Effects of the Litter of Origin and Rearing Litter Size on the Reproductive Potential of Replacement Gilts
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experiment 1
2.2. Experiment 2
2.3. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
VCL I | Vaginal and cervical length measured via catheter during the first oestrous cycle |
VCL II | Vaginal and cervical length measured via catheter during the second oestrous cycle |
OS | Litter of origin with fewer than 16 piglets |
OM | Litter of origin with 16 to 18 piglets |
OL | Litter of origin with more than 18 piglets |
RS | Litter of rearing with 10 piglets |
RM | Litter of rearing with 12 piglets |
RL | Litter of rearing with 14 piglets |
References
- Roher, G.A.; Cross, A.J.; Lents, C.A.; Miles, J.R.; Nonneman, D.J.; Rempel, L.A. 026 Genetic Improvement of Sow Lifetime Productivity. J. Anim. Sci. 2017, 95, 11–12. [Google Scholar] [CrossRef]
- Tummaruk, P.; Kesdangsakonwut, S. Uterine Size in Replacement Gilts Associated with Age, Body Weight, Growth Rate, and Reproductive Status. Czech J. Anim. Sci. 2014, 59, 511–518. [Google Scholar] [CrossRef]
- Lucia, T. Too Late or Too Soon? The Replacement Gilt Paradox. Anim. Reprod. 2024, 21, e20240087. [Google Scholar] [CrossRef] [PubMed]
- Tan, J.; Wang, M.; Sun, H.; Wang, C.; Wei, H.; Jiang, S.; Zhou, Y.; Peng, J. Optimizing Feeding Regimen of Replacement Gilts to Improve Their Reproductive Performance and Retention Rate of Their First 2 Parities. Anim. Nutr. 2022, 12, 227. [Google Scholar] [CrossRef] [PubMed]
- Carrión-López, M.J.; Orengo, J.; Madrid, J.; Vargas, A.; Martínez-Miró, S. Effect of Sow Body Weight at First Service on Body Status and Performance during First Parity and Lifetime. Animals 2022, 12, 3399. [Google Scholar] [CrossRef]
- Schwarz, T.; Nowicki, J.; Tuz, R.; Bartlewski, P.M. The Influence of Azaperone Treatment at Weaning on Reproductive Performance of Sows: Altering Effects of Season and Parity. Animal 2018, 12, 303–311. [Google Scholar] [CrossRef]
- Vallet, J.L.; Calderón-Díaz, J.A.; Stalder, K.J.; Phillips, C.; Cushman, R.A.; Miles, J.R.; Rempel, L.A.; Rohrer, G.A.; Lents, C.A.; Freking, B.A.; et al. Litter-of-Origin Trait Effects on Gilt Development. J. Anim. Sci. 2016, 94, 96–105. [Google Scholar] [CrossRef]
- Langendijk, P.; Soede, N.M.; Kemp, B. Uterine Activity, Sperm Transport, and the Role of Boar Stimuli around Insemination in Sows. Theriogenology 2005, 63, 500–513. [Google Scholar] [CrossRef]
- Faccin, J.E.G.; Tokach, M.D.; Goodband, R.D.; Derouchey, J.M.; Woodworth, J.C.; Gebhardt, J.T. Gilt Development to Improve Offspring Performance and Survivability. J. Anim. Sci. 2022, 100, skac128. [Google Scholar] [CrossRef]
- Amaral Filha, W.S.; Bernardi, M.L.; Wentz, I.; Bortolozzo, F.P. Reproductive Performance of Gilts According to Growth Rate and Backfat Thickness at Mating. Anim. Reprod. Sci. 2010, 121, 139–144. [Google Scholar] [CrossRef]
- Yang, Y.; Gan, M.; Yang, X.; Zhu, P.; Luo, Y.; Liu, B.; Zhu, K.; Cheng, W.; Chen, L.; Zhao, Y.; et al. Estimation of Genetic Parameters of Pig Reproductive Traits. Front. Vet. Sci. 2023, 10, 1172287. [Google Scholar] [CrossRef]
- Andersen, I.L.; Nævdal, E.; Bøe, K.E. Maternal Investment, Sibling Competition, and Offspring Survival with Increasing Litter Size and Parity in Pigs (Sus scrofa). Behav. Ecol. Sociobiol. 2011, 65, 1159–1167. [Google Scholar] [CrossRef]
- Flowers, W.L. Effect of Neonatal Litter Size and Early Puberty Stimulation on Sow Longevity and Reproductive Performance; National Pork Board Project #05-082; Research Report; Pork Checkoff: Des Moines, IA, USA, 2009. [Google Scholar]
- Rekiel, A.; Wiecek, J.; Rafalak, S.; Ptak, J.; Blicharski, T. Effect of Size of the Litter in Which Polish Landrace and Polish Large White Sows Were Born on the Number of Piglets Born and Reared. Ann. Anim. Sci. 2013, 9, 41–48. [Google Scholar] [CrossRef]
- Patterson, J.; Foxcroft, G. Gilt Management for Fertility and Longevity. Animals 2019, 9, 434. [Google Scholar] [CrossRef]
- Tuz, R.; Schwarz, T.; Małopolska, M.; Nowicki, J. The Use of Vagina–Cervix Length Measurement in Evaluation of Future Reproductive Performance of Sows: A Preliminary Study under Commercial Conditions. Animals 2019, 9, 158. [Google Scholar] [CrossRef] [PubMed]
- Małopolska, M.M.; Tuz, R.; Schwarz, T.; Ekanayake, L.D.; D’Ambrosio, J.; Ahmadi, B.; Nowicki, J.; Tomaszewska, E.; Grzesiak, M.; Bartlewski, P.M. Correlates of Reproductive Tract Anatomy and Uterine Histomorphometrics with Fertility in Swine. Theriogenology 2021, 165, 44–51. [Google Scholar] [CrossRef]
- Chen, Z.Y.; Dziuk, P.J. Influence of Initial Length of Uterus per Embryo and Gestation Stage on Prenatal Survival, Development, and Sex Ratio in the Pig. J. Anim. Sci. 1993, 71, 1895–1901. [Google Scholar] [CrossRef] [PubMed]
- Małopolska, M.M.M.; Tuz, R.; Lambert, B.D.D.; Nowicki, J.; Schwarz, T. The Replacement Gilt: Current Strategies for Improvement of the Breeding Herd. J. Swine Health Prod. 2018, 26, 208–214. [Google Scholar] [CrossRef]
- Knox, R.V. Physiology and Endocrinology Symposium: Factors Influencing Follicle Development in Gilts and Sows and Management Strategies Used to Regulate Growth for Control of Estrus and Ovulation. J. Anim. Sci. 2019, 97, 1433–1445. [Google Scholar] [CrossRef] [PubMed]
- Kapelański, W.; Zmudzińska, A.; Dybała, J.; Bocian, M.; Jankowiak, H.; Biegniewska, M.; Cebulska, A.; Kapelańska, J. Morphometric Estimation of Reproductive Systems in Polish Large White and Polish Landrace Gilts. Bull. Univ. Agric. Sci. Vet. Med. Anim. Sci. Biotechnol. 2010, 67, 463. [Google Scholar]
- Otten, W.; Kanitz, E.; Tuchscherer, M. Prenatal Stress in Pigs: Effects on Growth, Physiological Stress Reactions and Immune Function. Arch. Tierz. 2000, 43, 159–164. [Google Scholar]
- Otten, W.; Kanitz, E.; Tuchscherer, M.; Nürnberg, G. Effects of Prenatal Restraint Stress on Hypothalamic-Pituitary-Adrenocortical and Sympatho-Adrenomedullary Axis in Neonatal Pigs. Anim. Sci. 2001, 73, 279–287. [Google Scholar] [CrossRef]
- Gormley, A.; Jang, K.B.; Garavito-Duarte, Y.; Deng, Z.; Kim, S.W. Impacts of Maternal Nutrition on Sow Performance and Potential Positive Effects on Piglet Performance. Animals 2024, 14, 1858. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.; Wu, F.; Che, L. Programming Effects of Maternal Nutrition on Intestinal Development and Microorganisms of Offspring: A Review on Pigs. Microorganisms 2025, 13, 1151. [Google Scholar] [CrossRef] [PubMed]
- Lickfett, H.; Oster, M.; Vernunft, A.; Reyer, H.; Muráni, E.; Görs, S.; Metges, C.C.; Bostedt, H.; Wimmers, K. Impact of Parturition Induction, Farrowing Environment and Birth Weight Class on Endocrine and Metabolic Plasma Parameters Related to Piglet Vitality. BMC Vet. Res. 2025, 21, 406. [Google Scholar] [CrossRef] [PubMed]
- Knap, P.W.; Knol, E.F.; Sørensen, A.C.; Huisman, A.E.; van der Spek, D.; Zak, L.J.; Granados Chapatte, A.; Lewis, C.R.G. Genetic and Phenotypic Time Trends of Litter Size, Piglet Mortality, and Birth Weight in Pigs. Front. Anim. Sci. 2023, 4, 1218175. [Google Scholar] [CrossRef]
- Flowers, W.L. Litter-of-Origin Traits and Their Association with Lifetime Productivity in Sows and Boars. Mol. Reprod. Dev. 2023, 90, 585–593. [Google Scholar] [CrossRef]
- Ji, Y.; Wu, Z.; Dai, Z.; Sun, K.; Wang, J.; Wu, G. Nutritional Epigenetics with a Focus on Amino Acids: Implications for the Development and Treatment of Metabolic Syndrome. J. Nutr. Biochem. 2016, 27, 1–8. [Google Scholar] [CrossRef]
- Wijesena, H.R.; Nonneman, D.J.; Rohrer, G.A.; Lents, C.A. Relationships of Genomic Estimated Breeding Values for Age at Puberty, Birth Weight, and Growth during Development in Normal Cyclic and Acyclic Gilts. J. Anim. Sci. 2023, 101, skad258. [Google Scholar] [CrossRef]
- Warda, A.; Rekiel, A.; Blicharski, T.; Batorska, M.; Sońta, M.; Więcek, J. The Effect of the Size of the Litter in Which the Sow Was Born on Her Lifetime Productivity. Animals 2021, 11, 1525. [Google Scholar] [CrossRef]
- Foxcroft, G.R.; Dixon, W.T.; Dyck, M.K.; Novak, S.; Harding, J.C.S.; Almeida, F.C.R.L. Prenatal Programming of Postnatal Development in the Pig. Soc. Reprod. Fertil. Suppl. 2009, 66, 213–231. [Google Scholar] [CrossRef] [PubMed]
- Ji, Y.; Wu, Z.; Dai, Z.; Wang, X.; Li, J.; Wang, B.; Wu, G. Fetal and Neonatal Programming of Postnatal Growth and Feed Efficiency in Swine. J. Anim. Sci. Biotechnol. 2017, 8, 42. [Google Scholar] [CrossRef]
- Bazer, F.W.; Kim, J.; Ka, H.; Johnson, G.A.; Wu, G.; Song, G. Select Nutrients in the Uterine Lumen of Sheep and Pigs Affect Conceptus Development. J. Reprod. Dev. 2012, 58, 180–188. [Google Scholar] [CrossRef] [PubMed]
- Bazer, F.W.; Wu, G.; Johnson, G.A.; Wang, X. Environmental Factors Affecting Pregnancy: Endocrine Disrupters, Nutrients and Metabolic Pathways. Mol. Cell Endocrinol. 2014, 398, 53–68. [Google Scholar] [CrossRef]
- Ruíz-Flores, A.; Johnson, R.K. Direct and Correlated Responses to Two-Stage Selection for Ovulation Rate and Number of Fully Formed Pigs at Birth in Swine. J. Anim. Sci. 2001, 79, 2286–2297. [Google Scholar] [CrossRef] [PubMed]
- Johnson, R.K.; Nielsen, M.K.; Casey, D.S. Responses in Ovulation Rate, Embryonal Survival, and Litter Traits in Swine to 14 Generations of Selection to Increase Litter Size. J. Anim. Sci. 1999, 77, 541–557. [Google Scholar] [CrossRef]
- Schwarz, T.; Murawski, M.; Wierzchoś, E.; Bartlewski, P. An Ultrasonographic Study of Ovarian Antral Follicular Dynamics in Prepubertal Gilts During the Expected Activation of the Hypothalamo-Pituitary-Ovarian Axis. J. Reprod. Dev. 2013, 59, 409–414. [Google Scholar] [CrossRef]
- Tarleton, B.J.; Braden, T.D.; Wiley, A.A.; Bartol, F.F. Estrogen-Induced Disruption of Neonatal Porcine Uterine Development Alters Adult Uterine Function. Biol. Reprod. 2003, 68, 1387–1393. [Google Scholar] [CrossRef]
- Hewitt, S.C.; Li, Y.; Li, L.; Korach, K.S. Estrogen-Mediated Regulation of Igf1 Transcription and Uterine Growth Involves Direct Binding of Estrogen Receptor α to Estrogen-Responsive Elements. J. Biol. Chem. 2010, 285, 2676–2685. [Google Scholar] [CrossRef]
Diet Composition | 30–110 kg | >110 kg |
---|---|---|
Winter barley (%) | 28.8 | 30 |
Triticale (%) | 27 | 26 |
Wheat (%) | 20 | 15 |
Wheat bran (%) | 5 | 20 |
Soybean meal–46%CP (%) | 14.5 | 5.8 |
Vitamin–mineral premix (%) | 3.0 | 2.5 |
Limestone (%) | 1.5 | 0.30 |
Soybean oil (%) | 0.2 | 0.40 |
Daily feed intake (kg/day) | 2.8–3.0 | 3.0–3.5 |
Nutrients: | ||
Metabolizable energy (ME, kcal/kg) | 3.200 | 3.050 |
Crude protein (%) | 16.5 | 14.5 |
Lysine (%) | 0.85 | 0.70 |
Calcium (%) | 0.65 | 1.0 |
Total phosphorus (%) | 0.55 | 0.55 |
Crude fibre (%) | 4.5 | 5.5 |
Item | The Size of the Litter of Origin (Unit) | ||
---|---|---|---|
Group OS <16 | Group OM 16–18 | Group OL >18 | |
Mean ± SD | Mean ± SD | Mean ± SD | |
n | 30 | 31 | 29 |
Litter of origin | 13.20 A ± 0.75 | 17.00 B ± 0.89 | 20.80 C ± 0.40 |
Litter of rearing | 14 | 14 | 14 |
VCL I (cm) | 17.60 Aa ± 1.22 | 18.63 Bb ± 1.67 | 17.77 ABa ± 1.97 |
VCL II (cm) | 19.30 A ± 0.92 | 21.30 B ± 1.31 | 21.87 B ± 2.26 |
difference between VCL II and VCL I (cm) | 1.70 Aa ± 1.45 | 2.67 ABb ± 1.80 | 4.10 Bc ± 2.90 |
Number of piglets in first parity | 15.13 A ± 2.13 | 16.00 A ± 2.60 | 17.73 B ± 1.55 |
Source | DF | Type III SS | Mean Square | F Value | Pr > F |
---|---|---|---|---|---|
time_VCL | 1 | 359.4533638 | 359.4533638 | 174.06 | <0.0001 |
time_VCL × litter | 2 | 43.7338771 | 21.8669386 | 10.59 | <0.0001 |
Error(time_VCL) | 87 | 179.6605673 | 2.0650640 |
Item | The Size of the Litter of Rearing (Unit) | ||
---|---|---|---|
Group RS 10 | Group RM 12 | Group RL 14 | |
Mean ± SD | Mean ± SD | Mean ± SD | |
n | 29 | 32 | 29 |
Litter of origin | 17.07 ± 3.17 | 16.60 ± 3.42 | 17.33 ± 2.89 |
VCL I (cm) | 17.67 A ± 1.72 | 17.60 A ± 1.50 | 18.73 B ± 1.57 |
VCL II (cm) | 20.33 a ± 1.98 | 20.73 ab ± 1.78 | 21.40 b ± 1.85 |
difference between VCL II and VCL I (cm) | 2.67 ± 2.73 | 3.13 ± 2.06 | 2.67 ± 2.08 |
Number of piglets in first parity | 16.47 ± 2.45 | 15.87 ± 2.65 | 16.53 ± 1.86 |
Source | DF | Type III SS | Mean Square | F Value | Pr > F |
---|---|---|---|---|---|
time_VCL | 1 | 355.6906994 | 355.6906994 | 128.24 | <0.0001 |
time_VCL × litter | 2 | 1.2724168 | 0.6362084 | 0.23 | 0.7955 |
Error(time_VCL) | 87 | 241.3053610 | 2.7736248 |
Input Variable (x) | Output Variable (y) | Regression Equation | p Value | r 1 |
---|---|---|---|---|
Litter-of-origin | VCL I | y = 0.015x + 17.74 | 0.698 | 0.029 |
Litter-of-origin | VCL II | y = 0.34x + 15.04 | 0.000000 | 0.563 |
Litter-of-origin | VCL difference | y = 0.32x − 2.695 | 0.00001 | 0.445 |
Litter-of-origin | Number of piglets/first parity | y = 0.34x + 10.47 | 0.000005 | 0.461 |
Litter-of-rearing | VCL I | y = 0.15x + 16.02 | 0.064 | 0.139 |
Litter-of-rearing | VCL II | y = 0.15 + 18.84 | 0.105 | 0.121 |
Litter-of-rearing | VCL difference | y = 0.000x + 2.82 | 1.000 | 0.000 |
Litter-of-rearing | Number of piglets/first parity | y = 0.010x + 16.17 | 0.935 | 0.006 |
VCL I (cm) | Number of piglets/first parity | y = 0.22x + 12.39 | 0.147 | 0.154 |
VCL II (cm) | Number of piglets/first parity | y = 0.85x − 1.43 | 0.000000 | 0.692 |
difference between VCL II and VCL I (cm) | Number of piglets/first parity | y = 0.47x + 14.96 | 0.000005 | 0.461 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tuz, R.; Małopolska, M.M.; Schwarz, T.; Wantuła, M.; Tereszkiewicz, K. Effects of the Litter of Origin and Rearing Litter Size on the Reproductive Potential of Replacement Gilts. Animals 2025, 15, 3017. https://doi.org/10.3390/ani15203017
Tuz R, Małopolska MM, Schwarz T, Wantuła M, Tereszkiewicz K. Effects of the Litter of Origin and Rearing Litter Size on the Reproductive Potential of Replacement Gilts. Animals. 2025; 15(20):3017. https://doi.org/10.3390/ani15203017
Chicago/Turabian StyleTuz, Ryszard, Martyna M. Małopolska, Tomasz Schwarz, Mirosław Wantuła, and Krzysztof Tereszkiewicz. 2025. "Effects of the Litter of Origin and Rearing Litter Size on the Reproductive Potential of Replacement Gilts" Animals 15, no. 20: 3017. https://doi.org/10.3390/ani15203017
APA StyleTuz, R., Małopolska, M. M., Schwarz, T., Wantuła, M., & Tereszkiewicz, K. (2025). Effects of the Litter of Origin and Rearing Litter Size on the Reproductive Potential of Replacement Gilts. Animals, 15(20), 3017. https://doi.org/10.3390/ani15203017