October 2025).
- Samuel, R.S.; Ao, T.; Paul, M.; Ford, M.J.; Brennan, K.M.; Spry, M.L.; Pescatore, A.J.; Cantor, A.H.; Pierce, J.L. Early life trace mineral nutrition affects growth performance and mineral deposition in broilers through 21 days. In Proceedings of the IPSF & IPE, Atlanta, GA, USA, 23–24 January 2012. [Google Scholar]
- Tavares, T.; Mourão, J.L.; Kay, Z.; Spring, P.; Vieira, J.; Gomes, A.; Vieira-Pinto, M. The effect of replacing inorganic trace minerals with organic Bioplex® and Sel-Plex® on the performance and meat quality of broilers. J. Appl. Anim. Nutr. 2013, 2, e10. [Google Scholar] [CrossRef]
- Zamany, S.; Sedghi, M.; Hafizi, M.; Nazaran, M.H.; KimiaeiTalab, M.V. Organic acid-based chelate trace mineral supplement improves broiler performance, bone composition, immune responses, and blood parameters. Biol. Trace Elem. Res. 2023, 201, 4882–4899. [Google Scholar] [CrossRef]
- Waldroup, P.; Fritts, C.; Yan, F. Utilization of Bio-Mos® mannan oligosaccharide and Bioplex® copper in broiler diets. Int. J. Poult. Sci. 2003, 2, 44–52. [Google Scholar] [CrossRef]
- Zhang, L.; Lu, L.; Zhang, L.; Luo, X. The chemical characteristics of organic iron sources and their relative bioavailabilities for broilers fed a conventional corn–soybean meal diet. J. Anim. Sci. 2016, 94, 2378–2396. [Google Scholar] [CrossRef]
- Bao, Y.; Choct, M.; Iji, P.; Breurton, K. Interactions between Zn and other trace minerals in broiler chickens. Recent Adv. Anim. Nutr. Aust. 2007, 16, 248. Available online: https://www.researchgate.net/profile/Mingan-Choct/publication/289518593_Interactions_between_Zn_and_other_trace_minerals_in_broiler_chickens/links/568f2a7a08ae78cc051620b0/Interactions-between-Zn-and-other-trace-minerals-in-broiler-chickens.pdf (accessed on 18 October 2025).
- DerSimonian, R.; Laird, N. Meta-analysis in clinical trials. Control. Clin. Trials 1986, 7, 177–188. [Google Scholar] [CrossRef]
- Borenstein, M.; Hedges, L.; Higgins, J.; Rothstein, H. Introduction to Meta-Analysis; John Wiley & Sons: Hoboken, NJ, USA, 2021. [Google Scholar] [CrossRef]
- Al Rharad, A.; El Aayadi, S.; Avril, C.; Souradjou, A.; Sow, F.; Camara, Y.; Hornick, J.-L.; Boukrouh, S. Meta-Analysis of Dietary Tannins in Small Ruminant Diets: Effects on Growth Performance, Serum Metabolites, Antioxidant Status, Ruminal Fermentation, Meat Quality, and Fatty Acid Profile. Animals 2025, 15, 596. [Google Scholar] [CrossRef]
- Boukrouh, S.; Mnaouer, I.; Mendes de Souza, P.; Hornick, J.L.; Nilahyane, A.; El Amiri, B.; Hirich, A. Microalgae supplementation improves goat milk composition and fatty acid profile: A meta-analysis and meta-regression. Arch. Anim. Breed. 2025, 68, 223–238. [Google Scholar] [CrossRef]
- Byrne, L.; Ross, S.; Taylor-Pickard, J.; Murphy, R. The Effect of Organic Trace Mineral Supplementation in the Form of Proteinates on Performance and Sustainability Parameters in Laying Hens: A Meta-Analysis. Animals 2023, 13, 3132. [Google Scholar] [CrossRef]
- Salami, S.A.; Ross, S.A.; Patsiogiannis, A.; Moran, C.A.; Taylor-Pickard, J. Performance and environmental impact of egg production in response to dietary supplementation of mannan oligosaccharide in laying hens: A meta-analysis. Poult. Sci. 2022, 101, 101745. [Google Scholar] [CrossRef]
- Knapp, G.; Hartung, J. Improved tests for a random effects meta-regression with a single covariate. Stat. Med. 2003, 22, 2693–2710. [Google Scholar] [CrossRef]
- Higgins, J.P.T.; Thompson, S.G.; Deeks, J.J.; Altman, D.G. Measuring inconsistency in meta-analyses. BMJ 2003, 327, 557–560. [Google Scholar] [CrossRef]
- Egger, M.; Smith, G.D.; Schneider, M.; Minder, C. Bias in meta-analysis detected by a simple, graphical test. BMJ 1997, 315, 629–634. [Google Scholar] [CrossRef]
- Duarte da Silva Lima, N.; de Alencar Nääs, I.; Garcia, R.G.; Jorge de Moura, D. Environmental impact of Brazilian broiler production process: Evaluation using life cycle assessment. J. Clean. Prod. 2019, 237, 117752. [Google Scholar] [CrossRef]
- Tallentire, C.W.; Mackenzie, S.G.; Kyriazakis, I. Environmental impact trade-offs in diet formulation for broiler production systems in the UK and USA. Agric. Syst. 2017, 154, 145–156. [Google Scholar] [CrossRef]
- Salami, S.; Taylor-Pickard, J.; Ross, S.; Moran, C. A Meta-Analysis of the Effects of Dietary Yeast Mannan-Rich Fraction on Broiler Performance and the Implication for Greenhouse Gas Emissions from Chicken Production. Animals 2024, 14, 1595. [Google Scholar] [CrossRef] [PubMed]
- PAS, 2050:2011; Specification for the Assessment of Lifecycle Greenhouse Gas Emissions of Goods and Services. British Standards Institute (BSI): Loughborough, UK; London, UK, 2011. Available online: https://biolatina.com/wp-content/uploads/2018/08/PAS2050.pdf (accessed on 18 October 2025).
- ISO, 14067:2018; Greenhouse Gases—Carbon Footprint of Products—Requirements and Guidelines for Quantification. International Standards Organisation: Geneva, Switzerland, 2018. Available online: https://www.iso.org/standard/71206.html (accessed on 18 October 2025).
- IPCC. Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories. In Agriculture, Forestry and Other Land Use; IPCC: Geneva, Switzerland, 2019. [Google Scholar]
- Vellinga, T.V.; Blonk, H.; Marinussen, M.; van Zeist, W.-J.; Starmans, D. Methodology Used in FeedPrint: A Tool Quantifying Greenhouse Gas Emissions of Feed Production and Utilization; Wageningen UR Livestock Research: Wageningen, The Netherlands, 2013; Version 2020.00; Available online: http://webapplicaties.wur.nl/software/feedprintNL/index.asp (accessed on 18 October 2025).
- DEFRA. UK Government GHG Conversion Factors for Company Reporting; DEFRA: London, UK, 2024. Available online: https://www.gov.uk/government/collections/government-conversion-factors-for-company-reporting (accessed on 18 October 2025).
- AHDB. Nutrient Management Guide (RB209), Section 2: Organic Materials; AHDB: Coventry, UK, 2023; Available online: https://horticulture.ahdb.org.uk/knowledge-library/rb209-section-2-organic-materials (accessed on 18 October 2025).
- Hoxha, A.; Christensen, B.; Society, I.F. The Carbon Footprint of Fertiliser Production: Regional Reference Values; International Fertiliser Society: Colchester, UK, 2018. [Google Scholar]
- CarbonTrust. Product Carbon Footprints: Requirements for Certification, Version 2.0; The Carbon Trust: London, UK, 2022; Available online: https://www.carbontrust.com/en-eu/what-we-do/carbon-footprint-labelling/product-carbon-footprint-label (accessed on 18 October 2025).
- IPCC. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. In Climate Change 2014: Synthesis Report; IPCC: Geneva, Switzerland, 2014; Available online: https://www.ipcc.ch/report/ar5/syr/ (accessed on 18 October 2025).
- Ao, T.; Pescatore, A.J.; Paul, M.A.; Nolan, L.W.; Macalintal, L.M.; Ford, M.J.; Dawson, K.A. Impact of replacing inorganic trace minerals with reduced levels of proteinates in laying hen diets with or without phytase on the performance and eggshell quality of layers in a single lay cycle. In Poultry Science Forum; Georgia World Congress Centre: Atlanta, GA, USA, 2025; p. 89. [Google Scholar]
- Ao, T.; Pierce, J.; Pescatore, A.; Cantor, A.; Dawson, K.; Ford, M. Effects of feeding reduced levels of trace mineral proteinates (Bioplex (R)) to brown layer pullets during development. In Poultry Science; The Poultry Science Association Inc.: Savoy, IL, USA, 2008. [Google Scholar]
- Ao, T.; Pierce, J.; Pescatore, A.; Cantor, A.; Dawson, K.; Ford, M. Effects of feeding reduced levels of organic minerals (Bioplex®) on the development of white layer pullets. Poult. Sci. 2009, 88 (Suppl. S1), 197. [Google Scholar]
- Qiu, J.; Lu, X.; Ma, L.; Hou, C.; He, J.; Liu, B.; Yu, D.; Lin, G.; Xu, J. Low-dose of organic trace minerals reduced fecal mineral excretion without compromising performance of laying hens. Asian-Australas. J. Anim. Sci. 2020, 33, 588–596. [Google Scholar] [CrossRef]
- Wang, G.; Liu, L.J.; Tao, W.J.; Xiao, Z.P.; Pei, X.; Liu, B.J.; Wang, M.Q.; Lin, G.; Ao, T.Y. Effects of replacing inorganic trace minerals with organic trace minerals on the production performance, blood profiles, and antioxidant status of broiler breeders. Poult. Sci. 2019, 98, 2888–2895. [Google Scholar] [CrossRef]
- Stefanello, C.; Santos, T.C.; Murakami, A.E.; Martins, E.N.; Carneiro, T.C. Productive performance, eggshell quality, and eggshell ultrastructure of laying hens fed diets supplemented with organic trace minerals. Poult. Sci. 2014, 93, 104–113. [Google Scholar] [CrossRef]
- Boruta, A.; Swierczewska, E.; Glebocka, K.; Nollet, L. Trace organic minerals as a replacement of inorganic sources for layers: Effects on productivity and mineral excretion. Rev. Cient Eletrônica Med. Vet. 2007, 13, 491–494. Available online: https://www.cabi.org/Uploads/animal-science/worlds-poultry-science-association/WPSA-france-2007/62.pdf (accessed on 18 October 2025).
- Leeson, S.; Caston, L. Using minimal supplements of trace minerals as a method of reducing trace mineral content of poultry manure. Anim. Feed Sci. Technol. 2008, 142, 339–347. [Google Scholar] [CrossRef]
- Vieira, R.A.; Malheiros, R.; Albino, L.F.T.; Hannas, M.I.; Crivellari, R.; Borges, L.L.; Ferket, P. Replacing dietary inorganic trace minerals with lower concentrations of organic trace minerals can improve broiler performance. Poult. Sci. 2014, 93 (Suppl. S1). [Google Scholar]
- Doleman, B.; Freeman, S.C.; Lund, J.N.; Williams, J.P.; Sutton, A.J. Funnel plots may show asymmetry in the absence of publication bias with continuous outcomes dependent on baseline risk: Presentation of a new publication bias test. Res. Synth. Methods 2020, 11, 522–534. [Google Scholar] [CrossRef]
- Oke, O.E.; Akosile, O.A.; Uyanga, V.A.; Oke, F.O.; Oni, A.I.; Tona, K.; Onagbesan, O.M. Climate change and broiler production. Vet. Med. Sci. 2024, 10, e1416. [Google Scholar] [CrossRef]
- Forseth, M.; Moe, R.O.; Kittelsen, K.; Toftaker, I. Mortality risk on farm and during transport: A comparison of 2 broiler hybrids with different growth rates. Poult Sci 2024, 103, 103395. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, P.; Singh, K.D.; Pramanik, P.S.; Kumar, S.; Srivastav, A.K.; Tripathi, K.K.; Nandan, D. Impacts of Stocking Density on Broiler Chicken Performance Stress Reaction and Mortality in Broiler Chicken. Indian J. Vet. Sci. Biotechnol. 2022, 18, 36–39. [Google Scholar] [CrossRef]
- Imaeda, N. Influence of the stocking density and rearing season on incidence of sudden death syndrome in broiler chickens. Poult. Sci. 2000, 79, 201–204. [Google Scholar] [CrossRef]
- Li, X.M.; Zhang, M.H.; Liu, S.M.; Feng, J.H.; Ma, D.D.; Liu, Q.X.; Zhou, Y.; Wang, X.J.; Xing, S. Effects of stocking density on growth performance, growth regulatory factors, and endocrine hormones in broilers under appropriate environments. Poult. Sci. 2019, 98, 6611–6617. [Google Scholar] [CrossRef]
- Byrne, L.A. Analytical Assessment of Peptide-Mental Interactions and Subsequent Stability; National University of Ireland, Maynooth (Ireland): Maynooth, Ireland, 2010. [Google Scholar]




| Reference | Study Location | Year of Study | Breed/Strain | Age of Birds (d) | Number of Birds per Treatment | PTM Mineral(s) Assessed | Study Duration (wk) |
|---|---|---|---|---|---|---|---|
| Adegbenjo et al. [28] | Nigeria | 2014 | Unspecified | 112 | 40 | Cu | 7.0 |
| Bao et al. [29] | Australia | 2007(a) | Cobb 1 | 29 | 32 | Cu, Fe, Mn, Zn | 4.1 |
| Aksu et al. [30] | Turkey | 2011 | Ross 308 | 42 | 50 | Cu, Mn, Zn | 6.0 |
| Abdallah et al. [31] | Egypt | 2009 | Ross 308 | 35 | 150 | Cu, Fe, Mn, Zn | 5.0 |
| Nollet et al. [32] | Netherlands | 2007 | Ross 308 | 39 | 1020 | Cu, Fe, Mn, Zn | 5.6 |
| Zhu et al. [33] | China | 2019 | Ross 308 | 39 | 180 | Cu, Fe, Mn, Zn | 5.6 |
| Vieira et al. [16] | USA | 2020 | Ross 708 | 48 | 208 | Cu, Fe, Mn, Zn | 6.9 |
| El-Husseiny et al. [34] | Egypt | 2012 | Arbor Acres | 42 | 72 | Cu, Mn, Zn | 4.0 |
| Ivanisinova et al. [35] | Slovakia | 2016 | Ross 308 | 35 | 54 | Zn | 5.0 |
| Lippens et al. [36] | Belgium | 2006 | Ross 308 | 42 | 252 | Cu, Fe, Mn, Zn | 6.0 |
| Bao et al. [37] | Australia | 2007(b) | Cobb 1 | 35 | 200 | Cu, Fe, Mn, Zn | 5.0 |
| Ao et al. [38] | USA | 2006 | Cobb 1 | 21 | 48 | Zn | 3.0 |
| Ao and Pierce [39] | USA | 2006 | Cobb 1 | 21 | 36 | Zn | 3.0 |
| Ao et al. [40] | USA | 2011 | Cobb 1 | 35 | 264 | Cu, Fe, Mn, Zn | 5.0 |
| Ao et al. [41] | USA | 2009 | Cobb 1 | 21 | 60 | Zn | 3.0 |
| Ao et al. [42] | USA | 2011(b) | Cobb 1 | 42 | 110 | Zn | 3.0 |
| Ao et al. (trial 2) [42] | USA | 2011(b) | Cobb 1 | 42 | 160 | Zn | 6.0 |
| Ao et al. [43] | USA | 2017 | Cobb 1 | 42 | 288 | Cu, Fe, Mn, Zn | 6.0 |
| Ao et al. [44] | USA | 2019 | Cobb 1 | 28 | 264 | Cu, Fe, Mn, Zn | 4.0 |
| Azad et al. [45] | Iran | 2020 | Ross 308 | 28 | 40 | Zn | 4.0 |
| Bao et al. [46] | Australia | 2010(a) | Cobb 1 | 35 | 48 | Cu, Fe, Mn, Zn | 5.0 |
| Bao et al. [47] | Australia | 2010(b) | Cobb 1 | 35 | 200 | Cu, Fe, Mn, Zn | 5.0 |
| Bao et al. [48] | Australia | 2009 | Cobb 1 | 35 | 24 | Cu, Fe, Mn, Zn | 5.0 |
| Baloch et al. [49] | Pakistan | 2017 | Unspecified | 35 | 80 | Cu, Fe, Mn, Zn | 5.0 |
| Bortoluzzi et al. [50] | USA | 2019 | Cobb 1 | 28 | 64 | Zn | 4.0 |
| de Carvalho et al. [51] | Brazil | 2017 | Cobb 1 | 16 | 50 | Cu, Fe, Mn, Zn | 1.1 |
| de Carvalho et al. [52] | Brazil | 2021 | Cobb 500 | 17 | 50 | Cu, Fe, Mn, Zn | 1.3 |
| Das et al. [53] | India | 2010 | Vencobb | 42 | 40 | Cu | 6.0 |
| Dudley et al. [54] | USA | 2016 | Cobb 1 | 21 | 80 | Cu, Fe, Mn, Zn | 3.0 |
| Vieira et al. [55] | Brazil | 2013 | Cobb 1 | 49 | 250 | Cu, Fe, Mn, Zn | 7.0 |
| Arnaut et al. [56] | Brazil | 2021 | Cobb 1 | 17 | 50 | Cu, Fe, Mn, Zn | 2.4 |
| Bueno et al. [57] | Brazil | 2020 | Cobb 1 | 49 | 128 | Cu, Fe, Mn, Zn | 7.0 |
| Eivakpour et al. [58] | Iran | 2021 | Ross 308 | 45 | 30 | Mn | 6.4 |
| da Cruz Ferreira Jnr. et al. [59] | Brazil | 2022 | Cobb 1 | 17 | 50 | Cu, Fe, Mn, Zn | 1.4 |
| Glebocka et al. [60] | Netherlands | 2008 | Ross 308 | 39 | 1020 | Cu, Fe, Mn, Zn | 5.6 |
| Glebocka et al. (trial 2) [60] | Netherlands | 2008 | Ross 308 | 42 | 252 | Cu, Fe, Mn, Zn | 6.0 |
| Hu et al. [61] | China | 2022 | Arbor Acres | 39 | 64 | Zn | 5.6 |
| IRTA [62] | Spain | 2004 | Ross 308 | 35 | 404 | Cu, Fe, Mn, Zn | 5.0 |
| Jain et al. [63] | India | 2020 | Cobb 500 | 35 | 18 | Zn | 5.0 |
| Farhadi Javid et al. [64] | Iran | 2020 | Ross 308 | 42 | 32 | Zn | 6.0 |
| Jegede et al. [65] | Nigeria | 2011 | Arbor Acres | 56 | 80 | Cu | 8.0 |
| Lensing and van der Klis [66] | Netherlands | 2006 | Ross 308 | 39 | 1020 | Cu, Fe, Mn, Zn | 5.6 |
| Liu et al. [67] | China | 2011 | Arbor Acres | 42 | 36 | Zn | 6.0 |
| Liu et al. [68] | China | 2012 | Arbor Acres | 42 | 64 | Cu | 6.0 |
| Liu et al. [69] | China | 2013 | Arbor Acres | 21 | 64 | Zn | 3.0 |
| Liu et al. [70] | China | 2015 | Arbor Acres | 42 | 36 | Zn | 6.0 |
| Ma et al. [71] | China | 2014 | Arbor Acres | 14 | 64 | Fe | 2.0 |
| Midilli et al. [72] | Turkey | 2014 | Ross 308 | 42 | 125 | Zn | 6.0 |
| Mwangi et al. [73] | USA | 2017 | Cobb 500 | 21 | 36 | Zn | 3.0 |
| Mwangi et al. [74] | USA | 2019 | Cobb 500 | 21 | 36 | Zn | 3.0 |
| Nollet et al. [75] | Belgium | 2008 | Ross 308 | 42 | 252 | Cu, Fe, Mn, Zn | 6.0 |
| Nunez et al. [76] | Peru | 2022 | Cobb 1 | 42 | 252 | Cu, Fe, Mn, Zn | 6.0 |
| Peric et al. [77] | Serbia | 2007 | Hubbard JV | 42 | 600 | Cu, Fe, Mn, Zn | 6.0 |
| Petrovic et al. [78] | Slovakia | 2010 | Ross 308 | 42 | 50 | Cu, Fe, Mn, Zn | 6.0 |
| Puangmalee et al. [79] | Thailand | 2020 | Ross 308 | 17 | 200 | Cu, Fe, Mn, Zn | 2.4 |
| Riboty et al. [80] | Ecuador | 2024 | Cobb 500 | 42 | 132 | Zn | 6.0 |
| Sahraei et al. [81] | Iran | 2014 | Ross 308 | 28 | 24 | Zn | 4.0 |
| Samuel et al. [82] | USA | 2012 | Unspecified | 21 | 80 | Cu, Mn, Zn | 3.0 |
| Tavares et al. [83] | Portugal | 2014 | Ross 308 | 31 | 59,750 | Cu, Mn, Zn | 4.4 |
| Zamany et al. [84] | Iran | 2023 | Arbor Acres | 42 | 156 | Cu, Fe, Mn, Zn | 6.0 |
| Waldroup et al. [85] | USA | 2003 | Ross x Cobb | 63 | 400 | Cu | 9.0 |
| Zhang et al. [86] | China | 2016 | Arbor Acres | 21 | 90 | Fe | 3.0 |
| Bao et al. [87] | Australia | 2007(c) | Cobb 1 | 35 | 24 | Cu, Fe | 5.0 |
| Bao et al. (trial 2) [87] | Australia | 2007(c) | Cobb 1 | 35 | 48 | Cu, Fe, Mn, Zn | 5.0 |
| Trace Mineral | ITM Treatments (mg/kg) | PTM Treatments (mg/kg) | ||||
|---|---|---|---|---|---|---|
| Median | Minimum | Maximum | Median | Minimum | Maximum | |
| Cu | 10 | 1.5 | 400.0 | 6 | 1.4 | 400.0 |
| Fe | 56 | 7.5 | 316.0 | 22.5 | 5.5 | 316.0 |
| Mn | 64 | 12.0 | 121.0 | 37.5 | 7.5 | 121.0 |
| Zn | 60 | 5.0 | 200.0 | 39.2 | 5.0 | 200.0 |
| Trace Mineral | ITM Treatments (mg/kg) | PTM Treatments (mg/kg) | ||||
|---|---|---|---|---|---|---|
| Median | Minimum | Maximum | Median | Minimum | Maximum | |
| Cu | 10 | 4 | 400.0 | 8.3 | 4.0 | 200.0 |
| Fe | 60 | 20 | 316.0 | 34.7 | 10.0 | 316.0 |
| Mn | 90 | 34.4 | 121.0 | 51.4 | 20.0 | 121.0 |
| Zn | 80 | 10 | 200.0 | 40.0 | 5.0 | 150.0 |
| Item | N | Mean | Minimum | Maximum | SD |
|---|---|---|---|---|---|
| Production performance | |||||
| Total Feed Intake (kg/bird) | 190 | 2.71 | 0.132 | 7.064 | 1.90 |
| ADFI (g/day/bird) | 94 | 86.84 | 15.70 | 160.00 | 40.00 |
| ADG (g) | 89 | 48.72 | 13.50 | 89.40 | 18.10 |
| BWG (g/bird) | 163 | 1290.42 | 59.40 | 3540.00 | 888.22 |
| FCR (g feed/g BWG) | 233 | 1.699 | 1.11 | 4.73 | 0.51 |
| Final body weight (g/bird) | 148 | 1971.30 | 145.81 | 4353 | 1126.77 |
| Mortality (%) | 96 | 6.03 | 0 | 51.6 | 8.39 |
| Mineral Excretion | |||||
| Cu (mg/kg) | 78 | 49.69 | 4.66 | 83.24 | 22.25 |
| Fe (mg/kg) | 76 | 1088.27 | 35.53 | 2802.05 | 889.68 |
| Mn (mg/kg) | 80 | 290.28 | 17.82 | 770.00 | 161.16 |
| Zn (mg/kg) | 76 | 286.36 | 12.24 | 554.77 | 136.69 |
| Study Factors | Total Feed Intake (kg/bird) | ADFI (g/day/bird) | BWG (g/bird) | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Coefficient | SE | p-Value | R2 (%) | Coefficient | SE | p-Value | R2 (%) | Coefficient | SE | p-Value | R2 (%) | |
| Location | ||||||||||||
| Africa | −0.041 | 0.014 | 0.004 | 2.0 | −5.429 | 0.823 | <0.001 | 0.0 | 66.723 | 4.432 | <0.001 | 13.0 |
| Asia | −0.031 | 0.011 | 0.005 | 0.815 | 0.535 | 0.127 | 10.170 | 2.731 | <0.001 | |||
| North America | −0.010 | 0.012 | 0.410 | - | - | - | 1.636 | 3.048 | 0.591 | |||
| Oceania | −0.100 | 0.022 | <0.001 | - | - | - | −27.857 | 16.254 | 0.087 | |||
| South America | −0.026 | 0.011 | 0.017 | 0.003 | 0.684 | 0.997 | −2.917 | 2.653 | 0.272 | |||
| Europe | Referent a | Referent a | Referent a | |||||||||
| Year of study | −0.0003 | 0.001 | 0.548 | 0.0 | 0.043 | 0.036 | 0.229 | 0.0 | −0.247 | 0.171 | 0.148 | 0.0 |
| Breed/strain | ||||||||||||
| Arbor Acres | - | - | - | 1.0 | −0.021 | 0.702 | 0.976 | 0.0 | 55.343 | 12.199 | <0.001 | 1.0 |
| Ross 308 | −0.017 | 0.008 | 0.027 | 0.148 | 0.734 | 0.840 | 13.771 | 2.295 | <0.001 | |||
| Ross 708 | −0.012 | 0.020 | 0.533 | - | - | - | - | - | - | |||
| Cobb b | 0.001 | 0.007 | 0.855 | 0.673 | 1.134 | 0.553 | −1.414 | 2.184 | 0.517 | |||
| Vencobb | 0.009 | 0.011 | 0.405 | - | - | - | 6.938 | 2.844 | 0.015 | |||
| Hubbard JV | 0.050 | 0.016 | 0.002 | - | - | - | - | - | - | |||
| Ross x Cobb | - | - | - | - | - | - | - | - | - | |||
| Cobb 500 | Referent a | Referent a | Referent a | |||||||||
| Age of birds | 0.000 | <0.001 | 0.981 | 0.0 | −0.019 | 0.016 | 0.255 | 0.0 | 0.724 | 0.071 | <0.001 | 0.0 |
| Number of birds | <0.001 | 0.000 | <0.001 | 0.0 | 0.000 | 0.000 | 0.763 | 0.0 | −0.014 | 0.008 | 0.090 | 0.0 |
| Study duration | 0.000 | <0.001 | 0.923 | 0.0 | −0.018 | 0.015 | 0.249 | 0.0 | 0.540 | 0.059 | <0.001 | 0.0 |
| Study factors | FCR (g feed/g BWG) | ADG (g) | Mortality (%) | |||||||||
| Coefficient | SE | p-value | R2 (%) | Coefficient | SE | p-value | R2 (%) | Coefficient | SE | p-value | R2 (%) | |
| Location | ||||||||||||
| Africa | −0.123 | 0.014 | <0.001 | 0.0 | 9.097 | 0.843 | <0.001 | 0.0 | −0.660 | 1.664 | 0.692 | 0.0 |
| Asia | −0.014 | 0.008 | 0.070 | 0.952 | 0.403 | 0.018 | 3.519 | 1.735 | 0.043 | |||
| North America | −0.021 | 0.009 | 0.017 | - | - | - | −0.056 | 1.525 | 0.971 | |||
| Oceania | −0.003 | 0.016 | 0.848 | - | - | - | 0.258 | 3.214 | 0.936 | |||
| South America | −0.017 | 0.009 | 0.065 | 0.809 | 0.502 | 0.107 | 0.751 | 1.602 | 0.639 | |||
| Europe | Referent a | Referent a | Referent a | |||||||||
| Year of study | −0.001 | 0.001 | 0.054 | 0.0 | 0.018 | 0.030 | 0.562 | 0.0 | −0.032 | 0.079 | 0.689 | 0.0 |
| Breed/strain | ||||||||||||
| Arbor Acres | 0.016 | 0.010 | 0.103 | 20.0 | 1.083 | 0.501 | 0.031 | 0.0 | 1.364 | 2.848 | 0.632 | 0.0 |
| Ross 308 | 0.002 | 0.009 | 0.810 | −0.367 | 0.531 | 0.490 | −0.878 | 2.808 | 0.755 | |||
| Ross 708 | −0.012 | 0.016 | 0.456 | - | - | - | −0.869 | 2.774 | 0.754 | |||
| Cobb b | 0.004 | 0.010 | 0.698 | 0.692 | 0.811 | 0.394 | −0.341 | 2.792 | 0.903 | |||
| Vencobb | 0.008 | 0.015 | 0.618 | - | - | - | - | - | - | |||
| Hubbard JV | 0.011 | 0.020 | 0.583 | - | - | - | - | - | - | |||
| Ross x Cobb | 0.034 | 0.017 | 0.050 | - | - | - | −0.465 | 3.676 | 0.899 | |||
| Cobb 500 | Referent a | Referent a | Referent a | |||||||||
| Age of birds | −0.0002 | 0.0002 | 0.364 | 3.0 | 0.051 | 0.014 | <0.001 | 0.0 | −0.107 | 0.030 | <0.001 | 0.0 |
| Number of birds | 0 | 0 | 0.420 | 0.0 | 0.000 | 0.000 | 0.271 | 0.0 | −0.001 | 0.003 | 0.648 | 0.0 |
| Study duration | −0.0002 | 0.0002 | 0.388 | 3.0 | 0.042 | 0.013 | 0.001 | 0.0 | −0.107 | 0.030 | <0.001 | 0.0 |
| Study factors | Final BW (g/bird) | |||||||||||
| Coefficient | SE | p-value | R2 (%) | |||||||||
| Location | ||||||||||||
| Africa | 80.454 | 14.806 | <0.001 | 1.0 | ||||||||
| Asia | 7.670 | 9.752 | 0.432 | |||||||||
| North America | 46.809 | 10.148 | <0.001 | |||||||||
| Oceania | - | - | - | |||||||||
| South America | 9.941 | 10.117 | 0.326 | |||||||||
| Europe | Referent a | |||||||||||
| Year of study | 0.558 | 0.576 | 0.333 | 1.0 | ||||||||
| Breed/strain | ||||||||||||
| Arbor Acres | 73.37 | 42.802 | 0.087 | 1.0 | ||||||||
| Ross 308 | −9.018 | 11.861 | 0.447 | |||||||||
| Ross 708 | 30.084 | 12.997 | 0.021 | |||||||||
| Cobb b | −7.144 | 13.704 | 0.602 | |||||||||
| Vencobb | 2.539 | 16.804 | 0.880 | |||||||||
| Hubbard JV | 23.716 | 24.795 | 0.339 | |||||||||
| Ross x Cobb | 21.87 | 22.671 | 0.335 | |||||||||
| Cobb 500 | Referent a | |||||||||||
| Age of birds | 0.903 | 0.209 | <0.001 | 47.0 | ||||||||
| Number of birds | −0.001 | 0.001 | 0.208 | 1.0 | ||||||||
| Study duration | 0.654 | 0.179 | 0.0002 | 47.0 | ||||||||
| Study Factors | Cu Excretion (mg/kg) | Fe Excretion (mg/kg) | Mn Excretion (mg/kg) | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Coefficient | SE | p-Value | R2 (%) | Coefficient | SE | p-Value | R2 (%) | Coefficient | SE | p-Value | R2 (%) | |
| Location | ||||||||||||
| Africa | 18.715 | 2.235 | <0.001 | 29.0 | 94.977 | 4.667 | <0.001 | 0.0 | 143.052 | 3.099 | <0.001 | 58.0 |
| Asia | - | - | - | - | - | - | −23.210 | 13.350 | 0.082 | |||
| North America | 17.951 | 2.063 | <0.001 | −178.706 | 20.051 | <0.001 | 19.007 | 3.295 | <0.001 | |||
| Oceania | 25.635 | 3.484 | <0.001 | 14.771 | 10.478 | 0.159 | 132.412 | 4.824 | <0.001 | |||
| South America | 26.434 | 2.860 | <0.001 | 94.404 | 4.429 | <0.001 | 130.411 | 2.979 | <0.001 | |||
| Europe | Referent a | Referent a | Referent a | |||||||||
| Year of study | 0.409 | 0.202 | 0.043 | 0.0 | 5.905 | 0.327 | <0.001 | 0.0 | 0.403 | 0.220 | 0.067 | 3.0 |
| Breed/strain | ||||||||||||
| Arbor Acres | 0.2167 | 2.501 | 0.931 | 43.0 | 5.354 | 3.638 | 0.141 | 0.0 | 23.422 | 3.059 | <0.001 | 43.0 |
| Ross 308 | −19.011 | 2.022 | <0.001 | −89.314 | 4.403 | <0.001 | −103.832 | 3.024 | <0.001 | |||
| Ross 708 | −9.163 | 1.929 | <0.001 | −290.492 | 20.557 | <0.001 | −114.957 | 3.016 | <0.001 | |||
| Cobb b | Referent a | Referent a | Referent a | |||||||||
| Unspecified c | −23.341 | 3.825 | <0.001 | - | - | - | - | - | - | |||
| Cobb x Cobb | −2.957 | 2.967 | 0.319 | 21.224 | 74.474 | 0.776 | - | - | - | |||
| Cobb 500 | - | - | - | - | - | - | −9.396 | 3.643 | 0.010 | |||
| Age of birds | −0.268 | 0.041 | <0.001 | 24.0 | −1.412 | 0.171 | <0.001 | 0.0 | −3.806 | 0.111 | <0.001 | 4.0 |
| Number of birds | −0.023 | 0.004 | <0.001 | 53.0 | −0.179 | 0.005 | <0.001 | 40.0 | −0.249 | 0.005 | <0.001 | 51.0 |
| Study duration | −0.261 | 0.034 | <0.001 | 31.0 | −1.665 | 0.122 | <0.001 | 0.0 | −3.021 | 0.084 | <0.001 | 0.0 |
| Study factors | Zn (mg/kg) | |||||||||||
| Coefficient | SE | p-value | R2 (%) | |||||||||
| Location | ||||||||||||
| Africa | 88.365 | 2.579 | <0.001 | 3.0 | ||||||||
| Asia | - | - | - | |||||||||
| North America | 25.874 | 2.608 | <0.001 | |||||||||
| Oceania | 81.617 | 3.783 | <0.001 | |||||||||
| South America | 80.776 | 2.566 | <0.001 | |||||||||
| Europe | Referent a | |||||||||||
| Year of study | 0.623 | 0.152 | <0.001 | 0.0 | ||||||||
| Breed/strain | ||||||||||||
| Arbor Acres | 16.528 | 2.282 | <0.001 | 6.0 | ||||||||
| Ross 308 | −63.708 | 2.201 | <0.001 | |||||||||
| Ross 708 | −58.499 | 2.172 | <0.001 | |||||||||
| Cobb b | Referent a | |||||||||||
| Unspecified | - | - | - | |||||||||
| Cobb x Cobb | 12.256 | 7.591 | 0.106 | |||||||||
| Cobb 500 | - | - | - | |||||||||
| Age of birds | −1.912 | 0.077 | <0.001 | 0.0 | ||||||||
| Number of birds | −0.127 | 0.003 | <0.001 | 31.0 | ||||||||
| Study duration | −1.569 | 0.055 | <0.001 | 0.0 | ||||||||
| Study Factors | Total Feed Intake (kg/bird) | ADFI (g/day/bird) | BWG (g/bird) | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Coefficient | SE | p-Value | R2 (%) | Coefficient | SE | p-Value | R2 (%) | Coefficient | SE | p-Value | R2 (%) | |
| Location | ||||||||||||
| Africa | −0.066 | 0.027 | 0.014 | 0.0 | −7.277 | 1.85 | <0.001 | 9.0 | 60.165 | 6.905 | <0.001 | 12.0 |
| Asia | −0.058 | 0.024 | 0.016 | −0.103 | 1.641 | 0.950 | 4.335 | 3.954 | 0.273 | |||
| North America | −0.054 | 0.026 | 0.036 | −1.865 | 2.152 | 0.386 | −11.113 | 7.076 | 0.116 | |||
| Oceania | −0.124 | 0.037 | 0.001 | - | - | - | 4.520 | 23.791 | 0.849 | |||
| South America | −0.057 | 0.024 | 0.017 | - | - | - | −0.810 | 3.786 | 0.831 | |||
| Europe | Referent a | Referent a | Referent a | |||||||||
| Year of study | −0.001 | 0.001 | 0.280 | 0.0 | −0.097 | 0.148.0 | 0.512 | 0.0 | 0.153 | 0.281 | 0.586 | 0.0 |
| Breed/strain | ||||||||||||
| Arbor Acres | - | - | - | 0.0 | −0.890 | 2.092 | 0.671 | 0.0 | - | - | - | 0.0 |
| Ross 308 | 0.001 | 0.013 | 0.950 | 1.592 | 2.315 | 0.492 | 18.490 | 3.751 | <0.001 | |||
| Ross 708 | −0.005 | 0.071 | 0.941 | - | - | - | - | - | - | |||
| Cobb b | −0.001 | 0.013 | 0.966 | - | - | - | −0.526 | 3.720 | 0.888 | |||
| Vencobb | −0.006 | 0.018 | 0.737 | - | - | - | −21.455 | 4.653 | <0.001 | |||
| Hubbard JV | 0.059 | 0.027 | 0.029 | - | - | - | - | - | - | |||
| Unspecified | −0.751 | 0.951 | 0.429 | - | - | - | - | - | - | |||
| Cobb 500 | Referent a | Referent a | Referent a | |||||||||
| Age of birds | <0.001 | <0.001 | 0.789 | 0.0 | −0.022 | 0.057 | 0.698 | 3.0 | 0.349 | 0.115 | 0.003 | 0.0 |
| Number of birds | <0.001 | <0.001 | 0.006 | 0.0 | 0.009 | 0.007 | 0.206 | 0.0 | 0.031 | 0.013 | 0.017 | 0.0 |
| Study duration | <0.001 | <0.001 | 0.817 | 0.0 | −0.018 | 0.050 | 0.726 | 3.0 | 0.863 | 0.089 | <0.001 | 0.0 |
| Study factors | FCR (g feed/g BWG) | ADG (g) | Mortality (%) | |||||||||
| Coefficient | SE | p-value | R2 (%) | Coefficient | SE | p-value | R2 (%) | Coefficient | SE | p-value | R2 (%) | |
| Location | ||||||||||||
| Africa | −0.137 | 0.018 | <0.001 | 0.0 | 11.263 | 1.710 | <0.001 | 0.0 | −1.000 | 3.015 | 0.740 | 32.0 |
| Asia | −0.022 | 0.011 | 0.041 | 0.398 | 1.363 | 0.770 | 5.590 | 3.580 | 0.118 | |||
| North America | −0.031 | 0.018 | 0.086 | - | - | - | 0.765 | 3.888 | 0.844 | |||
| Oceania | −0.056 | 0.023 | 0.017 | - | - | - | −1.500 | 5.114 | 0.769 | |||
| South America | −0.026 | 0.012 | 0.034 | −0.061 | 1.717 | 0.972 | 0.47 | 3.184 | 0.883 | |||
| Europe | Referent a | Referent a | Referent a | |||||||||
| Year of study | −0.0004 | 0.001 | 0.677 | 0.0 | −0.141 | 0.109 | 0.195 | 0.0 | 0.056 | 0.251 | 0.822 | 0.0 |
| Breed/strain | ||||||||||||
| Arbor Acres | 0.020 | 0.020 | 0.314 | 0.0 | 3.469 | 1.494 | 0.020 | 0.0 | 0.651 | 2.072 | 0.753 | 28.0 |
| Ross 308 | 0.017 | 0.019 | 0.378 | 0.074 | 1.717 | 0.966 | −0.419 | 2.174 | 0.847 | |||
| Ross 708 | 0.005 | 0.034 | 0.880 | - | - | - | 0.536 | 3.212 | 0.868 | |||
| Cobb b | 0.016 | 0.020 | 0.420 | - | - | - | - | - | - | |||
| Vencobb | 0.031 | 0.024 | 0.190 | - | - | - | - | - | - | |||
| Hubbard JV | 0.031 | 0.033 | 0.341 | - | - | - | - | - | - | |||
| Unspecified | - | - | - | - | - | - | - | - | - | |||
| Cobb 500 | Referent a | Referent a | Referent a | |||||||||
| Age of birds | <0.001 | <0.001 | 0.981 | 0.0 | 0.166 | 0.039 | <0.001 | 15.0 | −0.179 | 0.084 | 0.032 | 24.0 |
| Number of birds | <0.001 | <0.001 | 0.442 | 0.0 | −0.008 | 0.006 | 0.179 | 0.0 | −0.004 | 0.011 | 0.712 | 34.0 |
| Study duration | <0.001 | <0.001 | 0.230 | 0.0 | 0.140 | 0.034 | <0.001 | 10.0 | −0.179 | 0.084 | 0.032 | 24.0 |
| Low-SBM Diet | High-SBM Diet | |||||
|---|---|---|---|---|---|---|
| Category/Functional Unit | Baseline | PTM | % Change | Baseline | PTM | % Change |
| Total overall gross emissions (t CO2-eq) | 482.0 | 465.2 | −3.49% | 515.4 | 497.3 | −3.51% |
| Feed emission intensity | ||||||
| Emissions per bird (kg CO2-eq/bird) | 4.11 | 3.92 | −4.07% | 4.45 | 4.25 | −4.10% |
| Emissions per live weight (kg CO2-eq/kg LW) | 1.64 | 1.57 | −4.07% | 1.78 | 1.70 | −4.10% |
| Total emission intensity | ||||||
| Emissions per bird (kg CO2-eq/bird) | 5.08 | 4.88 | −4.50% | 5.44 | 5.21 | −4.50% |
| Emissions per live weight (kg CO2-eq/kg LW) | 2.03 | 1.95 | −4.50% | 2.17 | 2.09 | −4.50% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Byrne, L.; Ross, S.; Taylor-Pickard, J.; Murphy, R. The Effect of Chelated Trace Mineral Supplementation in the Form of Proteinates on Broiler Performance Parameters and Mineral Excretion: A Meta-Analysis. Animals 2025, 15, 3062. https://doi.org/10.3390/ani15213062
Byrne L, Ross S, Taylor-Pickard J, Murphy R. The Effect of Chelated Trace Mineral Supplementation in the Form of Proteinates on Broiler Performance Parameters and Mineral Excretion: A Meta-Analysis. Animals. 2025; 15(21):3062. https://doi.org/10.3390/ani15213062
Chicago/Turabian StyleByrne, Laurann, Stephen Ross, Jules Taylor-Pickard, and Richard Murphy. 2025. "The Effect of Chelated Trace Mineral Supplementation in the Form of Proteinates on Broiler Performance Parameters and Mineral Excretion: A Meta-Analysis" Animals 15, no. 21: 3062. https://doi.org/10.3390/ani15213062
APA StyleByrne, L., Ross, S., Taylor-Pickard, J., & Murphy, R. (2025). The Effect of Chelated Trace Mineral Supplementation in the Form of Proteinates on Broiler Performance Parameters and Mineral Excretion: A Meta-Analysis. Animals, 15(21), 3062. https://doi.org/10.3390/ani15213062

