Optimization of Loop-Mediated Isothermal Amplification for Avian Influenza Detection
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. The Material Under Study
2.2. Molecular Cloning of the Plasmid
2.3. Optimization of the LAMP Reaction
2.4. Verification of LAMP Results by Agarose Gel Electrophoresis
2.5. Detection of AIV by Real-Time PCR
2.6. Field Verification of Optimized LAMP Protocols
3. Results
3.1. Experimental Results and Data Analysis of PCR Setup
3.2. Experimental Results and Data Analysis of Optimized LAMP Reactions
3.3. Results of Field Testing for Optimized LAMP Protocols
4. Discussion
5. Practical Guidelines for AIV Detection Using Optimized LAMP
5.1. Target and Validation
5.2. Reaction Setup and Detection
5.3. Result Confirmation
5.4. Critical Considerations
5.5. Limitations
5.6. Sample Preparation and Storage Recommendations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Paukett, M.; Dharmasena, S.; Bessler, D.A. Revenue impacts of the 2015 avian influenza virus outbreak on the United States table egg wholesalers. Soc. Sci. Res. Netw. 2018, 1–43. [Google Scholar] [CrossRef]
- Palù, G.; Roggero, P.F.; Calistri, A. Could H5N1 bird flu virus be the cause of the next human pandemic? Front. Microbiol. 2024, 15, 1477738. [Google Scholar] [CrossRef]
- Nicita, A. Avian influenza and the poultry trade. In Policy Research Working Paper Series; The World Bank: Washington, DC, USA, 2008. [Google Scholar]
- Narrod, C.; Otter, J.; Pfeiffer, D. Using risk analysis to capture the spatial spread of avian influenza, evaluating the cost-effectiveness of alternative control strategies, and assessing the impact on the poor. In Environmental Informatics and Systems Research; Shaker Verlag: Düren, Germany, 2007; pp. 127–129. [Google Scholar]
- Hagerman, A.D.; Marsh, T.L. Theme overview: Economic consequences of highly pathogenic avian influenza. Choices Mag. Food Farm Resour. Issues 2016, 31, 1–2. [Google Scholar]
- Reuters. UK Detects Human Case of Bird Flu, Says Wider Risk Remains Low. 27 January 2025. Available online: https://www.reuters.com/business/healthcare-pharmaceuticals/uk-detects-human-case-bird-flu-2025-01-27 (accessed on 13 April 2025).
- Pekarek, M.J.; Weaver, E.A. Influenza B virus vaccine innovation through computational design. Pathogens 2024, 13, 755. [Google Scholar] [CrossRef]
- Kaverin, N.V.; Lvov, D.K. Orthomyxoviruses (Orthomyxoviridae). In Medical Virology; MIA: Moscow, Russia, 2008; pp. 176–183. (In Russian) [Google Scholar]
- Air, G.M.; Compans, R.W. Influenza B and influenza C viruses. In Springer eBooks; Springer: Vienna, Austria, 1983; pp. 280–304. [Google Scholar] [CrossRef]
- Hause, B.M.; Collin, E.A.; Liu, R.; Huang, B.; Sheng, Z.; Lu, W.; Wang, D.; A Nelson, E.; Li, F. Characterization of a novel influenza virus in cattle and swine: Proposal for a new genus in the Orthomyxoviridae family. mBio 2014, 5, e00031–e00114. [Google Scholar] [CrossRef] [PubMed]
- Kolobukhina, L.V.; Lvov, D.K.; Burtseva, E.I. Influenza. In Medical Virology; MIA: Moscow, Russia, 2008; pp. 382–393. (In Russian) [Google Scholar]
- Khantimirova, L.M.; Guseva, S.G.; Shevtsov, V.A.; Merkulov, V.A.; Bondarev, V.P. Comparative analysis of approaches to assess the quality of inactivated influenza vaccines: Regulatory requirements in the Russian Federation and European Union. Epidemiol. Vaccinal Prev. 2020, 19, 36–47. (In Russian) [Google Scholar] [CrossRef]
- Shen, J.; Zhang, H.; Sun, X.; Zhang, Y.; Wang, M.; Guan, M.; Liu, L.; Li, W.; Xu, H.; Xie, Y.; et al. Evolution and biological characteristics of H11 avian influenza viruses isolated from migratory birds and pigeons. Emerg. Microbes Infect. 2024, 13. [Google Scholar] [CrossRef]
- Lv, X.; Tian, J.; Li, X.; Bai, X.; Li, Y.; Li, M.; An, Q.; Song, X.; Xu, Y.; Sun, H.; et al. H10Nx avian influenza viruses detected in wild birds in China pose potential threat to mammals. One Health 2023, 16, 100515. [Google Scholar] [CrossRef]
- Yoon, S.W.; Webby, R.J.; Webster, R.G. Evolution and ecology of influenza A viruses. Curr. Top. Microbiol. Immunol. 2014, 385, 359–375. [Google Scholar] [CrossRef]
- Murashkina, T.; Sharshov, K.; Gadzhiev, A.; Petherbridge, G.; Derko, A.; Sobolev, I.; Dubovitskiy, N.; Loginova, A.; Kurskaya, O.; Kasianov, N.; et al. Avian influenza virus and avian paramyxoviruses in wild waterfowl of the Western Coast of the Caspian Sea (2017–2020). Viruses 2024, 16, 598. [Google Scholar] [CrossRef]
- Blagodatski, A.; Trutneva, K.; Glazova, O.; Mityaeva, O.; Shevkova, L.; Kegeles, E.; Onyanov, N.; Fede, K.; Maznina, A.; Khavina, E.; et al. Avian influenza in wild birds and poultry: Dissemination pathways, monitoring methods, and virus ecology. Pathogens 2021, 10, 630. [Google Scholar] [CrossRef]
- Bravo-Vasquez, N.; Schultz-Cherry, S. Avian influenza viruses. In Encyclopedia of Virology; Academic Press: New York, NY, USA, 2021. [Google Scholar] [CrossRef]
- World Organisation for Animal Health (WOAH). WAHIS Dashboard 2025. Available online: https://wahis.woah.org/#/dashboards/qd-dashboard (accessed on 23 May 2025).
- Alexakis, L.; Buczkowski, H.; Ducatez, M.; Fusaro, A.; Gonzales, J.L.; Kuiken, T.; Ståhl, K.; Staubach, C.; Svartström, O.; Terregino, C.; et al. Avian influenza overview June–September 2024. EFSA J. 2024, 22, e09057. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Sun, Y.; Li, Z.; Yang, W.; Feng, S. Are we prepared for the next pandemic: Monitor on increasing human and animal H5N1 avian influenza infection. Chin. Med. J. 2024, 137, 2776–2781. [Google Scholar] [CrossRef]
- World Organisation for Animal Health (WOAH). Avian Influenza (Terrestrial Animal Health Code). 2025. Available online: https://www.woah.org/fileadmin/Home/eng/Health_standards/tahm/3.03.04_AI.pdf (accessed on 23 May 2025).
- Moure, Z.; Cuadros, E.; Pablo-Marcos, D.; Reina, M.J.; de Benito, I.; Campo, A.B. Establishing a molecular laboratory in COVID-19 pandemic: The experience of a regional laboratory in Spain. Acta Microbiol. et Immunol. Hung. 2023, 70, 7–10. [Google Scholar] [CrossRef] [PubMed]
- Sathyanarayana, S.H.; Wainman, L.M. Laboratory approaches in molecular pathology: The polymerase chain reaction. In Diagnostic Molecular Pathology; Academic Press: New York, NY, USA, 2024; pp. 13–25. [Google Scholar] [CrossRef]
- Huang, R. Guidance for molecular diagnostic laboratory. In Diagnostic Molecular Biology; Academic Press: New York, NY, USA, 2023; pp. 521–541. [Google Scholar] [CrossRef]
- Srivastava, P.; Prasad, D. Isothermal nucleic acid amplification and its uses in modern diagnostic technologies. 3 Biotech 2023, 13, 200. [Google Scholar] [CrossRef]
- Zhou, S. Rapid and highly specific detection of communicable pathogens using one-pot loop probe-mediated isothermal amplification (oLAMP). Sens. Actuators B Chem. 2022, 357, 131385. [Google Scholar] [CrossRef]
- Wongsawat, K.; Dharakul, T.; Narat, P.; Rabablert, J. Detection of nucleic acid of classical swine fever virus by reverse transcription loop-mediated isothermal amplification (RT-LAMP). Health 2011, 3, 447–452. [Google Scholar] [CrossRef][Green Version]
- Kim, M.; Shin, S.W.; Shin, J.; Kim, E.; Yang, S.-M.; Gwak, Y.-S.; Lee, S.; Kim, H.-Y. Loop-mediated isothermal amplification (LAMP) assays for rapid on-site detection of Lacticaseibacillus casei, Lacticaseibacillus paracasei, and Lacticaseibacillus rhamnosus in probiotic products. Food Biosci. 2024, 58, 103562. [Google Scholar] [CrossRef]
- LaPointe, V.L.S.; Roy, M.; Rose, S.L.; Boutin, Y.; Couture, F. Conception and optimization of extraction-free loop-mediated isothermal amplification detection of dry rot fungus Serpula lacrymans. ACS Omega 2024, 9, 45080–45089. [Google Scholar] [CrossRef]
- Yang, L.; Wang, L.; Lv, M.; Sun, Y.; Cao, J. Clinical validation of DNA extraction-free qPCR, visual LAMP, and fluorescent LAMP assays for the rapid detection of African swine fever virus. Life 2022, 12, 1067. [Google Scholar] [CrossRef]
- Kang, J.; Seo, M.-R.; Chung, Y.-J. Development of reverse-transcription loop-mediated isothermal amplification assays for point-of-care testing of human influenza virus subtypes H1N1 and H3N2. Genom. Inform. 2022, 20, e46. [Google Scholar] [CrossRef]
- Simon, D.S.; Yew, C.W.; Kumar, V.S. Multiplexed reverse transcription loop-mediated isothermal amplification coupled with a nucleic acid-based lateral flow dipstick as a rapid diagnostic method to detect SARS-CoV-2. Microorganisms 2023, 11, 1233. [Google Scholar] [CrossRef]
- Sahni, A.K.; Grover, N.; Sharma, A.; Khan, I.D.; Kishore, J. Reverse transcription loop-mediated isothermal amplification (RT-LAMP) for diagnosis of dengue. Med. J. Armed Forces India 2013, 69, 246–253. [Google Scholar] [CrossRef]
- Parida, M.; Posadas, G.; Inoue, S.; Hasebe, F.; Morita, K. Real-time reverse transcription loop-mediated isothermal amplification for rapid detection of West Nile virus. J. Clin. Microbiol. 2004, 42, 257–263. [Google Scholar] [CrossRef]
- PHARMA. Gene-8C Isothermal Fluorescent PCR Amplifier. 2025. Available online: https://pharma-se.ru/equipments/biology/ptsr-amplifikatory/izotermicheskiy-fluorestsentnyy-ptsr-amplifikator-gene-8c/?set_filter=y (accessed on 18 June 2025).
- AXXIN. T8 Isothermal Amplifier. 2025. Available online: https://www.axxin.com/t8-iso (accessed on 10 March 2025).
- PCRBOT. Portable PCR Devices. 2025. Available online: https://pcrbot.ru/ (accessed on 24 March 2025).
- Ministry of Health of the Russian Federation. On the Approval of Sanitary Rules and Regulations SanPiN 3.3686-21; Ministry of Health of the Russian Federation: Moscow, Russia, 2021. [Google Scholar]
- State Sanitation and Epidemiological Regulation of the Russian Federation. Methodological Guidelines (MU 1.3.2569-09); State Sanitation and Epidemiological Regulation of the Russian Federation: Moscow, Russia, 2009. [Google Scholar]
- Golabi, M.; Flodrops, M.; Grasland, B.; Vinayaka, A.C.; Quyen, T.L.; Nguyen, T.; Bang, D.D.; Wolff, A. Development of reverse transcription loop-mediated isothermal amplification assay for rapid and on-site detection of avian influenza virus. Front. Cell. Infect. Microbiol. 2021, 11, 652048. [Google Scholar] [CrossRef]
- Navarro, F.; Martínez, F.F. Colorimetric LAMP/RT-LAMP Protocol. Protocols.io. 2022. Available online: https://doi.org/10.17504/protocols.io.5qpvor3x7v4o/v1 (accessed on 20 August 2024).
- Spackman, E.; Senne, D.A.; Myers, T.J.; Bulaga, L.L.; Garber, L.P.; Perdue, M.L.; Lohman, K.; Daum, L.T.; Suarez, D.L. Development of a real-time reverse transcriptase PCR assay for type A influenza virus and the avian H5 and H7 hemagglutinin subtypes. J. Clin. Microbiol. 2002, 40, 3256–3260. [Google Scholar] [CrossRef]
- Werbajh, S.; Larocca, L.; Carrillo, C.; Stolowicz, F.; Ogas, L.; Pallotto, S.; Cassará, S.; Mammana, L.; Zapiola, I.; Bouzas, M.B.; et al. Colorimetric RT-LAMP detection of multiple SARS-CoV-2 variants and lineages of concern direct from nasopharyngeal swab samples without RNA isolation. Viruses 2023, 15, 1910. [Google Scholar] [CrossRef] [PubMed]
- Duan, C.; Li, C.; Ren, R.; Bai, W.; Zhou, L. An overview of avian influenza surveillance strategies and modes. Sci. One Health 2023, 2, 100043. [Google Scholar] [CrossRef] [PubMed]
- Schoene, C.; Staubach, C.; Grund, C.; Globig, A.; Kramer, M.; Wilking, H.; Beer, M.; Conraths, F.J.; Harder, T.C.; the BL Monitoring Group. Towards a new, ecologically targeted approach to monitoring wild bird populations for avian influenza viruses. Epidemiol. Infect. 2013, 141, 1050–1060. [Google Scholar] [CrossRef] [PubMed]
- Slomka, M.J.; To, T.L.; Tong, H.H.; Coward, V.J.; Hanna, A.; Shell, W.; Pavlidis, T.; Densham, A.L.E.; Kargiolakis, G.; Arnold, M.E.; et al. Challenges for accurate and prompt molecular diagnosis of clades of highly pathogenic avian influenza H5N1 viruses emerging in Vietnam. Avian Pathol. 2012, 41, 177–193. [Google Scholar] [CrossRef]
- Rai, M.; Mishra, A. Diagnosis of AIV by molecular diagnostic techniques. Int. J. Chem. Stud. 2018, 6, 2284–2287. [Google Scholar]
- Haryanto, A.; Krisanti, B.; Irianingsih, S.H.; Yudianingtyas, D.W. Molecular diagnosis of avian influenza virus type A and subtype H5 by amplification of its M and H5 genes using one step simplex RT-PCR. J. Vet. 2013, 13, 92–101. [Google Scholar]
- Fan, Q.; Xie, Z.; Zhao, J.; Hua, J.; Wei, Y.; Li, X.; Li, D.; Luo, S.; Li, M.; Xie, L.; et al. Simultaneous differential detection of H5, H7, and H9 subtypes of avian influenza viruses by a triplex fluorescence loop-mediated isothermal amplification assay. Front. Vet. Sci. 2024, 11, 1419312. [Google Scholar] [CrossRef]
- Zhang, S.; Shin, J.; Shin, S.; Chung, Y.J. Development of reverse transcription loop-mediated isothermal amplification assays for point-of-care testing of avian influenza virus subtype H5 and H9. Genom. Inform. 2020, 18, e40. [Google Scholar] [CrossRef]
- Jang, W.S.; Lee, J.M.; Lee, E.; Park, S.; Lim, C.S. Loop-mediated isothermal amplification and lateral flow immunochromatography technology for rapid diagnosis of influenza A/B. Diagnostics 2024, 14, 967. [Google Scholar] [CrossRef]
- Lu, X.; Lin, H.; Feng, X.; Lui, G.C.Y.; Hsing, I.-M. Disposable and low-cost pen-like sensor incorporating nucleic-acid amplification based lateral-flow assay for at-home tests of communicable pathogens. Biosens. Bioelectron. 2022, 12, 100248. [Google Scholar] [CrossRef] [PubMed]
- Ahn, S.J.; Baek, Y.H.; Lloren, K.K.S.; Choi, W.-S.; Jeong, J.H.; Antigua, K.J.C.; Kwon, H.-I.; Park, S.-J.; Kim, E.-H.; Kim, Y.-I.; et al. Rapid and simple colorimetric detection of multiple influenza viruses infecting humans using a reverse transcriptional loop-mediated isothermal amplification (RT-LAMP) diagnostic platform. BMC Infect. Dis. 2019, 19, 676. [Google Scholar] [CrossRef] [PubMed]
- Shivakoti, S.; Ito, H.; Murase, T.; Ono, E.; Takakuwa, H.; Yamashiro, T.; Otsuki, K.; Ito, T. Development of reverse transcription-loop-mediated isothermal amplification (RT-LAMP) assay for detection of avian influenza viruses in field specimens. J. Vet. Med. Sci. 2010, 72, 519–523. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, H.; Sakoda, Y.; Endo, M.; Motoshima, M.; Yoshino, F.; Yamamoto, N.; Okamatsu, M.; Soejima, T.; Senba, S.; Kanda, H.; et al. Evaluation of the reverse transcription loop-mediated isothermal amplification (RT-LAMP) as a screening method for the detection of influenza viruses in the fecal materials of water birds. J. Vet. Med. Sci. 2011, 73, 753–758. [Google Scholar] [CrossRef]



| № | Pathogen | Ct PCR |
|---|---|---|
| 1 | Avian influenza virus A/chicken/Germany/N/11/49 (H10N7) | 26.19 |
| 2 | Avian influenza virus A/turkey/Wisconsin/66 (H9N2) | 24.33 |
| 3 | Avian influenza virus A/duck/England/56 (H11N6) | 22.35 |
| 4 | Avian influenza virus A/chicken/Pioneer/72 (H9N2) | 23.62 |
| 5 | Avian influenza virus A/turkey/Ontario/6118/68 (H8N4) | 25.35 |
| 6 | Avian influenza virus A/duck/Germany/1215/73 (H2N3) | 24.23 |
| 7 | Avian influenza virus Chekhov/72 (H7N1) | 20.07 |
| 8 | Newcastle disease virus Pestavil | N/A |
| 9 | Avian influenza virus A/Uzbekistan (C-68) (H7N2) | 25.30 |
| 10 | Avian influenza virus RU H7 | 27.85 |
| 11 | Avian influenza virus A(tern) SA/59 H5N3 | 26.82 |
| 12 | Infectious laryngotracheitis virus Bogatichevsky | N/A |
| 13 | Infectious laryngotracheitis virus 24a | N/A |
| 14 | Avian influenza virus A/chicken/Kaluga/71 (H6N2) | 25.65 |
| 15 | Newcastle disease virus La Sota | N/A |
| 16 | Gumboro disease virus 52/70-M | N/A |
| 17 | Avian infectious bronchitis virus Connecticut | N/A |
| 18 | Avian infectious bronchitis virus Bodett | N/A |
| 19 | Avian influenza virus H-52-SPF (H5N3) | 24.87 |
| 20 | Avian influenza virus A/goose/Zavidovo/23/10 (H5N1) | 25.26 |
| 21 | Avian influenza virus A/duck/Novosibirsk/56/05 (H5N1) | 20.56 |
| 22 | Avian influenza virus A/chicken/Sergiev-Posad/1/17 (H5N8) | 21.47 |
| 23 | Avian influenza virus A/rook/Nizhny Novgorod/2/17 (H5N8) | 22.62 |
| 24 | Avian influenza virus A/duck/California/72 (H3N8) | 24.68 |
| 25 | Avian influenza virus A/chicken/USA/PENN/1370/83 (H5N2) | 25.74 |
| 26 | Avian influenza virus A/duck/Czechoslovakia/56 (H4N6) | 26.66 |
| 27 | Avian influenza virus A/duck/Ukraine/1/63 (H3N8) | 23.03 |
| 28 | Avian influenza virus A/seal/Massachusetts/1/80 (H7N7) | 21.90 |
| 29 | Avian influenza virus A/R-42 (H7N1) | 20.62 |
| 30 | Avian influenza virus A/shearwater/Australia/1/72 (H6N5) | 22.28 |
| 31 | Avian influenza virus A/duck/Memphis/546/74 (H11N2) | 20.84 |
| 32 | Avian influenza virus A/black-headed gull/Astrakhan/1421/79 (H13N2) | 20.98 |
| 33 | Avian influenza virus A/gull/Astrakhan/78-4 (H1N1) | 26.31 |
| 34 | Avian influenza virus A/duck/Alberta/60/76 (H12N5) | 22.03 |
| Parameters | Real-Time LAMP | LAMP with Cresol Red | LAMP with Malachite Green | LAMP with Calcein |
|---|---|---|---|---|
| Analytical Sensitivity | 100% (95% CI: 93.7–100) | 100% (95% CI: 93.7–100) | 100% (95% CI: 93.7–100) | 100% (95% CI: 93.7–100) |
| Analytical Specificity | 100%(95% CI: 82.2–100) | 100%(95% CI: 82.2–100) | 100%(95% CI: 82.2–100) | 100%(95% CI: 82.2–100) |
| Test Results | ||||
| - Positive results (reference) | 27 | 27 | 27 | 27 |
| - Positive results (test) | 27 | 27 | 27 | 27 |
| - Negative results (reference) | 7 | 7 | 7 | 7 |
| - Negative results (test) | 7 | 7 | 7 | 7 |
| Kappa coefficient | 1 | 1 | 1 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Glazunova, A.; Sevskikh, T.; Kudryashov, D.; Sindryakova, I.; Kolbasova, O.; Erokhina, M.; Mukhin, A.; Kolbasov, D.; Titov, I. Optimization of Loop-Mediated Isothermal Amplification for Avian Influenza Detection. Animals 2025, 15, 2983. https://doi.org/10.3390/ani15202983
Glazunova A, Sevskikh T, Kudryashov D, Sindryakova I, Kolbasova O, Erokhina M, Mukhin A, Kolbasov D, Titov I. Optimization of Loop-Mediated Isothermal Amplification for Avian Influenza Detection. Animals. 2025; 15(20):2983. https://doi.org/10.3390/ani15202983
Chicago/Turabian StyleGlazunova, Anastasia, Timofey Sevskikh, Dmitry Kudryashov, Irina Sindryakova, Olga Kolbasova, Maria Erokhina, Andrey Mukhin, Denis Kolbasov, and Ilya Titov. 2025. "Optimization of Loop-Mediated Isothermal Amplification for Avian Influenza Detection" Animals 15, no. 20: 2983. https://doi.org/10.3390/ani15202983
APA StyleGlazunova, A., Sevskikh, T., Kudryashov, D., Sindryakova, I., Kolbasova, O., Erokhina, M., Mukhin, A., Kolbasov, D., & Titov, I. (2025). Optimization of Loop-Mediated Isothermal Amplification for Avian Influenza Detection. Animals, 15(20), 2983. https://doi.org/10.3390/ani15202983

