Primer-Dependent Insights into Rumen Microbiota and Methanogen Shifts Induced by Orange Peel Secondary Feed in Dairy Sheep
Abstract
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethical Statement
2.2. Production of Experimental Feedstuff
2.3. Animal Trial
2.4. Sampling and NGS Analysis
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ponnampalam, E.N.; Jairath, G.; Alves, S.P.; Gadzama, I.U.; Santhiravel, S.; Mapiye, C.; Holman, B.W.B. Sustainable livestock production by utilising forages, supplements, and agricultural by-products: Enhancing productivity, muscle gain, and meat quality—A review. Meat Sci. 2025, 229, 109921. [Google Scholar] [CrossRef] [PubMed]
- Herrero, M.; Mason-D’Croz, D.; Thornton, P.K.; Fanzo, J.; Rushton, J.; Godde, C.; Bellows, A.L.; de Groot, A.; Palmer, J.; Chang, J.; et al. Livestock and sustainable food systems: Status, trends, and priority actions. In Science and Innovations for Food Systems Transformation; Springer: Berlin/Heidelberg, Germany, 2021; p. 375. [Google Scholar] [CrossRef]
- Gerber, P.J.; Steinfeld, H.; Henderson, B.; Mottet, A.; Opio, C.; Dijkman, J.; Falcucci, A.; Tempio, G. Tackling Climate Change Through Livestock: A Global Assessment of Emissions and Mitigation Opportunities. 2013. Available online: https://www.fao.org/4/i3437e/i3437e.pdf (accessed on 14 February 2025).
- Patra, A.K.; Park, T.; Kim, M.; Yu, Z. Rumen methanogens and mitigation of methane emission by anti-methanogenic compounds and substances. J. Anim. Sci. Biotechnol. 2017, 8, 13. [Google Scholar] [CrossRef] [PubMed]
- Hook, S.E.; Wright, A.D.G.; McBride, B.W. Methanogens: Methane producers of the rumen and mitigation strategies. Archaea 2010, 2010, 945785. [Google Scholar] [CrossRef] [PubMed]
- Carberry, C.A.; Waters, S.M.; Kenny, D.A.; Creevey, C.J. Rumen methanogenic genotypes differ in abundance according to host residual feed intake phenotype and diet type. Appl. Environ. Microbiol. 2014, 80, 586–594. [Google Scholar] [CrossRef]
- Ungerfeld, E.M. Shifts in metabolic hydrogen sinks in the methanogenesis-inhibited ruminal fermentation: A meta-analysis. Front. Microbiol. 2015, 6, 37. [Google Scholar] [CrossRef]
- Cuervo, W.; Gómez-López, C.; DiLorenzo, N. Methane synthesis as a source of energy loss impacting microbial protein synthesis in beef cattle—A review. Methane 2025, 4, 10. [Google Scholar] [CrossRef]
- Greening, C.; Geier, R.R.; Wang, C.; Woods, L.C.; Morales, S.E.; McDonald, M.J.; Rushton-Green, R.; Morgan, X.C.; Koike, S.; Leahy, S.C. Alternative hydrogen uptake pathways suppress methane production in ruminants. bioRxiv 2018, 486894. [Google Scholar] [CrossRef]
- Pereira, A.M.; Dapkevicius, M.d.L.N.E.; Borba, A.E.S. Alternative pathways for hydrogen sink originated from the ruminal fermentation of carbohydrates: Which microorganisms are involved in lowering methane emission? Anim. Microbiome 2022, 4, 5. [Google Scholar] [CrossRef]
- Morgavi, D.P.; Forano, E.; Martin, C.; Newbold, C.J. Microbial ecosystem and methanogenesis in ruminants. Animal 2010, 4, 1024–1036. [Google Scholar] [CrossRef]
- Janssen, P.H.; Kirs, M. Structure of the archaeal community of the rumen. Appl. Environ. Microbiol. 2008, 74, 3619–3625. [Google Scholar] [CrossRef]
- Danielsson, R.; Schnürer, A.; Arthurson, V.; Bertilsson, J. Methanogenic population and CH4 production in Swedish dairy cows fed different levels of forage. Appl. Environ. Microbiol. 2012, 78, 6172–6179. [Google Scholar] [CrossRef] [PubMed]
- Ku-Vera, J.C.; Jiménez-Ocampo, R.; Valencia-Salazar, S.S.; Montoya-Flores, M.D.; Molina-Botero, I.C.; Arango, J.; Gómez-Bravo, C.A.; Aguilar-Pérez, C.F.; Solorio-Sánchez, F.J. Role of secondary plant metabolites on enteric methane mitigation in ruminants. Front. Vet. Sci. 2020, 7, 584. [Google Scholar] [CrossRef] [PubMed]
- Matthews, C.; Crispie, F.; Lewis, E.; Reid, M.; O’Toole, P.W.; Cotter, P.D. The rumen microbiome: A crucial consideration when optimising milk and meat production and nitrogen utilisation efficiency. Gut Microbes 2019, 10, 115–132. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Norman, H.C.; Kinley, R.D.; Laurence, M.; Wilmot, M.G.; Bender, H.; de Nys, R.; Tomkins, N.W. Asparagopsis taxiformis decreases enteric methane production from sheep. Anim. Prod. Sci. 2016, 58, 681–688. [Google Scholar] [CrossRef]
- Malyugina, S.; Holik, S.; Horký, P. Mitigation strategies for methane emissions in ruminant livestock: A comprehensive review of current approaches and future perspectives. Front. Anim. Sci. 2025, 6, 1610376. [Google Scholar] [CrossRef]
- Takahashi, L.S.; Sanches, T.; Issakowicz, J.; Bueno, M.S.; Bompadre, T.F.V.; de Paz, C.C.P.; Abdalla, A.L.; da Costa, R.L.D. Lipid supplementation with macadamia by-product reduces methane emissions by sheep. Small Rumin. Res. 2023, 231, 107174. [Google Scholar] [CrossRef]
- Niu, X.; Xing, Y.; Wang, J.; Bai, L.; Xie, Y.; Sun, M.; Yang, J.; Li, D. Effects of Caragana Korshinskii tannin on fermentation, methane emission, community of methanogens, and metabolome of rumen in sheep. Front. Microbiol. 2024, 15, 1334045. [Google Scholar] [CrossRef]
- Adejoro, F.A.; Hassen, A.; Akanmu, A.M. Effect of lipid-encapsulated acacia tannin extract on feed intake, nutrient digestibility and methane emission in sheep. Open Access J. 2019, 9, 863. [Google Scholar] [CrossRef]
- Muir, S.K.; Kennedy, A.J.; Kearney, G.A.; Hutton, P.G.; Hutton, P.G.; Thompson, A.; Vercoe, P.; Hill, J.O. Offering subterranean clover can reduce methane emissions compared with perennial ryegrass pastures during late spring and summer in sheep. Anim. Prod. Sci. 2020, 60, 1449–1458. [Google Scholar] [CrossRef]
- Della Rosa, M.; Sandoval, E.; Reid, P.; Luo, D.; Pacheco, D.; Janssen, P.H.; Jonker, A. Substituting ryegrass-based pasture with graded levels of forage rape in the diet of lambs decreases methane emissions and increases propionate, succinate, and primary alcohols in the rumen. J. Anim. Sci. 2022, 100, skac223. [Google Scholar] [CrossRef]
- Sun, X.; Pacheco, D.; Luo, D. Forage Brassica: A feed to mitigate enteric methane emissions? Anim. Prod. Sci. 2016, 56, 451–456. [Google Scholar] [CrossRef]
- Ding, X.-Z.; Long, R.; Zhang, Q.; Huang, X.; Guo, X.; Mi, J. Reducing methane emissions and the methanogen population in the rumen of tibetan sheep by dietary supplementation with coconut oil. Trop. Anim. Health Prod. 2012, 44, 1541–1545. [Google Scholar] [CrossRef] [PubMed]
- Machmüller, A.; Soliva, C.R.; Kreuzer, M. Methane-suppressing effect of myristic acid in sheep as affected by dietary calcium and forage proportion. Br. J. Nutr. 2003, 90, 529–540. [Google Scholar] [CrossRef] [PubMed]
- Machmüller, A.; Dohme, F.; Soliva, C.R.; Wanner, M.; Kreuzer, M. Diet composition affects the level of ruminal methane suppression by medium-chain fatty acids. Crop. Pasture Sci. 2001, 52, 713–722. [Google Scholar] [CrossRef]
- Zema, D.A.; Calabrò, P.S.; Folino, A.; Tamburino, V.; Zappia, G.; Zimbone, S.M. Valorisation of citrus processing waste: A review. Waste Manag. 2018, 80, 252–273. [Google Scholar] [CrossRef]
- de la Torre, I.; Martin-Dominguez, V.; Acedos, M.G.; Esteban, J.; Santos, V.E.; Ladero, M. Utilisation/upgrading of orange peel waste from a biological biorefinery perspective. Appl. Microbiol. Biotechnol. 2019, 103, 5975–5991. [Google Scholar] [CrossRef]
- Andrianou, C.; Passadis, K.; Malamis, D.; Moustakas, K.; Mai, S.; Barampouti, E.M. Upcycled Animal Feed: Sustainable Solution to Orange Peels Waste. Sustainability 2023, 15, 2033. [Google Scholar] [CrossRef]
- Alam, M.A.; Subhan, N.; Rahman, M.M.; Uddin, S.J.; Reza, H.M.; Sarker, S.D. Effect of citrus flavonoids, naringin and naringenin, on metabolic syndrome and their mechanisms of action. Adv. Nutr. 2014, 5, 404–417. [Google Scholar] [CrossRef]
- Oboh, G.; Ademosun, A.O.; Lajide, L. Improvement of the nutritive value and antioxidant properties of citrus peels through Saccharomyces cerevisiae solid substrate fermentation for utilization in livestock feed. Livest. Res. Rural. Dev. 2012, 24, 1–10. [Google Scholar]
- Seradj, A.R.; Abecia, L.; Crespo, J.; Villalba, D.; Fondevila, M.; Balcells, J. The effect of Bioflavex® and its pure flavonoid components on in vitro fermentation parameters and methane production in rumen fluid from steers given high concentrate diets. Anim. Feed. Sci. Technol. 2014, 197, 85–91. [Google Scholar] [CrossRef]
- Al-Sagheer, A.A.; Abdel Monem, U.M.; Sayed-Ahmed, E.E.; Khalil, B.A. Navel orange peel hydroethanolic extract as a phytogenic feed supplement: Impacts on growth, feed intake, nutrient digestibility, and serum metabolites of heat-stressed growing rabbits. Anim. Biotechnol. 2023, 34, 1083–1094. [Google Scholar] [CrossRef]
- Jayanegara, A.; Leiber, F.; Kreuzer, M. Meta–analysis of the relationship between dietary tannin level and methane formation in ruminants from in vivo and in vitro experiments. J. Anim. Physiol. Anim. Nutr. 2012, 96, 365–375. [Google Scholar] [CrossRef]
- Ngambi, J.W.; Selapa, M.J.; Brown, D.; Manyelo, T.G. The effect of varying levels of purified condensed tannins on performance, blood profile, meat quality and methane emission in male Bapedi sheep fed grass hay and pellet-based diet. Trop. Anim. Health Prod. 2022, 54, 263. [Google Scholar] [CrossRef] [PubMed]
- Siyal, F.A.; Wagan, R.; Bhutto, Z.A.; Tareen, M.H.; Arain, M.A.; Saeed, M.; Brohi, S.A.; Soomro, R.N. Effect of orange and banana peels on the growth performance of broilers. Adv. Anim. Vet. Sci. 2016, 4, 376–380. [Google Scholar] [CrossRef]
- Besharati, M.; Maggiolino, A.; Palangi, V.; Kaya, A.; Jabbar, M.; Eseceli, H.; De Palo, P.; Lorenzo, J.M. Tannin in ruminant nutrition. Molecules 2022, 27, 8273. [Google Scholar] [CrossRef]
- Nawab, A.; Li, G.; An, L.; Nawab, Y.; Zhao, Y.; Xiao, M.; Tang, S.; Sun, C. The potential effect of dietary tannins on enteric methane emission and ruminant production; as an alternative to antibiotic feed additives—A review. Ann. Anim. Sci. 2020, 20, 355–388. [Google Scholar] [CrossRef]
- Singh, B.; Bhat, T.K. Tannins revisited-changing perceptions of their effects on animal system. Anim. Nutr. Feed. Technol. 2001, 1, 3–18. [Google Scholar]
- Kotsampasi, B.; Tsiplakou, E.; Christodoulou, C.; Mavrommatis, A.; Mitsiopoulou, C.; Karaiskou, C.; Sossidou, E.; Fragioudakis, N.; Kapsomenos, I.; Bampidis, V.A.; et al. Effects of dietary orange peel essential oil supplementation on milk yield and composition, and blood and milk antioxidant status of dairy ewes. Anim. Feed. Sci. Technol. 2018, 245, 20–31. [Google Scholar] [CrossRef]
- Ferreira, A.C.D.; Santos, A.C.P.; de Lima Valença, R.; Silva, B.C.D.; Cirne, L.G.A.; Santana, J.C.S.; Oliveira, V.S.; Pereira, M.A.; Neto, J.A.S. Orange peel silage in lamb feeding improves meat fatty acid profile. Semin. Ciências Agrárias 2022, 43, 2629–2642. [Google Scholar] [CrossRef]
- Jiménez-Ocampo, R.; Montoya-Flores, M.D.; Pámanes-Carrasco, G.; Herrera-Torres, E.; Arango, J.; Estarrón-Espinosa, M.; Aguilar-Pérez, C.F.; Araiza-Rosales, E.E.; Guerrero-Cervantes, M.; Ku-Vera, J.C. Impact of orange essential oil on enteric methane emissions of heifers fed bermudagrass hay. Front. Vet. Sci. 2022, 9, 863910. [Google Scholar] [CrossRef]
- García-Rodríguez, J.; Saro, C.; Mateos, I.; González, J.S.; Carro, M.D.; Ranilla, M.J. Effects of replacing extruded maize by dried citrus pulp in a mixed diet on ruminal fermentation, methane production, and microbial populations in rusitec fermenters. Open Access J. 2020, 10, 1316. [Google Scholar] [CrossRef] [PubMed]
- Geerkens, C.H.; Schweiggert, R.M.; Steingass, H.; Boguhn, J.; Rodehutscord, M.; Carle, R. Influence of apple and citrus pectins, processed mango peels, a phenolic mango peel extract, and gallic acid as potential feed supplements on in vitro total gas production and rumen methanogenesis. J. Agric. Food Chem. 2013, 61, 5727–5737. [Google Scholar] [CrossRef] [PubMed]
- Jalal, H.; Giammarco, M.; Lanzoni, L.; Akram, M.Z.; Mammi, L.M.E.; Vignola, G.; Chincarini, M.; Formigoni, A.; Fusaro, I. Potential of fruits and vegetable by-products as an alternative feed source for sustainable ruminant nutrition and production: A review. Agriculture 2023, 13, 286. [Google Scholar] [CrossRef]
- Yu, S.; Li, L.; Zhao, H.; Tu, Y.; Liu, M.; Jiang, L.; Zhao, Y. Characterization of the dynamic changes of ruminal microbiota colonizing citrus pomace waste during rumen incubation for volatile fatty acid production. Microbiol. Spectr. 2023, 11, e0351722. [Google Scholar] [CrossRef]
- Broadway, P.R.; Callaway, T.R.; Carroll, J.A.; Donaldson, J.R.; Rathmann, R.J.; Johnson, B.J.; Cribbs, J.T.; Durso, L.M.; Nisbet, D.J.; Schmidt, T.B. Evaluation of the ruminal bacterial diversity of cattle fed diets containing citrus pulp pellets. Agric. Food Anal. Bacteriol. 2012, 2, 297–308. Available online: https://hdl.handle.net/2346/87784 (accessed on 8 October 2025).
- Brede, J.; Peukert, M.; Egert, B.; Breves, G.; Brede, M. Long-Term mootral application impacts methane production and the microbial community in the rumen simulation technique system. Front. Microbiol. 2021, 12, 691502. [Google Scholar] [CrossRef]
- Alnaimy, A.; Gad, A.E.; Mustafa, M.M.; Atta, M.A.A.; Basuony, H.A.M. Using of citrus by-products in farm animals feeding. Open Access J. Sci. 2017, 1, 58–67. [Google Scholar] [CrossRef]
- Negro, V.; Ruggeri, B.; Fino, D.; Tonini, D. Life cycle assessment of orange peel waste management. Resour. Conserv. Recycl. 2017, 127, 148–158. [Google Scholar] [CrossRef]
- Khan, M.I.; Ashraf, U.; Mubarik, U. Industrial application of orange peel waste: A review. Int. J. Agric. Biosci. 2023, 12, 1–8. [Google Scholar] [CrossRef]
- Dilek, F.B.; Barampouti, E.M.; Mai, S.; Moustakas, K.; Malamis, D.; Martin, D.S.; Yetis, U. Orange peel waste valorization: An integrated assessment of environmental and economic sustainability in animal feed production. Waste Biomass Valorization 2025, 16, 3873–3894. [Google Scholar] [CrossRef]
- Ahmed, E.; Gaafar, A.M.; Nishida, T. Agro–industrial by–products as ruminant feed: Nutritive value and in vitro rumen fermentation evaluation. Anim. Sci. J. 2024, 95, e13974. [Google Scholar] [CrossRef]
- Roque, B.M.; van Lingen, H.J.; Vrancken, H.; Kebreab, E. Effect of mootral-a garlic- and citrus-extract-based feed additive-on enteric methane emissions in feedlot cattle. Transl. Anim. Sci. 2019, 3, 1383–1388. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of AOAC International, 18th ed.; AOAC International: Gaithersburg, MD, USA, 2005. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef] [PubMed]
- Glimmpse 3.1.3. Available online: https://glimmpse.samplesizeshop.org/ (accessed on 26 March 2023).
- National Research Council. Nutrient Requirements of Small Ruminants: Sheep, Goats, Cervids, and New World Camelids; National Academy Press: Washington, DC, USA, 2007. [Google Scholar]
- Ramos-Morales, E.; Arco-Pérez, A.; Martín-García, A.I.; Yáñez-Ruiz, D.R.; Frutos, P.; Hervás, G. Use of stomach tubing as an alternative to rumen cannulation to study ruminal fermentation and microbiota in sheep and goats. Anim. Feed. Sci. Technol. 2014, 198, 57–66. [Google Scholar] [CrossRef]
- Mould, F.L.; Kliem, K.E.; Morgan, R.; Mauricio, R.M. In vitro microbial inoculum: A review of its function and properties. Anim. Feed. Sci. Technol. 2005, 123, 31–50. [Google Scholar] [CrossRef]
- Klindworth, A.; Pruesse, E.; Schweer, T.; Peplies, J.; Quast, C.; Horn, M.; Glöckner, F.O. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 2013, 41, e1. [Google Scholar] [CrossRef]
- Matsuo, Y.; Komiya, S.; Yasumizu, Y.; Yasuoka, Y.; Mizushima, K.; Takagi, T.; Kryukov, K.; Fukuda, A.; Morimoto, Y.; Naito, Y.; et al. Full-length 16S rRNA gene amplicon analysis of human gut microbiota using MinION™ nanopore sequencing confers species-level resolution. BMC Microbiol. 2021, 21, 35. [Google Scholar] [CrossRef]
- Takai, K.E.N.; Horikoshi, K. Rapid detection and quantification of members of the archaeal community by quantitative PCR using fluorogenic probes. Appl. Environ. Microbiol. 2000, 66, 5066–5072. [Google Scholar] [CrossRef]
- Herlemann, D.P.; Labrenz, M.; Jürgens, K.; Bertilsson, S.; Waniek, J.J.; Andersson, A.F. Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea. ISME J. 2011, 5, 1571–1579. [Google Scholar] [CrossRef]
- Takahashi, S.; Tomita, J.; Nishioka, K.; Hisada, T.; Nishijima, M. Development of a prokaryotic universal primer for simultaneous analysis of bacteria and archaea using next-generation sequencing. PLoS ONE 2014, 9, e105592. [Google Scholar] [CrossRef]
- Alvanou, M.V.; Loukovitis, D.; Melfou, K.; Giantsis, I.A. Utility of dairy microbiome as a tool for authentication and traceability. Open Life Sci. 2024, 19, 20220983. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing 2024; R Foundation for Statistical Computing, Vienna, Austria. Available online: https://www.R-project.org/ (accessed on 21 May 2025).
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting Linear Mixed-Effects Models Using lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- Jami, E.; Mizrahi, I. Composition and similarity of bovine rumen microbiota across individual animals. PLoS ONE 2012, 7, e33306. [Google Scholar] [CrossRef] [PubMed]
- Shin, N.R.; Whon, T.W.; Bae, J.W. Proteobacteria: Microbial signature of dysbiosis in gut microbiota. Trends Biotechnol. 2015, 33, 496–503. [Google Scholar] [CrossRef] [PubMed]
- Camargo, F.P.; Sakamoto, I.K.; Duarte, I.C.S.; Silva, E.L.; Varesche, M.B.A. Metataxonomic characterization of bacterial and archaeal community involved in hydrogen and methane production from citrus peel waste (Citrus sinensis L. Osbeck) in batch reactors. Biomass Bioenergy 2021, 149, 106091. [Google Scholar] [CrossRef]
- Johnson, K.A.; Johnson, D.E. Methane emissions from cattle. J. Anim. Sci. 1995, 73, 2483–2492. [Google Scholar] [CrossRef]
- Khurana, R.; Brand, T.; Tapio, I.; Bayat, A.R. Effect of a garlic and citrus extract supplement on performance, rumen fermentation, methane production, and rumen microbiome of dairy cows. J. Dairy Sci. 2023, 106, 4608–4621. [Google Scholar] [CrossRef]
- Bitsie, B.; Osorio, A.M.; Henry, D.D.; Silva, B.C.; Godoi, L.A.; Supapong, C.; Brand, T.; Schoonmaker, J.P. Enteric methane emissions, growth, and carcass characteristics of feedlot steers fed a garlic-and citrus-based feed additive in diets with three different forage concentrations. J. Anim. Sci. 2022, 100, skac139. [Google Scholar] [CrossRef]
- Brand, T.; Miller, M.; Kand, D. Effect of natural feed supplement on methane mitigation potential and performance in Holstein bull calves. Open J. Anim. Sci. 2021, 11, 222–230. [Google Scholar] [CrossRef]
- Ahmed, E.; Batbekh, B.; Fukuma, N.; Kand, D.; Hanada, M.; Nishida, T. A garlic and citrus extract: Impacts on behavior, feed intake, rumen fermentation, and digestibility in sheep. Anim. Feed. Sci. Technol. 2021, 278, 115007. [Google Scholar] [CrossRef]
- Kasapidou, E.; Mitlianga, P.; Basdagianni, Z.; Papatzimos, G.; Mai, S.; Barampouti, E.M.; Papadopoulos, V.; Karatzia, M.-A. Orange peel feed ingredient in lactating ewes: Effect on yoghurt chemical composition, fatty acid profile, antioxidant activity, physicochemical properties, and sensory quality. Appl. Sci. 2025, 15, 3641. [Google Scholar] [CrossRef]
- Yu, S.; Li, L.; Zhao, H.; Zhang, S.; Tu, Y.; Liu, M.; Zhao, Y.; Jiang, L. Dietary citrus flavonoid extract improves lactational performance through modulating rumen microbiome and metabolites in dairy cows. Food Funct. 2023, 14, 94–111. [Google Scholar] [CrossRef]
- Bampidis, V.A.; Robinson, P.H. Citrus by-products as ruminant feeds: A review. Anim. Feed. Sci. Technol. 2006, 128, 175–217. [Google Scholar] [CrossRef]
- Nam, I.S.; Garnsworthy, P.C.; Ahn, J.H. Supplementation of essential oil extracted from citrus peel to animal feeds decreases microbial activity and aflatoxin contamination without disrupting in vitro ruminal fermentation. Asian-Australas. J. Anim. Sci. 2006, 19, 1617–1622. [Google Scholar] [CrossRef]
Chemical Composition | Processed Orange Peel | Unprocessed Orange Peel |
---|---|---|
Dry matter (as fed) | 94.78 | 91.27 |
Crude protein | 14.75 | 7.18 |
Crude fat | 2.96 | 3.57 |
Neutral detergent fiber (NDF) | 34.00 | 34.10 |
Acid detergent fiber (ADF) | 22.80 | 24.80 |
Lignin Acid Detergent (ADL) | 6.40 | 9.80 |
Ash | 5.84 | 8.65 |
Water Soluble Solids | 49.00 | 35.99 |
Free Glucose | 0.67 | 0.85 |
Starch | 2.51 | 2.39 |
Cellulose | 11.28 | 17.47 |
Hemicellulose | 18.40 | 30.70 |
Acid Soluble Lignin | 0.83 | 1.06 |
Total Nitrogen, as a % of the dry matter basis (TN) | 9.30 | 10.70 |
Group | Lactation Number | Milk Yield (g/day) | Age (Years) | Body Weight (kg) |
---|---|---|---|---|
Control | 2.833 ± 0.389 | 1833.33 ± 356.965 | 3.03 ± 0.323 | 61.19 ± 0.781 |
Processed | 2.833 ± 0.389 | 1833.33 ± 418.511 | 3.02 ± 0.439 | 61.28 ± 0.575 |
Unprocessed | 2.833 ± 0.389 | 1829.16 ± 352.561 | 3.14 ± 0.352 | 61.11 ± 0.632 |
Diet | |||
---|---|---|---|
Ingredient Composition (gr/kg of Concentrate as Fed) | Control | Processed Orange Peel | Unprocessed Orange Peel |
Corn grain | 300 | 300 | 300 |
Barley grain | 200 | 200 | 200 |
Wheat grain | 200 | 120 | 120 |
Soyabean meal | 110 | 110 | 110 |
Sunflower meal | 150 | 120 | 120 |
Experimental feedstuff | 0 | 110 | 110 |
Limescale | 5 | 5 | 5 |
Monocalcium phosphate | 5 | 5 | 5 |
Salt | 5 | 5 | 5 |
Vitamin and mineral premix | 25 | 25 | 25 |
Chemical composition (g/100 g of DM) | |||
Dry matter (DM as fed) | 87.59 | 88.47 | 88.61 |
Crude protein | 16.94 | 16.93 | 15.61 |
Crude fat | 2.18 | 2.38 | 2.73 |
Crude fiber | 7.04 | 6.62 | 10.35 |
Neutral detergent fibre (NDF) | 17.49 | 18.36 | 22.40 |
Acid detergent fibre (ADF) | 8.51 | 9.31 | 13.81 |
Lignin Acid Detergent (ADL) | 0.41 | 1.17 | 1.53 |
Ash | 2.93 | 3.17 | 3.49 |
Chemical Composition | Alfalfa Hay | Wheat Straw |
---|---|---|
Dry matter (as fed) | 89.21 | 92.46 |
Crude protein | 20.18 | 4.78 |
Crude fat | 2.71 | 1.63 |
Neutral detergent fibre (om) | 60.42 | 73.12 |
Acid detergent fibre (om) | 32.6 | 49.41 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karatzia, M.-A.; Basdagianni, Z.; Termatzidou, S.-A.; Kotsampasi, B.; Kasapidou, E.; Mai, S.; Barampouti, E.-M.; Alvanou, M.V.; Loukovitis, D. Primer-Dependent Insights into Rumen Microbiota and Methanogen Shifts Induced by Orange Peel Secondary Feed in Dairy Sheep. Animals 2025, 15, 3041. https://doi.org/10.3390/ani15203041
Karatzia M-A, Basdagianni Z, Termatzidou S-A, Kotsampasi B, Kasapidou E, Mai S, Barampouti E-M, Alvanou MV, Loukovitis D. Primer-Dependent Insights into Rumen Microbiota and Methanogen Shifts Induced by Orange Peel Secondary Feed in Dairy Sheep. Animals. 2025; 15(20):3041. https://doi.org/10.3390/ani15203041
Chicago/Turabian StyleKaratzia, Maria-Anastasia, Zoitsa Basdagianni, Sofia-Afroditi Termatzidou, Basiliki Kotsampasi, Eleni Kasapidou, Sofia Mai, Elli-Maria Barampouti, Maria V. Alvanou, and Dimitrios Loukovitis. 2025. "Primer-Dependent Insights into Rumen Microbiota and Methanogen Shifts Induced by Orange Peel Secondary Feed in Dairy Sheep" Animals 15, no. 20: 3041. https://doi.org/10.3390/ani15203041
APA StyleKaratzia, M.-A., Basdagianni, Z., Termatzidou, S.-A., Kotsampasi, B., Kasapidou, E., Mai, S., Barampouti, E.-M., Alvanou, M. V., & Loukovitis, D. (2025). Primer-Dependent Insights into Rumen Microbiota and Methanogen Shifts Induced by Orange Peel Secondary Feed in Dairy Sheep. Animals, 15(20), 3041. https://doi.org/10.3390/ani15203041