Bioclimatic Influence on the Nutritional Composition, In Vitro Ruminal Fermentation Dynamics, and Greenhouse Gas Emissions of Urtica dioica
Abstract
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Chemical Composition
2.3. Ruminal Incubation
2.3.1. Rumen Inoculum Preparation
2.3.2. In Vitro Fermentation
2.3.3. Gas Production Kinetics
2.3.4. Metabolizable Energy and Volatile Fatty Acids
2.4. Statistical Analysis
3. Results
3.1. Chemical Composition
3.2. Ruminal pH, Degradability, Metabolizable Energy, and Volatile Fatty Acids of Urtica dioica
3.3. Gas Production Kinetics of Urtica dioica
3.4. Greenhouse Gas Emissions of Urtica dioica
4. Discussion
4.1. Chemical Composition of Urtica dioica
4.2. Ruminal Fermentation Dynamics and Degradability of Urtica dioica
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| ADF | Acid detergent fiber |
| ADFD | Acid detergent fiber degradability |
| ADL | Acid detergent lignin |
| AFR | Average fermentation rate |
| C | Fractional rate of gas production |
| CH4 | Methane |
| CO | Marbon monoxide |
| CO2 | Carbon dioxide |
| CP | Crude protein |
| DM | Dry matter |
| DMD | Dry matter degradability |
| EE | Ether extract |
| Lag | Lag phase before the onset of gas production |
| ME | Metabolizable energy |
| NDFD | Neutral detergent fiber degradability |
| NFC | Non-fibrous carbohydrates |
| PGP | Potential gas production |
| SEM | Standard error of the mean |
| T1/2 | Time to half-maximal gas production |
| TAE | Tannic acid equivalents |
| VAE | Vanillic acid equivalents |
| VFA | Volatile fatty acids |
References
- Cordeiro, M.R.C.; Mengistu, G.F.; Pogue, S.J.; Legesse, G.; Gunte, K.E.; Taylor, A.M.; Ominski, K.H.; Beauchemin, K.A.; McGeough, E.J.; Faramarzi, M.; et al. Assessing Feed Security for Beef Production within Livestock-Intensive Regions. Agric. Syst. 2022, 196, 103348. [Google Scholar] [CrossRef]
- Benoit, M.; Mottet, A. Energy Scarcity and Rising Cost: Towards a Paradigm Shift for Livestock. Agric. Syst. 2023, 205, 103585. [Google Scholar] [CrossRef]
- Benoit, M.; Sabatier, R.; Lasseur, J.; Creighton, P.; Dumont, B. Optimising Economic and Environmental Performances of Sheep-Meat Farms Does Not Fully Fit with the Meat Industry Demands. Agron. Sustain. Dev. 2019, 39, 40. [Google Scholar] [CrossRef]
- Jacobson, A.L. Wild Plants of Greater Seattle, 2nd ed.; Arthur Lee Jacobson: Seattle, DC, USA, 2001. [Google Scholar]
- Kamicha, W.J. Ecological Impacts and Utilization of Urtica dioica L. in Nyeri County, Kenya. Ph.D. Thesis, Kenyatta University, Nairobi, Kenya, 2024. [Google Scholar]
- Kazemi, M.; Ariapour, A. Nutritional Dynamics of Iranian Pasture Flora: Implications for Animal Health and Productivity. Grass Forage Sci. 2025, 80, e12718. [Google Scholar] [CrossRef]
- Swearingen, J.M.; Fulton, J.P. Plant Invaders of Mid-Atlantic Natural Areas, Field Guide; Passiflora Press: Washington, DC, USA, 2022; ISBN 978-0-578-99147-4. [Google Scholar]
- Zhang, Y.; Zhang, X.; Zafar, M.H.; Zhang, J.; Wang, J.; Yu, X.; Liu, W.; Wang, M. Research Progress in Physiological Effects of Resistant Substances of Urtica dioica L. on Animal Performance and Feed Conversion. Front. Plant Sci. 2023, 14, 1164363. [Google Scholar] [CrossRef] [PubMed]
- Humphries, D.J.; Reynolds, C.K. The Effect of Adding Stinging Nettle (Urtica dioica) Haylage to a Total Mixed Ration on Performance and Rumen Function of Lactating Dairy Cows. Anim. Feed Sci. Technol. 2014, 189, 72–81. [Google Scholar] [CrossRef]
- Rahchamani, R.; Faramarzi, M.; Moslemipor, F.; Kohsar, J.P. Effect of Supplementing Sheep Diet with Glycyrrhiza Glabra and Urtica Dioica Powder on Growth Performance, Rumen Bacterial Community and Some Blood Biochemical Constituents. Iran. J. Appl. Anim. Sci. 2019, 9, 95. [Google Scholar]
- Lans, C.; Turner, N.; Khan, T.; Brauer, G.; Boepple, W. Ethnoveterinary Medicines Used for Ruminants in British Columbia, Canada. J. Ethnobiol. Ethnomed. 2007, 3, 11. [Google Scholar] [CrossRef]
- Moussouni, L.; Besseboua, O.; Ayad, A. Anthelmintic Activity of Aqueous and Ethanol Extracts of Urtica dioica L. and Myrtus communis L. Leaves on Bovine Digestive Strongyles: In-Vitro Study. Atatürk Üniversitesi Vet. Bilim. Derg. 2019, 14, 273–283. [Google Scholar] [CrossRef]
- Brutti, D.D.; Canozzi, M.E.A.; Sartori, E.D.; Colombatto, D.; Barcellos, J.O.J. Effects of the Use of Tannins on the Ruminal Fermentation of Cattle: A Meta-Analysis and Meta-Regression. Anim. Feed Sci. Technol. 2023, 306, 115806. [Google Scholar] [CrossRef]
- Nudda, A.; Carta, S.; Correddu, F.; Caratzu, M.F.; Cesarani, A.; Hidalgo, J.; Pulina, G.; Lunesu, M.F. A Meta-Analysis on Use of Agro-Industrial by-Products Rich in Polyphenols in Dairy Small Ruminant Nutrition. Animal 2025, 19, 101522. [Google Scholar] [CrossRef]
- Orzuna-Orzuna, J.F.; Dorantes-Iturbide, G.; Lara-Bueno, A.; Chay-Canul, A.J.; Miranda-Romero, L.A.; Mendoza-Martínez, G.D. Meta-Analysis of Flavonoids Use into Beef and Dairy Cattle Diet: Performance, Antioxidant Status, Ruminal Fermentation, Meat Quality, and Milk Composition. Front. Vet. Sci. 2023, 10, 1134925. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.A. A Global Comparison of the Nutritive Values of Forage Plants Grown in Contrasting Environments. J. Plant Res. 2018, 131, 641–654. [Google Scholar] [CrossRef] [PubMed]
- Chebil, A.; Frija, A.; Makhlouf, M.; Thabet, C.; Jebari, S. Effects of Water Scarcity on the Performances of the Agricultural Sector and Adaptation Strategies in Tunisia. In Agricultural Economics—Current Issues; Kulshreshtha, S.N., Ed.; IntechOpen: London, UK, 2019; ISBN 978-1-78984-049-0. [Google Scholar]
- Nomad Season Compare the Climate in 180K+ Locations Around the World 2025. Available online: https://nomadseason.com/ (accessed on 20 September 2025).
- AOAC. Official Methods of Analysis; Association of Official Analytical Chemists: Arlington, VA, USA, 2000. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef] [PubMed]
- Cosmulescu, S.; Trandafir, I.; Nour, V.; Botu, M. Total Phenolic, Flavonoid Distribution and Antioxidant Capacity in Skin, Pulp and Fruit Extracts of Plum Cultivars: Phenolic, Flavonoids, Antioxidant Capacity in Plum. J. Food Biochem. 2015, 39, 64–69. [Google Scholar] [CrossRef]
- Kujala, T.S.; Loponen, J.M.; Klika, K.D.; Pihlaja, K. Phenolics and Betacyanins in Red Beetroot (Beta vulgaris) Root: Distribution and Effect of Cold Storage on the Content of Total Phenolics and Three Individual Compounds. J. Agric. Food Chem. 2000, 48, 5338–5342. [Google Scholar] [CrossRef]
- Makkar, H.P.S.; Francis, G.; Becker, K. Bioactivity of Phytochemicals in Some Lesser-Known Plants and Their Effects and Potential Applications in Livestock and Aquaculture Production Systems. Animal 2007, 1, 1371–1391. [Google Scholar] [CrossRef]
- National Research Council (Ed.) Nutrient Requirements of Dairy Cattle, 7th ed.; Nutrient requirements of domestic animals; National Academy Press: Washington, DC, USA, 2001; ISBN 978-0-309-06997-7. [Google Scholar]
- Fortina, R.; Glorio Patrucco, S.; Barbera, S.; Tassone, S. Rumen Fluid from Slaughtered Animals: A Standardized Procedure for Sampling, Storage and Use in Digestibility Trials. Methods Protoc. 2022, 5, 59. [Google Scholar] [CrossRef]
- Goering, H.K.; Van Soest, P.G. Forage Fiber Analyses (Apparatus, Reagents, Procedures, and Some Applications); Agriculture Handbook: Washington, DC, USA, 1970. [Google Scholar]
- Braidot, M.; Sarnataro, C.; Romanzin, A.; Spanghero, M. A New Equipment for Continuous Measurement of Methane Production in a Batch in Vitro Rumen System. J. Anim. Physiol. Anim. Nutr. 2023, 107, 747–753. [Google Scholar] [CrossRef]
- Elghandour, M.M.M.Y.; Pacheco, E.B.F.; Dada, O.A.; De Palo, P.; Maggiolino, A.; Salem, A.Z.M. The Potential Impact of Bacterial Probiotics on Ruminal Greenhouse Gases Production in Vitro of Dietary Delonix Regia Seeds in Rams and Steers. Environ. Sci. Pollut. Res. 2024, 31, 64931–64949. [Google Scholar] [CrossRef]
- Alvarado-Ramírez, E.R.; Elghandour, M.M.M.Y.; Rivas-Jacobo, M.A.; Calabrò, S.; Vastolo, A.; Cutrignelli, M.I.; Hernández-Ruiz, P.E.; Figueroa-Pacheco, E.B.; Salem, A.Z.M. Influence of Genotype and Anaerobic Fermentation on In Vitro Rumen Fermentation Characteristics and Greenhouse Gas Production of Whole-Plant Maize. Fermentation 2024, 10, 42. [Google Scholar] [CrossRef]
- France, J.; Dijkstra, J.; Dhanoa, M.S.; Lopez, S.; Bannink, A. Estimating the Extent of Degradation of Ruminant Feeds from a Description of Their Gas Production Profiles Observed in Vitro: Derivation of Models and Other Mathematical Considerations. Br. J. Nutr. 2000, 83, 143–150. [Google Scholar] [CrossRef]
- Menke, K.H.; Steingass, H. Estimation of the Energetic Feed Value Obtained from Chemical Analysis and in Vitro Gas Production Using Rumen Fluid. Anim. Res. Dev. 1988, 28, 7–55. [Google Scholar]
- Getachew, G.; Makkar, H.P.S.; Becker, K. Tropical Browses: Contents of Phenolic Compounds, in Vitro Gas Production and Stoichiometric Relationship between Short Chain Fatty Acid and in Vitro Gas Production. J. Agric. Sci. 2002, 139, 341–352. [Google Scholar] [CrossRef]
- Crivellaro, A.; Piermattei, A.; Dolezal, J.; Dupree, P.; Büntgen, U. Biogeographic Implication of Temperature-Induced Plant Cell Wall Lignification. Commun. Biol. 2022, 5, 767. [Google Scholar] [CrossRef]
- Thorvaldsson, G.; Tremblay, G.F.; Tapani Kunelius, H. The Effects of Growth Temperature on Digestibility and Fibre Concentration of Seven Temperate Grass Species. Acta Agric. Scand. Sect. B Soil Plant Sci. 2007, 57, 322–328. [Google Scholar] [CrossRef]
- Niu, H.; Xu, Z.; Yang, H.E.; McAllister, T.A.; Acharya, S.; Wang, Y. In Vitro Ruminal Fermentation of Fenugreek (Trigonella foenum-graecum L.) Produced Less Methane than That of Alfalfa (Medicago sativa). Anim. Biosci. 2021, 34, 584–593. [Google Scholar] [CrossRef] [PubMed]
- Abid, K.; Aroua, M.; Barbera, S.; Patrucco, S.G.; Kaihara, H.; Mahouachi, M.; Saïd, S.B.; Tassone, S. Effect of Microplastic Contamination on In Vitro Ruminal Fermentation and Feed Degradability. Anim. Sci. J. 2025, 96, e70063. [Google Scholar] [CrossRef]
- Jabri, J.; Abid, K.; Yaich, H.; Malek, A.; Rekhis, J.; Kamoun, M. Effect of Combining Exogenous Fibrolytics Enzymes Supplementation with Alkali and Acid Pre-Treatments on Wheat Straw Hydrolysis and Ruminal Fermentation. Indian J. Anim. Sci. 2019, 89, 780–785. [Google Scholar] [CrossRef]
- Bionaz, M.; Vargas-Bello-Pérez, E.; Busato, S. Advances in Fatty Acids Nutrition in Dairy Cows: From Gut to Cells and Effects on Performance. J. Anim. Sci. Biotechnol. 2020, 11, 110. [Google Scholar] [CrossRef]
- Shepherd, T.; Wynne Griffiths, D. The Effects of Stress on Plant Cuticular Waxes. New Phytol. 2006, 171, 469–499. [Google Scholar] [CrossRef] [PubMed]
- Kosma, D.K.; Bourdenx, B.; Bernard, A.; Parsons, E.P.; Lü, S.; Joubès, J.; Jenks, M.A. The Impact of Water Deficiency on Leaf Cuticle Lipids of Arabidopsis. Plant Physiol. 2009, 151, 1918–1929. [Google Scholar] [CrossRef]
- Li, T.; Peng, L.; Wang, H.; Zhang, Y.; Wang, Y.; Cheng, Y.; Hou, F. Multi-Cutting Improves Forage Yield and Nutritional Value and Maintains the Soil Nutrient Balance in a Rainfed Agroecosystem. Front. Plant Sci. 2022, 13, 825117. [Google Scholar] [CrossRef] [PubMed]
- McDowell, L.R. Minerals in Animal and Human Nutrition, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2003; ISBN 978-0-444-51367-0. [Google Scholar]
- Bhusal, K.K.; Magar, S.K.; Thapa, R.; Lamsal, A.; Bhandari, S.; Maharjan, R.; Shrestha, S.; Shrestha, J. Nutritional and Pharmacological Importance of Stinging Nettle (Urtica dioica L.): A Review. Heliyon 2022, 8, e09717. [Google Scholar] [CrossRef]
- Tarasevičienė, Ž.; Vitkauskaitė, M.; Paulauskienė, A.; Černiauskienė, J. Wild Stinging Nettle (Urtica dioica L.) Leaves and Roots Chemical Composition and Phenols Extraction. Plants 2023, 12, 309. [Google Scholar] [CrossRef]
- Arros, F.; Garrido, C.; Valenzuela, C. Development and Characterization of Nettle-Leaves Powder (Urtica Urens) as a Potential Supplement for Animal Feed. Rev. Fac. Cienc. Agrar. UNCuyo 2019, 52, 353–359. [Google Scholar]
- Paulauskienė, A.; Tarasevičienė, Ž.; Laukagalis, V. Influence of Harvesting Time on the Chemical Composition of Wild Stinging Nettle (Urtica dioica L.). Plants 2021, 10, 686. [Google Scholar] [CrossRef]
- Tsuji, C.; Dannoura, M.; Desalme, D.; Angeli, N.; Takanashi, S.; Kominami, Y.; Epron, D. Drought Affects the Fate of Non-Structural Carbohydrates in Hinoki Cypress. Tree Physiol. 2022, 42, 784–796. [Google Scholar] [CrossRef]
- Huang, X.; Guo, W.; Yang, L.; Zou, Z.; Zhang, X.; Addo-Danso, S.D.; Zhou, L.; Li, S. Effects of Drought Stress on Non-Structural Carbohydrates in Different Organs of Cunninghamia Lanceolata. Plants 2023, 12, 2477. [Google Scholar] [CrossRef]
- Chaves, M.M.; Maroco, J.P.; Pereira, J.S. Understanding Plant Responses to Drought—From Genes to the Whole Plant. Funct. Plant Biol. 2003, 30, 239. [Google Scholar] [CrossRef]
- Amrit, B.; Ponnampalam, E.N.; Macwan, S.; Wu, H.; Aziz, A.; Muir, S.; Dunshea, F.R.; Suleria, H.A.R. Comprehensive Screening and Characterization of Polyphenol Compounds from Pasture Grasses Used for Livestock Production under Temperate Region. Anim. Feed Sci. Technol. 2023, 300, 115657. [Google Scholar] [CrossRef]
- Dixon, R.A.; Paiva, N.L. Stress-Induced Phenylpropanoid Metabolism. Plant Cell 1995, 7, 1085–1097. [Google Scholar] [CrossRef]
- VanSoest, P.J. Nutritional Ecology of the Ruminant, 2nd ed.; Comstock: Ithaca, NY, USA; London, UK, 1994; ISBN 978-0-8014-2772-5. [Google Scholar]
- Jenkins, T.C. Lipid Metabolism in the Rumen. J. Dairy Sci. 1993, 76, 3851–3863. [Google Scholar] [CrossRef]
- Puchalska, J.; Szumacher-Strabel, M.; Patra, A.K.; Ślusarczyk, S.; Gao, M.; Petrič, D.; Nabzdyk, M.; Cieślak, A. The Effect of Different Concentrations of Total Polyphenols from Paulownia Hybrid Leaves on Ruminal Fermentation, Methane Production and Microorganisms. Animals 2021, 11, 2843. [Google Scholar] [CrossRef]
- Purcell, P.J.; Boland, T.M.; O’Brien, M.; O’Kiely, P. In Vitro Rumen Methane Output of Forb Species Sampled in Spring and Summer. Agric. Food Sci. 2012, 21, 83–90. [Google Scholar] [CrossRef]
- Reddy, P.R.K.; Hyder, I. Ruminant Digestion. In Textbook of Veterinary Physiology; Das, P.K., Sejian, V., Mukherjee, J., Banerjee, D., Eds.; Springer Nature Singapore: Singapore, 2023; pp. 353–366. ISBN 978-981-19940-9-8. [Google Scholar]
- Kulivand, M.; Kafilzadeh, F. Correlation between Chemical Composition, Kinetics of Fermentation and Methane Production of Eight Pasture Grasses. Acta Sci. Anim. Sci. 2015, 37, 9. [Google Scholar] [CrossRef]
- Patra, A.K. The Effect of Dietary Fats on Methane Emissions, and Its Other Effects on Digestibility, Rumen Fermentation and Lactation Performance in Cattle: A Meta-Analysis. Livest. Sci. 2013, 155, 244–254. [Google Scholar] [CrossRef]
- Patra, A.K.; Saxena, J. A New Perspective on the Use of Plant Secondary Metabolites to Inhibit Methanogenesis in the Rumen. Phytochemistry 2010, 71, 1198–1222. [Google Scholar] [CrossRef]

| Temperature | Precipitation | Humidity | Sunshine | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Arid | Semi-Arid | Sub-Humid | Arid | Semi-Arid | Sub-Humid | Arid | Semi-Arid | Sub-Humid | Arid | Semi-Arid | Sub-Humid | |
| January | 13 | 9 | 9 | 9 | 22 | 22 | 67 | 69 | 74 | 230 | 218 | 218 |
| February | 14 | 11 | 10 | 17 | 27 | 30 | 66 | 68 | 73 | 278 | 269 | 265 |
| March | 16 | 13 | 12 | 22 | 60 | 68 | 64 | 64 | 72 | 338 | 320 | 322 |
| April | 18 | 16 | 15 | 14 | 54 | 54 | 61 | 59 | 71 | 349 | 336 | 337 |
| May | 21 | 20 | 20 | 5 | 37 | 34 | 57 | 53 | 67 | 388 | 381 | 387 |
| Juin | 25 | 26 | 25 | 1 | 17 | 19 | 53 | 47 | 62 | 390 | 385 | 386 |
| July | 28 | 29 | 29 | 0 | 4 | 4 | 50 | 43 | 59 | 406 | 406 | 411 |
| August | 29 | 29 | 29 | 10 | 19 | 21 | 50 | 44 | 58 | 381 | 376 | 379 |
| September | 27 | 25 | 24 | 21 | 42 | 46 | 60 | 56 | 66 | 336 | 328 | 328 |
| October | 23 | 19 | 18 | 27 | 41 | 42 | 64 | 63 | 71 | 321 | 312 | 311 |
| November | 18 | 14 | 14 | 27 | 37 | 36 | 64 | 64 | 70 | 277 | 264 | 265 |
| December | 14 | 10 | 11 | 9 | 36 | 38 | 67 | 69 | 74 | 279 | 271 | 270 |
| Arid | Semi-Arid | Sub-Humid | SEM | p-Value | |
|---|---|---|---|---|---|
| DM | 36.33 a | 30.34 b | 27.26 b | 2.921 | ** |
| NDF | 42.15 a | 33.25 b | 29.43 b | 3.413 | *** |
| ADF | 23.77 | 22.21 | 22.55 | 2.312 | NS |
| ADL | 6.89 a | 5.79 b | 5.76 b | 0.231 | ** |
| CP | 20.67 | 18.58 | 20.97 | 1.221 | NS |
| EE | 2.59 a | 1.66 b | 0.63 c | 0.243 | ** |
| Ash | 27.97 a | 28.89 a | 25.10 b | 2.011 | * |
| NFC | 6.62 c | 17.62 b | 23.72 a | 3.321 | *** |
| Total polyphenol | 12.56 a | 9.48 b | 10.54 b | 1.021 | * |
| Total tannin | 2.88 b | 6.37 a | 3.30 b | 1.020 | * |
| Condensed tannin | 0.46 | 0.37 | 0.59 | 0.341 | NS |
| Arid | Semi-Arid | Sub-Humid | SEM | p-Value | |
|---|---|---|---|---|---|
| Ph | 6.19 a | 6.13 b | 6.12 b | 0.030 | * |
| DMD | 52.90 b | 60.85 a | 60.26 a | 4.331 | ** |
| NDFD | 44.83 b | 55.48 a | 56.01 a | 5.222 | ** |
| ADFD | 35.34 b | 48.17 a | 49.85 a | 4.169 | ** |
| ME | 7.16 b | 8.60 a | 8.96 a | 0.671 | ** |
| VFA | 0.79 b | 1.02 a | 1.08 a | 0.061 | ** |
| Arid | Semi-Arid | Sub-Humid | SEM | p-Value | |
|---|---|---|---|---|---|
| PGP | 187 b | 248 a | 261.3 a | 17.32 | *** |
| C | 0.131 a | 0.116 b | 0.116 b | 0.1091 | ** |
| Lag | 0.75 c | 0.59 a | 0.52 a | 0.212 | * |
| T1/2 | 6.86 | 6.57 | 6.48 | 0.351 | NS |
| AFR | 15.95 b | 18.84 a | 20.13 a | 1.412 | * |
| Arid | Semi-Arid | Sub-Humid | SEM | p-Value | |
|---|---|---|---|---|---|
| Proportion of total gas (%) | |||||
| CH4 | 10.98 c | 13.21 b | 17.60 a | 1.220 | *** |
| CO2 | 38.74 ab | 32.60 b | 44.15 a | 4.231 | * |
| CO | 0.082 a | 0.052 b | 0.055 b | 0.0132 | ** |
| Emission per dry matter (mL/g DM) | |||||
| CH4 | 20.45 c | 32.36 b | 44.70 a | 2.239 | ** |
| CO2 | 72.45 b | 79.87 b | 112.10 a | 9.441 | ** |
| CO | 0.155 a | 0.128 b | 0.140 ab | 0.0291 | * |
| Emission per dry matter degradability (mL/g DMD) | |||||
| CH4 | 38.82 c | 53.17 b | 74.18 a | 3.222 | *** |
| CO2 | 136.95 b | 131.25 b | 186.20 a | 17.231 | *** |
| CO | 0.293 a | 0.210 b | 0.223 b | 0.0451 | * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abid, K.; Abidi, T.; Benrajeb, S.; Balestra, V.; Barbera, S.; Issaoui, R.; Kaihara, H.; Niama, W.; Aroua, M.; Mahouachi, M.; et al. Bioclimatic Influence on the Nutritional Composition, In Vitro Ruminal Fermentation Dynamics, and Greenhouse Gas Emissions of Urtica dioica. Animals 2025, 15, 2856. https://doi.org/10.3390/ani15192856
Abid K, Abidi T, Benrajeb S, Balestra V, Barbera S, Issaoui R, Kaihara H, Niama W, Aroua M, Mahouachi M, et al. Bioclimatic Influence on the Nutritional Composition, In Vitro Ruminal Fermentation Dynamics, and Greenhouse Gas Emissions of Urtica dioica. Animals. 2025; 15(19):2856. https://doi.org/10.3390/ani15192856
Chicago/Turabian StyleAbid, Khalil, Takwa Abidi, Saifddine Benrajeb, Valentina Balestra, Salvatore Barbera, Rabeb Issaoui, Hatsumi Kaihara, Wijdem Niama, Mohamed Aroua, Mokhtar Mahouachi, and et al. 2025. "Bioclimatic Influence on the Nutritional Composition, In Vitro Ruminal Fermentation Dynamics, and Greenhouse Gas Emissions of Urtica dioica" Animals 15, no. 19: 2856. https://doi.org/10.3390/ani15192856
APA StyleAbid, K., Abidi, T., Benrajeb, S., Balestra, V., Barbera, S., Issaoui, R., Kaihara, H., Niama, W., Aroua, M., Mahouachi, M., Ben Said, S., & Tassone, S. (2025). Bioclimatic Influence on the Nutritional Composition, In Vitro Ruminal Fermentation Dynamics, and Greenhouse Gas Emissions of Urtica dioica. Animals, 15(19), 2856. https://doi.org/10.3390/ani15192856

