Exploring Aubrac Cattle as a Benchmark for Sustainable and Nutritious Beef Production
Abstract
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Biological Material
2.2. Assessment of Chemical Proximate Composition
2.3. Fatty Acid Profile Analysis and Lipid Profiles Implications
2.4. Amino Acid Profile Analysis and Protein Biological Value
2.5. Data Analysis
3. Results
3.1. Chemical Proximate Composition of Aubrac Beef
3.2. Fatty Acid Profiling of Aubrac Beef
3.3. Amino Acid Profiling of Aubrac Beef
4. Discussion
4.1. Chemical Proximate Composition of Aubrac Beef
4.2. Fatty Acid Profiling of Aubrac Beef
4.3. Amino Acid Profiling of Aubrac Beef
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Clinquart, A.; Ellies-Oury, M.P.; Hocquette, J.F.; Guillier, L.; Santé-Lhoutellier, V.; Prache, S. Review: On-farm and processing factors affecting bovine carcass and meat quality. Anim. Int. J. Anim. Biosci. 2022, 16 (Suppl. 1), 100426. [Google Scholar] [CrossRef]
- Mwangi, F.W.; Charmley, E.; Gardiner, C.P.; Malau-Aduli, B.S.; Kinobe, R.T.; Malau-Aduli, A.E. Diet and genetics influence beef cattle performance and meat quality characteristics. Foods 2019, 8, 648. [Google Scholar] [CrossRef]
- Madescu, B.M.; Lazar, R.; Ciobanu, M.M.; Boisteanu, P.C. Morpfo-Productive Characteristics of Aubrac Cattle Breed: A Sistematic Review. Sci. Pap. Ser. D Anim. Sci. 2022, 65, 279–283. [Google Scholar]
- Sheveleva, O.M.; Bakharev, A.A.; Lysenko, L.A.; Chasovshchikova, M.A. Exterior features and meat productivity of Aubrac breed cattle during acclimatization in the conditions of Northern). E3S Web Conf. 2021, 254, 08004. [Google Scholar] [CrossRef]
- Scollan, N.D.; Dannenberger, D.; Nuernberg, K.; Richardson, I.; MacKintosh, S.; Hocquette, J.F.; Moloney, A.P. Enhancing the nutritional and health value of beef lipids and their relationship with meat quality. Meat Sci. 2014, 97, 384–394. [Google Scholar] [CrossRef]
- Wood, J.D.; Enser, M.; Fisher, A.V.; Nute, G.R.; Sheard, P.R.; Richardson, R.I.; Hughes, S.I.; Whittington, F.M. Fat deposition, fatty acid composition and meat quality: A review. Meat Sci. 2008, 78, 343–358. [Google Scholar] [CrossRef]
- Frank, D.; Ball, A.; Hughes, J.; Krishnamurthy, R.; Piyasiri, U.; Stark, J.; Warner, R. Sensory and Flavor Chemistry Characteristics of Australian Beef: Influence of Intramuscular Fat, Feed, and Breed. J. Agric. Food Chem. 2016, 64, 4299–4311. [Google Scholar] [CrossRef]
- French, P.; Oriordan, E.G.; Monahan, F.J.; Caffrey, P.J.; Moloney, A.P. Fatty acid composition of intra-muscular triacylglycerols of steers fed autumn grass and concentrates. Livest. Prod. Sci. 2003, 81, 307–317. [Google Scholar] [CrossRef]
- Gatellier, P.; Mercier, Y.; Juin, H.; Renerre, M. Effect of finishing mode (pasture or mixed diet) on lipid composition, colour stability and lipid oxidation in meat from Charolais cattle. Meat Sci. 2004, 69, 175–186. [Google Scholar] [CrossRef]
- Boisteanu, P.C.; Flocea, E.I.; Anchidin, B.G.; Madescu, B.M.; Matei, M.; Murariu, O.C.; Frunza, G.; Postolache, A.N.; Ciobanu, M.M. Essential and toxic elements analysis of wild boar tissues from the north-eastern Romania and health risk implications. Front. Sustain. Food Syst. 2024, 8, 1406579. [Google Scholar] [CrossRef]
- Ito, R.H.; Prado, I.N.; Rotta, P.P.; Oliveira, M.G.; Prado, R.M.; Moletta, J.L. Carcass characteristics, chemical composition and fatty acid profile of Longissimus muscle of young bulls from four genetic groups finished in feedlot. R. Bras. Zootec. 2012, 41, 384–391. [Google Scholar] [CrossRef]
- Mezgebo, G.B.; Monahan, F.J.; McGee, M.; O’Riordan, E.G.; Richardson, I.R.; Brunton, N.P.; Moloney, A.P. Fatty acid, volatile and sensory characteristics of beef as affected by grass silage or pasture in the bovine diet. Food Chem. 2017, 235, 86–97. [Google Scholar] [CrossRef] [PubMed]
- Dransfield, E.; Martin, J.F.; Bauchart, D.; Abouelkaram, S.; Lepetit, J.; Culioli, J.; Jurie, C.; Picard, B. Meat quality and composition of three muscles from French cull cows and young bulls. Anim. Sci. 2003, 76, 387–399. [Google Scholar] [CrossRef]
- Mordenti, A.L.; Brogna, N.; Canestrari, G.; Bonfante, E.; Eusebi, S.; Mammi, L.M.E.; Giaretta, E.; Formigoni, A. Effects of breed and different lipid dietary supplements on beef quality. Anim. Sci. J. 2019, 90, 619–627. [Google Scholar] [CrossRef]
- Wood, J.D.; Richardson, R.I.; Nute, G.R.; Fisher, A.V.; Campo, M.M.; Kasapidou, E.; Sheard, P.R.; Enser, M. Effects of fatty acids on meat quality: A review. Meat Sci. 2004, 66, 21–32. [Google Scholar] [CrossRef]
- Aitzhanova, I.; Naimanov, D.K.; Miciński, B.; Dzik Miciński, J. Fattening performance of bulls of three breeds fattened semi-intensively in the kostanay region. J. Biol. Sci. 2017, 17, 157–165. [Google Scholar] [CrossRef]
- Duwalage, K.I.; Wynn, M.T.; Mengersen, K.; Nyholt, D.; Perrin, D.; Robert, P.F. Predicting carcass weight of grass-fed beef cattle before slaughter using statistical modelling. Animals 2023, 13, 1968. [Google Scholar] [CrossRef]
- Reddy, B.V.; Sivakumar, A.S.; Jeong, D.W.; Woo, Y.B.; Park, S.J.; Lee, S.Y.; Byun, J.Y.; Kim, C.H.; Cho, S.H.; Hwang, I. Beef quality traits of heifer in comparison with steer, bull and cow at various feeding environments: Beef Quality Traits of Heifers. Anim. Sci. J. 2015, 86, 1–16. [Google Scholar] [CrossRef]
- Moloney, A.P.; Mooney, M.T.; Troy, D.J.; Keane, M.G. Finishing cattle at pasture at 30 months of age or indoors at 25 months of age: Effects on selected carcass and meat quality characteristics. Livest. Sci. 2011, 141, 17–23. [Google Scholar] [CrossRef]
- Alabiso, M.; Bonanno, A.; Giosuè, C.; Di Grigoli, A.; Portolano, B.; Maniaci, G. The production of typical cured meats from cattle of Cinisara breed. Proceeding of XXIII ASPA Congress, in Ita. J. Anim. Sci. 2019, 18, 164. [Google Scholar] [CrossRef]
- Choat, W.T.; Paterson, J.A.; Rainey, B.M.; King, M.C.; Smith, G.C.; Belk, K.E.; Lipsey, R.J. The effects of cattle sex on carcass characteristics and Longissimus muscle palatability. J. Anim. Sci. 2006, 84, 1820–1826. [Google Scholar] [CrossRef]
- Apaoblaza, A.; Gerrard, S.D.; Matarneh, S.K.; Wicks, J.C.; Kirkpatrick, L.; England, E.M.; Scheffler, T.L.; Duckett, S.K.; Shi, H.; Silva, S.L.; et al. Muscle from grass- and grain-fed cattle differs energetically. Meat Sci. 2020, 161, 107996. [Google Scholar] [CrossRef] [PubMed]
- Davidescu, M.A.; Simeanu, D.; Gorgan, D.L.; Ciorpac, M.; Creanga, S. Analysis of Phylogeny and Genetic Diversity of Endangered Romanian Grey Steppe Cattle Breed, a Reservoir of Valuable Genes to Preserve Biodiversity. Agriculture 2022, 12, 2059. [Google Scholar] [CrossRef]
- Ahmed, R.H.; Schmidtmann, C.; Mugambe, J.; Thaller, G. Effects of the breeding strategy beef-on-dairy at animal, farm and sector levels. Animals 2023, 13, 2182. [Google Scholar] [CrossRef]
- Matei, A.C.; Madescu, B.M.; Onofrei, M. Financial management of european funds for romanian agriculture. Sci. Pap.-Ser. Manag. Econ. Eng. Agric. Rural. Dev. 2022, 22, 489–494. [Google Scholar]
- Barragán-Hernández, W.; Dugan, M.E.R.; Aalhus, J.L.; Penner, G.; Vahmani, P.; Campos, O.L.; Juárez, M.; Segura, J.; Ledesma, L.M.; Prieto, N. Effect of Feeding Barley, Corn, and a Barley/Corn Blend on Beef Composition and End-Product Palatability. Foods 2021, 10, 977. [Google Scholar] [CrossRef]
- Warmate, D.; Onarinde, B.A. Food safety incidents in the red meat industry: A review of foodborne disease outbreaks linked to the consumption of red meat and its products, 1991 to 2021. Int. J. Food Microbiol. 2023, 398, 110240. [Google Scholar] [CrossRef]
- Żurek, J.; Rudy, M.; Duma-Kocan, P.; Stanisławczyk, R.; Gil, M. Impact of kosher slaughter methods of heifers and young bulls on physical and chemical properties of their meat. Foods 2022, 11, 622. [Google Scholar] [CrossRef]
- Daley, C.A.; Abbott, A.; Doyle, P.S.; Nader, G.A.; Larson, S. A Review of Fatty Acid Profiles and Antioxidant Content in Grass-Fed and Grain-Fed Beef. Nutr. J. 2010, 9, 10. [Google Scholar] [CrossRef]
- Mueller, L.F.; Balieiro, J.C.C.; Ferrinho, A.M.; Martins, T.S.; Silva Corte, R.R.P.; Amorim, T.R.; Furlan, J.M.J.; Baldi, F.; Pereira, A.S.C. Gender status effect on carcass and meat quality traits of feedlot Angus × Nellore cattle. Anim. Sci. J. 2019, 90, 1078–1089. [Google Scholar] [CrossRef]
- European Union. Regulation (EC) No 1099/2009 of 24 September 2009 on the Protection of Animals at the Time of Killing. Off. J. Eur. Union 2009, L303, 1–30. [Google Scholar]
- ISO 3100-1:1991; Meat and Meat Products—Sampling and Preparation of Test Samples—Part 1: Sampling. Interna-tional Organization for Standardization: Geneva, Switzerland, 1991.
- Kul, E.; Şahin, A.; Aksoy, Y.; Uğurlutepe, E. The effects of slaughter weight on chemical composition, physical properties, and fatty acid profile of musculus Longissimus dorsi in Holstein bulls. Trop. Anim. Health Prod. 2020, 52, 159–165. [Google Scholar] [CrossRef]
- Simeanu, D.; Radu-Rusu, R.M.; Mintas, O.S.; Simeanu, C. Qualitative and Nutritional Evaluation of Paddlefish (Polyodon spathula) Meat Production. Agriculture 2022, 12, 1965. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of the Association of Official Analytical Chemists, 15th ed.; AOAC: Washington, DC, USA, 1990. [Google Scholar]
- Criste, F.L.; Mierlita, D.; Simeanu, D.; Boisteanu, P.C.; Pop, I.M.; Georgescu, G.; Nacu, G. Study of Fatty Acids Profile and Oxidative Stability of Egg Yolk from Hens Fed a Diet Containing White Lupine Seeds Meal. Rev. Chim. 2018, 69, 2454–2460. [Google Scholar] [CrossRef]
- FAO; WHO. Protein Quality Evaluation; Report of Joint FAO/WHO Export Consultant, FAO Food Nutrition Paper 51; FAO: Rome, Italy, 1991; pp. 19–21. [Google Scholar]
- Ulbricht, T.L.V.; Southgate, D.A.T. Coronary heart disease: Seven dietary factors. Lancet 1991, 338, 985–992. [Google Scholar] [CrossRef] [PubMed]
- Fernandez, M.; Ordóñez, J.A.; Cambero, I.; Santos, C.; Pin, C.; De La Hoz, L. Fatty acid compositions of selected varieties of Spanish dry ham related to their nutritional implications. Food. Chem. 2007, 9, 107–112. [Google Scholar] [CrossRef]
- FAO. Protein and Amino Acid Requirements in Human Nutrition; Report of Joint WHO/FAO/UNU Expert Consultation, WHO Technical Report Series 935; FAO: Rome, Italy, 2007; p. 15. [Google Scholar]
- Hollo, G.; Csapo, J.; Szucs, E.; Tozser, J.; Repa, I.; Hollo, I. Influence of breed, slaughter weight and gender on chemical composition of beef. Part 1. Amino acid profile and biological value of proteins. Anim. Biosci. (Asia-Australas J. Anim. Sci.) 2001, 14, 1555–1559. [Google Scholar] [CrossRef]
- Kassis, N.M.; Beamer, S.K.; Matak, K.E.; Tou, J.C.; Jaczynski, J. Nutritional composition of novel nutraceutical egg products developed with omega-3-rich oils. LWT-Food Sci. Technol. 2010, 43, 1204–1212. [Google Scholar] [CrossRef]
- Kotlarz, A.; Sujak, A.; Strobel, W.; Grzesiak, W. Chemical composition and nutritive value of protein of pea seeds-effect of harvesting year and variety. Veg. Crops Res. Bull. 2011, 75, 57–69. [Google Scholar] [CrossRef]
- Mierliță, D.; Simeanu, D.; Pop, I.M.; Criste, F.; Pop, C.; Simeanu, C.; Lup, F. Chemical Composition and Nutritional Evaluation of the Lupine Seeds (Lupinus albus L.) from Low-Alkaloid Varieties. Rev. Chim. 2018, 69, 453–458. [Google Scholar] [CrossRef]
- Oser, B.L. An integrated essential amino acid index for predicting the biological value of proteins. In Protein and Amino Acid Nutrition; Albanese, A.A., Ed.; Academic Press: New York, NY, USA, 1959; pp. 281–296. [Google Scholar]
- Simeanu, D.; Nistor, A.C.; Avarvarei, B.V.; Boișteanu, P.C. Chemical Composition and Nutritional Evaluation of Pasteurized Egg Melange. Rev. Chim. 2019, 70, 1390–1395. [Google Scholar] [CrossRef]
- Crisan, E.V.; Sands, A. Edible mushrooms: Nutritional value. In The Biology and Cultivation of Edible Mushrooms; Academic Press: New York, NY, USA, 1978; pp. 137–165. [Google Scholar]
- Humada, M.J.; Sañudo, C.; Serrano, E. Chemical Composition, Vitamin E Content, Lipid Oxidation, Colour and Cooking Losses in Meat from Tudanca Bulls Finished on Semi-Extensive or Intensive Systems and Slaughtered at 12 or 14 months. Meat Sci. 2014, 96, 908–915. [Google Scholar] [CrossRef]
- Beriain, M.J.; Murillo-Arbizu, M.T.; Insausti, K.; Ibañez, F.C.; Cord, C.L.; Carr, T.R. Physicochemical and Sensory Assessments in Spain and United States of PGI-Certified Ternera de Navarra vs. Certified Angus Beef. Foods 2021, 10, 1474. [Google Scholar] [CrossRef] [PubMed]
- Jukna, V.; Junka, C.; Prusevičius, V.; Meškinytė-Kaušilienė, E.; Pečiulaitienė, N. Meat quality of different beef cattle breeds fed high energy forage. Zemdirbyste-Agriculture 2017, 104, 277–282. [Google Scholar] [CrossRef]
- Bakharev, A.; Sheveleva, O.; Fomintsev, K.; Lysenko, L. The effectiveness of rearing of steers of Aubrac breed depending on the age of their slaughter. Gl. Zooteh. (Head Anim. Breed.) 2020, 3, 3–8. [Google Scholar] [CrossRef]
- Chen, D.; Wang, X.; Guo, Q.; Deng, H.; Luo, J.; Yi, K.; Sun, A.; Chen, K.; Shen, Q. Muscle fatty acids, meat flavor compounds and sensory characteristics of Xiangxi yellow cattle in comparison to Aberdeen Angus. Animals 2022, 12, 1161. [Google Scholar] [CrossRef]
- Blanco, M.; Ripoll, G.; Delavaud, C.; Casasús, I. Performance, carcass and meat quality of young bulls, steers and heifers slaughtered at a common body weight. Livest. Sci. 2020, 240, 104156. [Google Scholar] [CrossRef]
- Bostami, A.B.M.R.; Mun, H.S.; Yang, C.J. Longissimus dorsi muscle’s chemical composition, fatty acid pattern, and oxidative stability in Korean Hanwoo finishing cattle following slaughtering and stunning with or without brain disruption and state of consciousness. Foods 2023, 12, 928. [Google Scholar] [CrossRef]
- Davis, H.; Magistrali, A.; Butler, G.; Stergiadis, S. Nutritional benefits from fatty acids in organic and grass-fed beef. Foods 2022, 11, 646. [Google Scholar] [CrossRef]
- De Smet, S.; Raes, K.; Demeyer, D. Meat fatty acid composition as affected by fatness and genetic factors: A review. Anim. Res. 2004, 53, 81–98. [Google Scholar] [CrossRef]
- Ucar, B.; Gholami, Z.; Svobodova, K.; Hradecka, I.; Honig, V. A comprehensive study for determination of free fatty acids in selected biological material: A review. Foods 2024, 13, 1891. [Google Scholar] [CrossRef] [PubMed]
- Chambaz, A.; Scheeder, M.R.L.; Kreuzer, M.; Dufey, P.A. Meat quality of Angus, Simmental, Charolais and Limousin steers compared at the same intramuscular fat content. Meat Sci. 2003, 63, 491–500. [Google Scholar] [CrossRef] [PubMed]
- Bureš, D.; Bartoň, L.; Zahrádková, R.; Teslík, V.; Krejčová, M. Chemical composition, sensory characteristics, and fatty acid profile of muscle from Aberdeen Angus, Charolais, Simmental, and Hereford bulls. Czech J. Anim. Sci. 2006, 51, 279–284. [Google Scholar] [CrossRef]
- Bartoň, L.; Bureš, D.; Kudrna, V. Meat quality and fatty acid profile of the musculus Longissimus lumborum in Czech Fleckvieh, Charolais and Charolais × Czech Fleckvieh bulls fed different types of silages. Czech J. Anim. Sci. 2010, 55, 479–487. [Google Scholar] [CrossRef]
- Zhou, L.; Ren, Y.; Shi, Y.; Fan, S.; Zhao, L.; Dong, M.; Li, J.; Yang, Y.; Yu, Y.; Zhao, Q.; et al. Comprehensive foodomics analysis reveals key lipids affect aroma generation in beef. Food Chem. 2024, 461, 140954. [Google Scholar] [CrossRef]
- Elmore, J.S.; Mottram, D.S.; Enser, M.; Wood, J.D. Effect of the polyunsaturated fatty acid composition of beef muscle on the profile of aroma volatiles. J. Agric. Food Chem. 1999, 47, 1619–1625. [Google Scholar] [CrossRef]
- Ciobanu, M.M.; Munteanu, M.; Postolache, A.N.; Boisteanu, P.C. Toxic Heavy Metals Content In Wild Boar And Venison Meat: A Brief Review. Sci. Pap. Ser. D. Anim. Sci. 2020, LXIII, 435–441. [Google Scholar]
- Fabbri, G.; Gianesella, M.; Gallo, L.; Morgante, M.; Contiero, B.; Muraro, M.; Boso, M.; Fiore, E. Application of ultrasound images texture analysis for the estimation of intramuscular fat content in the Longissimus thoracis muscle of beef cattle after slaughter: A methodological study. Animals 2021, 11, 1117. [Google Scholar] [CrossRef]
- Kallas, Z.; Realini, C.E.; Gi, J.M. Health information impact on the relative importance of beef attributes including its enrichment with polyunsaturated fatty acids (omega-3 and conjugated linoleic acid). Meat Sci. 2014, 97, 497–503. [Google Scholar] [CrossRef]
- Schumacher, M.; DelCurto-Wyffels, H.; Thomson, J.; Boles, J. Fat Deposition and Fat Effects on Meat Quality—A Review. Animals 2022, 12, 1550. [Google Scholar] [CrossRef]
- Aalhus, J.L.; Janz, J.A.M.; Tong, A.K.W.; Jones, S.D.M.; Robertso, W.M. The influence of chilling rate and fat cover on beef quality. Can. J. Anim. Sci. 2021, 81, 321–330. [Google Scholar] [CrossRef]
- Aviles, C.; Martinez, A.L.; Domenech, V.; Pena, F. Effect of feeding system and breed on growth performance, and carcass and meat quality traits in two continental beef breeds. Meat Sci. 2015, 107, 94–103. [Google Scholar] [CrossRef] [PubMed]
- Bara, L.; Pop, C.; Horj, E.; Iordache, A.; Laslo, C.; Culea, M. Amino acids determination in meat by GC-MS. Bull. Univ. Agric. Sci. Vet. Med. Cluj-Napoca Agric. 2010, 67, 75–79. [Google Scholar] [CrossRef] [PubMed]
- Albracht-Schulte, K.; Islam, T.; Johnson, P.; Moustaid-Moussa, N. Systematic Review of Beef Protein Effects on Gut Microbiota: Implications for Health. Adv. Nutr. 2021, 12, 102–114. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.; Cross, H.R.; Gehring, K.B.; Savell, J.W.; Arnold, A.N.; McNeill, S.H. Composition of free and peptide-bound amino acids in beef chuck, loin, and round cuts. J. Anim. Sci. 2016, 94, 2603–2613. [Google Scholar] [CrossRef]
- Ribikauskas, V.; Kučinskienė, J.; Arney, D.; Ribikauskienė, D. Comparative behavior studies of growing dairy and beef bulls from two different breeds. J. Hell. Vet. Med. Soc. 2019, 70, 1357. [Google Scholar] [CrossRef]
- Alekseeva, E.; Kolchina, V. Amino acid composition of beef obtained from the specialized meat cattle. IOP Conf. Ser. Earth Environ. Sci. 2019, 341, 012136. [Google Scholar] [CrossRef]
- Schreurs, N.M.; Garcia, F.; Jurie, C.; Agabriel, J.; Micol, D.; Bauchart, D.; Picard, B. Meta-analysis of the effect of animal maturity on muscle characteristics in different muscles, breeds, and sexes of cattle. J. Anim. Sci. 2008, 86, 2872–2887. [Google Scholar] [CrossRef]
- Lee, S.H.; Kim, C.N.; Ko, K.B.; Park, S.P.; Kim, H.K.; Kim, J.M.; Ryu, Y.C. Erratum to: Comparisons of Beef Fatty Acid and Amino Acid Characteristics between Jeju Black Cattle, Hanwoo, and Wagyu Breeds. Food Sci. Anim. Resour. 2020, 40, 495. [Google Scholar] [CrossRef]
- Emery, P.W. Amino Acids: Chemistry and Classification. In Encyclopedia of Human Nutrition, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2013; pp. 64–71. [Google Scholar] [CrossRef]
- Millward, D.J. Macronutrient intakes as determinants of dietary protein and amino acid adequacy. J. Nutr. 2004, 134, 1588S–1596S. [Google Scholar] [CrossRef]
- Juárez, M.; Lam, S.; Bohrer, B.M.; Dugan, M.E.R.; Vahmani, P.; Aalhus, J.; Juárez, A.; López-Campos, O.; Prieto, N.; Segura, J. Enhancing the Nutritional Value of Red Meat through Genetic and Feeding Strategies. Foods 2021, 10, 872. [Google Scholar] [CrossRef]
- Wu, G.; Qiu, X.; Jiao, Z.; Yang, W.; Pan, H.; Li, H.; Bian, Z.; Geng, Q.; Wu, H.; Jiang, J.; et al. Integrated Analysis of Transcriptome and Metabolome Profiles in the Longissimus dorsi Muscle of Buffalo and Cattle. Curr. Issues Mol. Biol. 2023, 45, 9723–9736. [Google Scholar] [CrossRef]
- Jung, S.; Nam, K.-C.; Lee, K.H.; Kim, J.J.; Jo, C. Meat Quality Traits of Longissimus dorsi Muscle from Carcasses of Hanwoo Steers at Different Yield Grades. Korean J. Food Sci. Anim. Res. 2013, 33, 305–316. [Google Scholar] [CrossRef]
- Park, S.J.; Beak, S.-H.; Jung, D.J.S.; Kim, S.Y.; Jeong, I.H.; Piao, M.Y.; Kang, H.J.; Fassah, D.M.; Na, S.W.; Yoo, S.P.; et al. Genetic, management, and nutritional factors affecting intramuscular fat deposition in beef cattle—A review. Asian-Australas J. Anim. Sci. 2018, 31, 1043–1061. [Google Scholar] [CrossRef] [PubMed]
- Tan, Z.; Jiang, H. Molecular and Cellular Mechanisms of Intramuscular Fat Development and Growth in Cattle. Int. J. Mol. Sci. 2024, 25, 2520. [Google Scholar] [CrossRef] [PubMed]
Daily Ration | Kg Feed | Nutritional Requirements | ||||
---|---|---|---|---|---|---|
BLDU * | NE ** | PDI *** (g) | Ca (g) | P (g) | ||
6.7 | 6.46 | 542 | 42 | 25 | ||
Daily average yield | 1200 g | |||||
Covered | ||||||
Natural hay | 2.0 | 2.22 | 1.26 | 106 | 10.2 | 5.2 |
Sugar beet | 6.0 | 0.84 | 1.95 | 48 | 4.74 | 3.6 |
Soybean meal | 1.1 | - | 1.41 | 324.5 | 3.63 | 7.54 |
Corn | 1.7 | - | 1.85 | 107.1 | 1.17 | 6.34 |
Calcium carbonate | 0.05 | - | - | - | 19.0 | - |
Dicalcium phosphate | 0.01 | - | - | - | 2.4 | 1.85 |
Daily covered | 10.86 | 3.06 | 6.47 | 585.6 | 41.14 | 24.53 |
Productive Qualities | Male (n = 27) | Female (n = 22) | Overall |
---|---|---|---|
Parameters | ± SD | ± SD | ± SD |
Weight at 18 months (kg) | 627.27 ± 29.45 | 564.76 ± 20.77 | 610.82 ± 38.94 |
Average daily gain (g/day) | 985.2 ± 19.54 | 839.0 ± 14.16 | 912 ± 17.04 |
Carcass weight (kg) | 376.36 ± 19.62 | 313.72 ± 12.84 | 354.04 ± 16.57 |
Carcass yield (%) | 60 ± 1.36 | 55.4 ± 1.02 | 57.7 ± 1.2 |
Gender | ||
---|---|---|
% | Male | Female |
± SD | ± SD | |
Water | 75.00 ± 0.43 a | 71.84 ± 0.19 b |
Dry Matter | 25.00 ± 0.43 b | 28.16 ± 0.19 a |
Protein | 21.85 ± 0.20 a | 21.38 ± 0.41 b |
Total Fat | 1.88 ± 0.06 b | 4.80 ± 0.10 a |
Minerals | 1.05 ± 0.06 a | 0.82 ± 0.06 b |
Fatty Acid (%) | Gender | |||
---|---|---|---|---|
Male (n = 27) | Female (n = 22) | Significance | Overall | |
X ± SD | X ± SD | X ± SD | ||
Capric—C10:0 | 0.51 ± 0.09 | 0.10 ± 0.02 | *** | 0.40 ± 0.20 |
Lauric—C12:0 | 0.50 ± 0.11 | 0.12 ± 0.02 | *** | 0.40 ± 0.19 |
Myristic—C14:0 | 3.26 ± 0.07 | 3.36 ± 0.10 | ** | 3.28 ± 0.09 |
Myristoleic—C14:1 | 0.62 ± 0.11 | 0.64 ± 0.05 | ns | 0.63 ± 0.09 |
Pentadecanoic—C15:0 | 0.47 ± 0.05 | 0.50 ± 0.06 | ns | 0.48 ± 0.05 |
Palmitic—C16:0 | 21.72 ± 0.98 | 28.23 ± 0.74 | *** | 23.43 ± 3.05 |
Palmitoleic—C16:1 | 2.39 ± 0.36 | 4.38 ± 0.34 | *** | 2.92 ± 0.95 |
Margaric—C17:0 | 1.04 ± 0.07 | 0.98 ± 0.05 | * | 1.02 ± 0.07 |
Stearic—C18:0 | 22.15 ± 1.24 | 13.45 ± 0.61 | *** | 9.86 ± 4.04 |
Oleic—C18:1:cis | 34.02 ± 1.10 | 39.31 ± 0.54 | *** | 35.41 ± 2.56 |
Trans-vaccenic—C18:1 | 1.95 ± 0.17 | 1.86 ± 0.09 | ns | 1.93 ± 0.16 |
Linoleic—C18:2:cis | 3.99 ± 0.28 | 2.10 ± 0.04 | *** | 3.50 ± 0.88 |
Alpha-linolenic C18:3:cis:ω3 | 0.44 ± 0.03 | 0.56 ± 0.09 | *** | 0.47 ± 0.07 |
Arachidic—C20:0 | 0.08 ± 0.14 | 0.09 ± 0.01 | ns | 0.09 ± 0.12 |
Eicosenoic—C20:1 | 0.17 ± 0.01 | 0.12 ± 0.01 | *** | 0.16 ± 0.02 |
C18:2:trans | 2.52 ± 0.28 | 0.14 ± 0.01 | *** | 1.89 ± 1.09 |
Ω3 FA | 0.44 ± 0.03 | 0.56 ± 0.09 | *** | 0.47 ± 0.07 |
Ω6 FA | 6.51 ± 0.45 | 2.23 ± 0.05 | *** | 5.39 ± 1.95 |
∑ TFA | 2.67 ± 0.16 | 2.06 ± 0.18 | *** | 2.51 ± 0.32 |
∑ SFA | 49.73 ± 1.90 | 46.82 ± 0.38 | *** | 48.96 ± 2.08 |
∑ MUFA | 37.21 ± 1.15 | 44.45 ± 0.61 | *** | 39.11 ± 3.39 |
∑ PUFA | 4.43 ± 0.29 | 2.66 ± 0.10 | *** | 3.96 ± 0.83 |
∑ UFA | 41.64 ± 1.15 | 47.11 ± 0.65 | *** | 43.08 ± 2.65 |
1 UFA/SFA | 0.84 ± 0.04 | 1.01 ± 0.02 | *** | 0.88 ± 0.08 |
2 Ω6 FA/Ω3 FA | 14.93 ± 1.24 | 4.06 ± 0.65 | *** | 12.07 ± 4.97 |
AI | 0.798 | 0.885 | *** | 0.821 ± 0.05 |
TI | 2.03 | 1.74 | *** | 1.54 ± 0.17 |
HFA | 25.48 | 31.71 | *** | 27.11 ± 3.15 |
hFa | 6.38 | 4.52 | *** | 5.89 ± 0.93 |
h/H | 0.250 | 0.142 | *** | 0.217 ± 0.06 |
Amino Acids | Gender | |||
---|---|---|---|---|
Male (n = 27) | Female (n = 22) | Significance | Overall | |
X ± SD | X ± SD | X ± SD | ||
Aspartic acid | 2.67 ± 0.18 | 2.24 ± 0.11 | *** | 2.56 ± 0.25 |
Glutamic acid | 4.31 ± 0.19 | 3.72 ± 0.20 | *** | 4.16 ± 0.33 |
Alanine | 1.61 ± 0.10 | 1.42 ± 0.13 | *** | 1.56 ± 0.14 |
Arginine | 2.12 ± 0.12 | 1.86 ± 0.08 | *** | 2.05 ± 0.16 |
Cystine + Cysteine | 0.29 ± 0.02 | 0.27 ± 0.02 | * | 0.28 ± 0.02 |
Phenylalanine | 1.12 ± 0.09 | 0.93 ± 0.09 | *** | 1.07 ± 0.12 |
Glycine | 1.19 ± 0.11 | 1.00 ± 0.07 | *** | 1.14 ± 0.13 |
Hydroxyproline | 0.01 ± 0.00 | 0.01 ± 0.00 | ns | 0.01 ± 0.00 |
Isoleucine | 1.33 ± 0.11 | 1.12 ± 0.12 | *** | 1.28 ± 0.14 |
Histidine | 1.17 ± 0.10 | 0.95 ± 0.09 | *** | 1.11 ± 0.13 |
Leucine | 2.35 ± 0.14 | 1.89 ± 0.11 | *** | 2.23 ± 0.25 |
Lysine | 2.60 ± 0.16 | 2.15 ± 0.15 | *** | 2.48 ± 0.26 |
Methionine | 0.75 ± 0.06 | 0.60 ± 0.06 | *** | 0.71 ± 0.08 |
Proline | 1.10 ± 0.10 | 0.87 ± 0.07 | *** | 1.04 ± 0.14 |
Serine | 1.21 ± 0.11 | 1.02 ± 0.07 | *** | 1.16 ± 0.13 |
Tyrosine | 1.04 ± 0.10 | 0.88 ± 0.06 | *** | 1.00 ± 0.12 |
Threonine | 1.30 ± 0.08 | 1.09 ± 0.11 | *** | 1.25 ± 0.13 |
Tryptophan (total) | 3.06 ± 0.25 | 2.85 ± 0.27 | * | 3.00 ± 0.27 |
Valine | 1.38 ± 0.10 | 1.11 ± 0.09 | *** | 1.31 ± 0.16 |
1 Total amino acids | 30.59 ± 0.49 | 25.97 ± 0.64 | *** | 29.37 ± 2.13 |
2 EAA% | 15.05% | 12.68% | ||
3 NEAA% | 15.56% | 13.28% |
Amino Acids | AA Content (g/100 g Protein) | FAO/WHO Reference Protein | ||
---|---|---|---|---|
Standard 1 Children | Standard 2 Youth | Standard 3 Adults | ||
Isoleucine | 5.92 | 4.6 | 4.0 | 3.0 |
Leucine | 10.31 | 9.3 | 7.0 | 4.4 |
Lysine | 11.47 | 6.6 | 5.5 | 3.1 |
Methionine + Cystine | 4.58 | 4.2 | 3.5 | 2.7 |
Phenylalanine + Tyrosine | 9.57 | 7.2 | 6.0 | 3.3 |
Threonine | 5.78 | 4.3 | 4.0 | 2.6 |
Tryptophan | 13.88 | 1.7 | 1.0 | 0.6 |
Valine | 6.06 | 5.5 | 5.0 | 2.3 |
EAA (g/16 g N) | 67.58 | 43.4 | 36.0 | 22.0 |
Amino acids | Nutritional evaluation of the proteins | Standard 1 | Standard 2 | Standard 3 |
Isoleucine | 128.71 | 148.01 | 197.35 | |
Leucine | 110.91 | 147.35 | 234.42 | |
Lysine | 173.80 | 208.56 | 370.03 | |
Methionine + Cystine | 109.03 | 130.83 | 169.60 | |
Phenylalanine + Tyrosine | 132.98 | 159.57 | 290.14 | |
Threonine | 134.46 | 144.54 | 222.37 | |
Tryptophan | 816.24 | 1387.60 | 2312.67 | |
Valine | 110.17 | 121.18 | 263.44 | |
EAAI (%) | 160.25 | 197.43 | 321.49 | |
BV | 162.97 | 203.50 | 338.73 | |
NI (%) | 34.65 | 42.68 | 69.51 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mădescu, B.M.; Matei, M.; Davidescu, M.A.; Bolohan, I.; Lazăr, R.; Ciobanu, M.M.; Simeanu, D.; Boișteanu, P.C. Exploring Aubrac Cattle as a Benchmark for Sustainable and Nutritious Beef Production. Animals 2025, 15, 2966. https://doi.org/10.3390/ani15202966
Mădescu BM, Matei M, Davidescu MA, Bolohan I, Lazăr R, Ciobanu MM, Simeanu D, Boișteanu PC. Exploring Aubrac Cattle as a Benchmark for Sustainable and Nutritious Beef Production. Animals. 2025; 15(20):2966. https://doi.org/10.3390/ani15202966
Chicago/Turabian StyleMădescu, Bianca Maria, Mădălina Matei, Mădălina Alexandra Davidescu, Ioana Bolohan (Acornicesei), Roxana Lazăr, Marius Mihai Ciobanu, Daniel Simeanu, and Paul Corneliu Boișteanu. 2025. "Exploring Aubrac Cattle as a Benchmark for Sustainable and Nutritious Beef Production" Animals 15, no. 20: 2966. https://doi.org/10.3390/ani15202966
APA StyleMădescu, B. M., Matei, M., Davidescu, M. A., Bolohan, I., Lazăr, R., Ciobanu, M. M., Simeanu, D., & Boișteanu, P. C. (2025). Exploring Aubrac Cattle as a Benchmark for Sustainable and Nutritious Beef Production. Animals, 15(20), 2966. https://doi.org/10.3390/ani15202966