Conspicuous Animals Remain Alert When Under Cover but Do Not Differ in the Temporal Course of Vigilance from Less Conspicuous Species
Simple Summary
Abstract
1. Introduction
- (A)
- Gouldian finches are more vigilant than long-tailed finches at waterholes to account for their higher conspicuousness;
- (B)
- Both species reduce their vigilance over time, as they assess threats;
- (C)
- Cover, increasing group size, and larger waterholes would decrease vigilance.
2. Materials and Methods
2.1. Study Species and Location
2.2. Data Collection
2.3. Data Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stuart-Fox, D.M.; Moussalli, A.; Marshall, N.J.; Owens, I.P.F. Conspicuous males suffer higher predation risk: Visual modelling and experimental evidence from lizards. Anim. Behav. 2003, 66, 541–550. [Google Scholar] [CrossRef]
- Simpson, R.K.; Mistakidis, A.F.; Doucet, S.M. Natural and sexual selection shape the evolution of colour and conspicuousness in North American wood warblers (Parulidae). Biol. J. Linn. Soc. 2020, 130, 89–100. [Google Scholar] [CrossRef]
- Montgomerie, R.; Lyon, B.; Holder, K. Dirty ptarmigan: Behavioral modification of conspicuous male plumage. Behav. Ecol. 2001, 12, 429–438. [Google Scholar] [CrossRef]
- Husak, J.F.; Macedonia, J.M.; Fox, S.F.; Sauceda, R.C. Predation cost of conspicuous male coloration in collared lizards (Crotaphytus collaris): An Experimental test using clay-covered model lizards. Ethology 2006, 112, 572–580. [Google Scholar] [CrossRef]
- Nasri, I.; Hamza, F.; Belliure, J.; Selmi, S. Tail conspicuousness and antipredatory behaviour in Bosk’s fringe-toed lizard (Acanthodactylus boskianus). Ethol. Ecol. Evol. 2018, 30, 319–330. [Google Scholar] [CrossRef]
- Szopa-Comley, A.W.; Donald, W.G.; Ioannou, C.C. Predator personality and prey detection: Inter-individual variation in responses to cryptic and conspicuous prey. Behav. Ecol. Sociobiol. 2020, 74, 70. [Google Scholar] [CrossRef]
- Valkonen, J.K.; Vakkila, A.; Pesari, S.; Tuominen, L.; Mappes, J. Protective coloration of European vipers throughout the predation sequence. Anim. Behav. 2020, 164, 99–104. [Google Scholar] [CrossRef]
- Agan, J.; Macedonia, J.M.; Grindstaff, J.L.; Fox, S.F. Orange ornamentation increases sex-specific conspicuousness of juvenile males to conspecifics and predators. Biol. J. Linn. Soc. 2024, 143, blae035. [Google Scholar] [CrossRef]
- Poloni, R.; Dhennin, M.; Mappes, J.; Joron, M.; Nokelainen, O. Exploring polymorphism in a palatable prey: Predation risk and frequency dependence in relation to distinct levels of conspicuousness. Evol. Lett. 2024, 8, 406–415. [Google Scholar] [CrossRef]
- Pascual, J.; Senar, J.C.; Domenech, J. Plumage brightness, vigilance, escape potential, and predation risk in male and female Eurasian Siskins (Spinus spinus). Auk 2014, 131, 61–72. [Google Scholar] [CrossRef]
- Watson, M.; Aebischer, N.J.; Cresswell, W. Vigilance and fitness in grey partridges Perdix perdix: The effects of group size and foraging-vigilance trade-offs on predation mortality. J. Anim. Ecol. 2007, 76, 211–221. [Google Scholar] [CrossRef] [PubMed]
- Pascual, J.; Senar, J.C. Differential effects of predation risk and competition over vigilance variables and feeding success in Eurasian siskins (Carduelis spinus). Behaviour 2013, 150, 1665–1687. [Google Scholar] [CrossRef]
- Rose, L.M.; Fedigan, L.M. Vigilance in white-faced capuchins, Cebus capucinus, in Costa Rica. Anim. Behav. 1995, 49, 63–70. [Google Scholar] [CrossRef]
- Klose, S.M.; Welbergen, J.A.; Goldizen, A.W.; Kalko, E.K.V. Spatio-temporal vigilance architecture of an Australian flying-fox colony. Behav. Ecol. Sociobiol. 2009, 63, 371–380. [Google Scholar] [CrossRef]
- Beauchamp, G. The effect of age on vigilance: A longitudinal study with a precocial species. Behaviour 2018, 155, 1011–1024. [Google Scholar] [CrossRef]
- Fattorini, N.; Lovari, S.; Brunetti, C.; Baruzzi, C.; Cotza, A.; Macchi, E. Age, seasonality, and correlates of aggression in female Apennine chamois. Behav. Ecol. Sociobiol. 2018, 72, 171. [Google Scholar] [CrossRef]
- Zhao, J.-M.; Lyu, N.; Sun, Y.-H.; Zhou, L.-Z. Number of neighbors instead of group size significantly affects individual vigilance levels in large animal aggregations. J. Avian. Biol. 2019, 50, e02065. [Google Scholar] [CrossRef]
- Mathot, K.J.; van den Hout, P.J.; Piersma, T.; Kempenaers, B.; Reale, D.; Dingemanse, N.J. Disentangling the roles of frequency-vs. state-dependence in generating individual differences in behavioural plasticity. Ecol. Lett. 2011, 14, 1254–1262. [Google Scholar] [CrossRef]
- Esattore, B.; Rossic, A.C.; Bazzonic, F.; Riggioc, C.; Oliveirac, R.; Leggieroc, I.; Ferretti, F. Erent time, head up: Multiple antipredator responses to a recolonizing apex predator. Curr. Zool. 2020, 69, 703–717. [Google Scholar] [CrossRef]
- Kong, D.; Moeller, A.P.; Zhang, Y. Disturbance and predation risk influence vigilance synchrony of black-necked cranes Grus nigricollis, but not as strongly as expected. Ecol. Evol. 2021, 11, 2289–2298. [Google Scholar] [CrossRef]
- Reimers, E.; Eftestol, S.; Colman, J.E. Vigilance in reindeer (Rangifer tarandus); evolutionary history, predation and human interference. Polar. Biol. 2021, 44, 997–1007. [Google Scholar] [CrossRef]
- Cresswell, W.; Quinn, J.L.; Whittingham, M.J.; Butler, S. Good foragers can also be good at detecting predators. Proc. R. Soc. B 2003, 270, 1069–1076. [Google Scholar] [CrossRef] [PubMed]
- Burger, J.; Gochfeld, M. Effect of group size on vigilance while drinking in the coati, Nasua narica in Costa Rica. Anim. Behav. 1992, 44, 1053–1057. [Google Scholar] [CrossRef]
- Creel, S.; Schuette, P.; Christianson, D. Effects of predation risk on group size, vigilance, and foraging behavior in an African ungulate community. Behav. Ecol. 2014, 25, 773–784. [Google Scholar] [CrossRef]
- Ye, Y.; Jiang, Y.; Hu, C.; Liu, Y.; Qing, B.; Wang, C. What makes a tactile forager join mixed-species flocks? A case study with the endangered Crested Ibis (Nipponia nippon). Auk 2017, 134, 421–431. [Google Scholar] [CrossRef]
- Pecorella, I.; Fattorini, N.; Macchi, E.; Ferretti, F. Sex/age differences in foraging, vigilance and alertness in a social herbivore. Acta Ethol. 2019, 22, 1–8. [Google Scholar] [CrossRef]
- Saltz, D.; Berger-Tal, O.; Motro, U.; Shkedy, Y.; Raanan, N. Conservation implications of habituation in Nubian ibex in response to ecotourism. Anim. Cons 2019, 22, 220–227. [Google Scholar] [CrossRef]
- Taraborelli, P.; Moreno, P.; Mosca Torres, M.E. Are there different vigilance strategies between types of social units in Lama guanicoe? Behav. Proc. 2019, 167, 103914. [Google Scholar] [CrossRef]
- Scheijen, C.P.J.; van der Merwe, S.; Ganswindt, A.; Deacon, F. Anthropogenic influences on distance travelled and vigilance behavior and stress-related endocrine correlates in free-roaming giraffes. Animals 2021, 11, 1239. [Google Scholar] [CrossRef]
- Olson, E.R.; van Deelen, T.R. Competition and sex-age class alter the effects of group size on vigilance in white-tailed deer Odocoileus virginianu. Acta Ethol. 2024, 27, 39–50. [Google Scholar] [CrossRef]
- Fairbanks, B.; Dobson, F.S. Mechanisms of the group-size effect on vigilance in Columbian ground squirrels: Dilution versus detection. Anim. Behav. 2006, 73, 115–123. [Google Scholar] [CrossRef]
- Bertram, B.C.R. Living in groups: Predators and prey. In Behavioural Ecology: An Evolutionary Approach; Krebs, J.R., Davies, N.B., Eds.; Blackwell Scientific: Oxford, UK, 1978; pp. 64–96. [Google Scholar]
- Aviles, J.M.; Bednekoff, P.A. How do vigilance and feeding by common cranes Grus grus depend on age, habitat, and flock size? J. Avian Biol. 2007, 38, 690–697. [Google Scholar] [CrossRef]
- Blank, D.A. Vigilance, staring and escape running in antipredator behavior of goitered gazelle. Behav. Proc. 2018, 157, 408–416. [Google Scholar] [CrossRef] [PubMed]
- Bernardi-Gomez, C.; Valdivieso-Cortadella, S.; Llorente, M.; Aureli, F.; Amici, F. Vigilance has mainly a social function in a wild group of spider monkeys (Ateles geoffroyi). Am. J. Primatol. 2023, 85, e23559. [Google Scholar] [CrossRef]
- Terhune, J.M.; Brilliant, S.W. Harbour seal vigilance decreases over time since haul out. Anim. Behav. 1996, 51, 757–763. [Google Scholar] [CrossRef]
- Fernandez-Juricic, E.; Beauchamp, G.; Treminio, R.; Hoover, M. Making heads turn: Association between head movements during vigilance and perceived predation risk in brown-headed cowbird flocks. Anim. Behav. 2011, 82, 573–577. [Google Scholar] [CrossRef]
- Robinson, B.; Merrill, E.H. Foraging vigilance trade-offs in a partially migratory population: Comparing migrants and residents on a sympatric range. Anim. Behav. 2013, 85, 849–856. [Google Scholar] [CrossRef]
- Coolen, I.; Giraldeau, L.-A. Incompatibility between antipredatory vigilance and scrounger tactic in nutmeg mannikins, Lonchura punctulate. Anim. Behav. 2003, 66, 657–664. [Google Scholar] [CrossRef]
- Wikenros, C.; Stahlberg, S.; SAND, H. Feeding under high risk of intraguild predation: Vigilance patterns of two medium-sized generalist predators. J. Mammal. 2014, 95, 862–870. [Google Scholar] [CrossRef]
- Dannock, R.J.; Pays, O.; Renaud, P.-C.; Marond, M.; Goldizen, A.W. Assessing blue wildebeests’ vigilance, grouping and foraging responses to perceived predation risk using playback experiments. Behav. Proc. 2019, 164, 252–259. [Google Scholar] [CrossRef]
- Arenz, C.L.; Leger, D.W. Antipredator vigilance of juvenile and adult thirteen-lined ground squirrels and the role of nutritional need. Anim. Behav. 2000, 59, 535–541. [Google Scholar] [CrossRef] [PubMed]
- Beauchamp, G. Animal Vigilance: Monitoring Predators and Competitors; Elsevier: London, UK; New York, NY, USA, 2015; pp. 81–116. [Google Scholar]
- Diniz, P. Sex-dependent foraging effort and vigilance in coal-crested finches, Charitospiza eucosma (Aves: Emberizidae) during the breeding season: Evidence of female-biased predation? Zoologia 2011, 28, 165–176. [Google Scholar] [CrossRef]
- Lendrem, D.W. Sleeping and vigilance in birds. 1. Field observations of the Mallard (Anas platyrhynchos). Anim. Behav. 1983, 31, 532–538. [Google Scholar] [CrossRef]
- Guillemain, M.; Caldow, R.W.G.; Hodder, K.H.; Goss-Custard, J.D. Increased vigilance of paired males in sexually dimorphic species: Distinguishing between alternative explanations in wintering Eurasian wigeon. Behav. Ecol. 2003, 14, 724–729. [Google Scholar] [CrossRef]
- Crosmary, W.-G.; Valeixa, M.; Fritza, H.; Madzikandad, H.; Côté, S.D. African ungulates and their drinking problems: Hunting and predation risks constrain access to water. Anim. Behav. 2012, 83, 145–153. [Google Scholar] [CrossRef]
- Lashley, M.A.; Chitwood, C.; Biggerstaff, M.T.; Morina, D.L.; Moorman, C.E.; DePerno, C.S. White-tailed deer vigilance: The influence of social and environmental factors. PLoS ONE 2014, 9, e90652. [Google Scholar] [CrossRef]
- Eccard, J.A.; Meißner, J.K.; Heurich, M. European Roe Deer Increase Vigilance When Faced with Immediate Predation Risk by Eurasian Lynx. Ethology 2017, 123, 30–40. [Google Scholar] [CrossRef]
- Vasquez, R.A.; Ebensperger, L.A.; Bozinovic, F. The influence of habitat on travel speed, intermittent locomotion, and vigilance in a diurnal rodent. Behav. Ecol. 2002, 13, 182–187. [Google Scholar] [CrossRef]
- Flamand, A.; Rebout, N.; Bordes, C.; Guinnefollau, L.; Berges, M.; Ajak, F.; Siutz, C.; Petit, O. Hamsters in the city: A study on the behaviour of a population of common hamsters (Cricetus cricetus) in urban environment. PLoS ONE 2019, 14, e0225347. [Google Scholar] [CrossRef]
- Hume, G.; Brunton, E.; Burnett, S. Eastern grey kangaroo (Macropus giganteus) vigilance behaviour varies between human-modified and natural environments. Animals 2019, 9, 494. [Google Scholar] [CrossRef]
- Han, L.; Blank, D.; Wang, M.; Yanget, W. Vigilance behaviour in Siberian ibex (Capra sibirica): Effect of group size, group type, sex and age. Behav. Proc. 2020, 170, 104021. [Google Scholar] [CrossRef] [PubMed]
- Lima, S.L.; Bednekoff, P.A. Temporal variation in danger drives antipredator behavior: The predation risk allocation hypothesis. Am. Nat. 1999, 153, 649–659. [Google Scholar] [CrossRef] [PubMed]
- Dacier, A.; Maia, R.; Agustinho, D.P.; Barros, M. Rapid habituation of scan behavior in captive marmosets following brief predator encounters. Behav. Proc. 2006, 71, 66–69. [Google Scholar] [CrossRef] [PubMed]
- Poudel, B.S.; Spooner, P.G.; Matthews, A. Behavioural changes in marmots in relation to livestock grazing disturbance: An experimental test. Eur. J. Wildl. Res. 2016, 62, 491–495. [Google Scholar] [CrossRef]
- Costelloe, B.R.; Rubenstein, D.I. Temporal structuring of vigilance behaviour by female Thomson’s gazelles with hidden fawns. Anim. Behav. 2018, 145, 87–97. [Google Scholar] [CrossRef]
- Montero-Quintana, A.N.; Vazquez-Haikin, J.A.; Merkling, T.; Blanchard, P.B.; Osorio-Beristain, M. Ecotourism impacts on the behaviour of whale sharks: An experimental approach. Oryx 2020, 54, 270–275. [Google Scholar] [CrossRef]
- Gigliotti, L.C.; Slotow, R.; Sholto-Douglas, C.; de Vos, C.; Jachowski, D.S. Short-term predation risk and habitat complexity influence cheetah antipredator behaviours. Anim. Behav. 2021, 178, 175–184. [Google Scholar] [CrossRef]
- Sirot, E.; Pays, O. On the dynamics of predation risk perception for a vigilant forager. J. Theor. Biol. 2011, 276, 1–7. [Google Scholar] [CrossRef]
- Carbone, C.; Thompson, W.A.; Zadorina, L.; Rowcliffe, J.M. Competition, predation risk and patterns of flock expansion in barnacle geese (Branta leucopsis). J. Zool. Lond. 2003, 259, 301–308. [Google Scholar] [CrossRef]
- Barros, M.; de Souza Silva, M.A.; Huston, J.P.; Tomaz, C. Multibehavioral analysis of fear and anxiety before, during, and after experimentally induced predatory stress in Callithrix penicillate. Pharm. Biochem. Behav. 2004, 78, 357–367. [Google Scholar] [CrossRef]
- Shonfield, J. The effect of familiarity on vigilance behaviour in grey squirrels. McGill Sci. Undergrad. Res. J. 2011, 6, 45–49. [Google Scholar] [CrossRef]
- Beauchamp, G.; Ruxton, G.D. Vigilance decreases with time at loafing sites in gulls (Larus spp.). Ethology 2012, 118, 733–739. [Google Scholar] [CrossRef]
- Mettke-Hofmann, C. When to Return to Normal? Temporal Dynamics of Vigilance in Four Situations. Birds 2023, 4, 1–14. [Google Scholar] [CrossRef]
- Childress, M.J.; Lung, M.A. Predation risk, gender and the group size effect: Does elk vigilance depend upon the behaviour of conspecifics? Anim. Behav. 2003, 66, 389–398. [Google Scholar] [CrossRef]
- Stears, K.; Schmitt, M.H.; Wilmer, C.C.; Shrader, A.M. Mixed-species herding levels the landscape of fear. Proc. R. Soc. B. 2020, 287, 20192555. [Google Scholar] [CrossRef]
- Kautz, T.M.; Beyer, D.E., Jr.; Farley, Z.; Fowler, N.L.; Kellner III, K.F.; Lutto, A.L.; Petroelje, T.R.; Belant, J.L. American martens use vigilance and short-term avoidance to navigate a landscape of fear from fishers at artificial scavenging sites. Sci. Rep. 2021, 11, 12146. [Google Scholar] [CrossRef]
- Ruble, D.B.; Verschueren, S.; Cristescu, B.; Marker, L.L. Rewilding Apex Predators Has Effects on Lower Trophic Levels: Cheetahs and Ungulates in a Woodland Savanna. Animals 2022, 12, 3532. [Google Scholar] [CrossRef]
- Uchida, K.; Suzuki, K.K.; Shimamoto, T.; Yanagawa, H.; Koizumi, I. Decreased vigilance or habituation to humans? Mechanisms on increased boldness in urban animals. Behav. Ecol. 2019, 30, 1583–1590. [Google Scholar] [CrossRef]
- Favreau, F.R.; Pays, O.; Fritz, H.; Goulard, M.; Best, E.C.; Goldizen, A.W. Predators, food and social context shape the types of vigilance exhibited by kangaroos. Anim. Behav. 2015, 99, 109–121. [Google Scholar] [CrossRef]
- Clermont, J.; Couchoux, C.; Garant, D.; Reale, D. Assessing anti-predator decisions of foraging eastern chipmunks under varying perceived risks: The effects of physical and social environments on vigilance. Behaviour 2017, 154, 131–148. [Google Scholar] [CrossRef]
- Bragato, P.J.; Spencer, E.E.; Dickman, C.R.; Crowther, M.S.; Tulloch, A.; Newsome, T.M. Habitat but not group size or recent predator activity affect corvid collective vigilance at carcasses. Austr. Ecol. 2023, 48, 999–1014. [Google Scholar] [CrossRef]
- Makin, D.F.; Chamaille-Jammes, S.; Shrader, A.M. Herbivores employ a suite of antipredator behaviours to minimize risk from ambush and cursorial predators. Anim. Behav. 2017, 127, 225–231. [Google Scholar] [CrossRef]
- Valeix, M.; Fritz, H.; Loveridge, A.J.; Davidson, Z.; Hunt, J.E.; Murindagomo, F.; Macdonald, D.W. Does the risk of encountering lions influence African herbivore behaviour at waterholes? Behav. Ecol. Sociobiol. 2009, 63, 1483–1494. [Google Scholar] [CrossRef]
- Parker, E.J.; Hill, R.A.; Koyama, N.F. Behavioral responses to spatial variation in perceived predation risk and resource availability in an arboreal primate. Ecosphere 2022, 13, e3945. [Google Scholar] [CrossRef]
- Valeix, M.; Fritz, H.; Matsika, R.; Matsvimbo, F.; Madzikanda, H. The role of water abundance, thermoregulation, perceived predation risk and interference competition in water access by African herbivores. Afr. J. Ecol. 2007, 46, 402–410. [Google Scholar] [CrossRef]
- Votto, S.E.; Schlesinger, C.; Dyer, F.; Caron, V.; Davis, J. The role of fringing vegetation in supporting avian access to arid zone waterholes. Emu. Austral. Orn. 2022, 122, 1–15. [Google Scholar] [CrossRef]
- Hofmann, G.; Mettke-Hofmann, C. Watch out! High vigilance at small waterholes when alone in open trees. PLoS ONE 2024, 19, e0304257. [Google Scholar] [CrossRef]
- Kamanda, M.; Ndiweni, V.; Imbayarwo- Chikosi, V.E.; Muvengwi, J. The impact of tourism on sable antelope (Hippotragus niger) vigilance behavior at artificial waterholes during the dry season in Hwange National Park. J. Sust. Dev. Afr. 2008, 10, 299–314. [Google Scholar]
- Periquet, S.; Valeix, M.; Loveridge, A.J.; Madzikanda, H.; Macdonald, D.W.; Fritz, H. Individual vigilance of African herbivores while drinking: The role of immediate predation risk and context. Anim. Behav. 2010, 79, 665–671. [Google Scholar] [CrossRef]
- Hall, L.K.; Day, C.C.; Westover, M.D.; Edgel, R.J.; Larsen, R.T.; Knight, R.N. Vigilance of kit foxes at water sources: A test of competing hypotheses for a solitary carnivore subject to predation. Behav. Proc. 2013, 94, 76–82. [Google Scholar] [CrossRef]
- Dostine, P.L.; Johnson, G.C.; Franklin, D.C.; Zhang, Y.; Hempel, C. Seasonal use of savanna landscapes by the Gouldian finch, Erythrura gouldiae, in the Yinberrie Hills area, Northern Territory. Wildl. Res. 2001, 28, 445–458. [Google Scholar] [CrossRef]
- Brazill-Boast, J.; Dessmann, J.K.; Davies, G.T.O.; Pryke, S.R.; Griffith, S.C. Selection of breeding habitat by the endangered Gouldian Finch (Erythrura gouldiae) at two spatial scales. Emu 2011, 111, 304–311. [Google Scholar] [CrossRef]
- NT Government. Threatened Species of the Northern Territory. 2021. Available online: https://nt.gov.au/environment/animals/threatened-animals (accessed on 12 September 2024).
- Brush, A.H.; Seifried, H. Pigmentation and feather structure in genetic variants of the Gouldian finch, Poephila gouldiae. Auk Ornithol. Adv. 1968, 85, 416–430. [Google Scholar] [CrossRef]
- Del Hoyo, J.; Elliott, A.; Christie, D.A. Handbook of the Birds of the World: Weavers to New World Warblers; Lynx Edicions: Barcelona, Spain, 2010; Volume 15. [Google Scholar]
- Brazill-Boast, J.; van Rooij, E.; Pryke, S.R.; Griffith, S.C. Interference from long-tailed finches constrains reproduction in the endangered Gouldian finch. J. Anim. Ecol. 2011, 80, 39–48. [Google Scholar] [CrossRef]
- O’Reilly, A.O.; Hofmann, G.; Mettke-Hofmann, C. Gouldian finches are followers with black-headed females taking the lead. PLoS ONE 2019, 14, e0214531. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Juricic, E.; Gall, M.D.; Dolan, T.; O’Rourke, C.; Thomas, S.; Lynch, J. Visual systems and vigilance behaviour of two ground-foraging avian prey species: White-crowned sparrows and California towhees. Anim. Behav. 2011, 81, 705–713. [Google Scholar] [CrossRef]
- Bednekoff, P.A.; Lima, S.L. Testing for peripheral vigilance: Do birds value what they see when not overtly vigilant? Anim. Behav. 2005, 69, 1165–1171. [Google Scholar] [CrossRef]
- Crosmary, W.G.; Makumbe, P.; Cote, S.D.; Fritz, H. Vulnerability to predation and water constraints limit behavioural adjustments of ungulates in response to hunting risk. Anim. Behav. 2012, 83, 1367–1376. [Google Scholar] [CrossRef]
- Moore, B.A.; Doppler, M.; Young, J.E.; Fernandez-Juricic, E. Interspecific differences in the visual system and scanning behavior of three forest passerines that form heterospecific flocks. J. Comp. Physiol. A 2013, 199, 263–277. [Google Scholar] [CrossRef]
- Evans, S.M.; Collins, J.A.; Evans, R.; Miller, S. Patterns of drinking behaviour of some Australian estrildine finches. IBIS 1985, 127, 348–354. [Google Scholar] [CrossRef]
- Heinsohn, R.G. Age-dependent vigilance in winter aggregations of cooperatively breeding white-winged choughs (Corcorax melanorhamphos). Behav. Ecol. Sociobiol. 1887, 20, 303–306. [Google Scholar] [CrossRef]
- Boukhriss, J.; Selmi, S.; Bechet, A.; Nouira, S. Vigilance in greater flamingos wintering in Southern Tunisia: Age-dependent flock size effect. Ethology 2007, 113, 377–385. [Google Scholar] [CrossRef]
- Fernandez-Juricic, E. Sensory basis of vigilance behavior in birds: Synthesis and future prospects. Behav. Proc. 2012, 89, 143–152. [Google Scholar] [CrossRef] [PubMed]
- Baker, D.J.; Stillman, R.A.; Smart, S.L.; Bullock, J.M.; Norris, K.J. Are the costs of routine vigilance avoided by granivorous foragers? Func. Ecol. 2011, 25, 617–627. [Google Scholar] [CrossRef]
Location | Natural or Man-Made | Waterhole Size | Number of Focal Birds GF * | Number of Focal Birds LT * |
---|---|---|---|---|
1 | Natural | Small | 208 (149) | - ** |
2 | Man-made | Large | 9 (4) | 24 (19) |
3 | Natural | Small | 56 (36) | 97 (70) |
4 | Natural | Medium | 35 (30) | 9 (8) |
5 | Natural | Large | 17 (15) | 31 (23) |
6 | Natural | Large | 63 (40) | 59 (47) |
7 | Man-made | Small | 32 (28) | 58 (48) |
TOTAL | 420 (302) | 278 (215) |
Variable | F-Value | DF 1 | DF 2 | p-Value |
---|---|---|---|---|
Corrected model | 9.458 | 21 | 720 | <0.001 |
Waterhole size | 10.632 | 2 | 516 | <0.001 |
Location (open-dense) | 31.288 | 1 | 514 | <0.001 |
Species | 0.735 | 1 | 515 | 0.392 |
Group size | 8.948 | 4 | 711 | <0.001 |
Age | 3.340 | 1 | 512 | 0.068 |
Species × location | 4.026 | 1 | 513 | 0.045 |
Species × age | 6.344 | 1 | 516 | 0.012 |
Group size × block | 7.124 | 10 | 598 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hofmann, G.; Mettke-Hofmann, C. Conspicuous Animals Remain Alert When Under Cover but Do Not Differ in the Temporal Course of Vigilance from Less Conspicuous Species. Animals 2025, 15, 214. https://doi.org/10.3390/ani15020214
Hofmann G, Mettke-Hofmann C. Conspicuous Animals Remain Alert When Under Cover but Do Not Differ in the Temporal Course of Vigilance from Less Conspicuous Species. Animals. 2025; 15(2):214. https://doi.org/10.3390/ani15020214
Chicago/Turabian StyleHofmann, Gerhard, and Claudia Mettke-Hofmann. 2025. "Conspicuous Animals Remain Alert When Under Cover but Do Not Differ in the Temporal Course of Vigilance from Less Conspicuous Species" Animals 15, no. 2: 214. https://doi.org/10.3390/ani15020214
APA StyleHofmann, G., & Mettke-Hofmann, C. (2025). Conspicuous Animals Remain Alert When Under Cover but Do Not Differ in the Temporal Course of Vigilance from Less Conspicuous Species. Animals, 15(2), 214. https://doi.org/10.3390/ani15020214