Lipidomics-Based Analysis of the Regulatory Effects of Phytosterol Esters on Lactation Performance and Lipid Metabolism in Tarim Bactrian camels
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Experimental Design
2.2. Sample Collection and Analysis
2.3. Lipidomic Analysis by UHPLC-MS/MS
2.4. Lipidomics Data Processing
2.5. Statistical Analysis
3. Results
3.1. Effect of PSE on Lactation Performance
3.2. Effect of PSE on Serum Biochemical Parameters
3.3. Lipid Metabolomics Multivariate Analysis of Serum and Camel Milk
3.4. Differential Lipid Metabolite Identification of Serum and Camel Milk
3.5. Pathway Analysis of Serum and Camel Milk
3.6. Interaction Analysis of Serum and Camel Milk Lipid Metabolites
4. Discussion
5. Conclusions
6. Patents
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PSE | Plant sterol esters |
Glu | Glucose |
TP | Total protein |
ALB | Albumin |
A/G | ALB/GLB ratio |
UA | Uric acid |
TG | Triglycerides |
TC | Total cholesterol |
HDLC | High-density lipoprotein cholesterol |
LDLC | Low-density lipoprotein cholesterol |
References
- Castillo, A.R.; Rienzo, J.A.D.; Cavallini, D. Effect of a mix of condense and hydrolysable tannins feed additive on lactating dairy cows’ services per conception and days open. Vet. Anim. Sci. 2025, 27, 100434. [Google Scholar] [CrossRef]
- Jalal, H.; Doğan, S.C.; Giammarco, M.; Cavallini, D.; Lanzoni, L.; Pezzi, P.; Akram, M.Z.; Fusaro, I. Evaluation of dietary supplementation of garlic powder (Allium sativum) on the growth performance, carcass traits and meat quality of Japanese quails (Coturnix coturnix japonica). Poult. Sci. 2024, 103, 104231. [Google Scholar] [CrossRef]
- Abd El-Aziz, A.; Elfadadny, A.; Abo Ghanima, M.; Cavallini, D.; Fusaro, I.; Giammarco, M.; Buonaiuto, G.; El-Sabrout, K. Nutritional Value of Oregano-Based Products and Its Effect on Rabbit Performance and Health. Animals 2024, 14, 3021. [Google Scholar] [CrossRef]
- Marliani, G.; Vaccari, L.; Cavallini, D.; Montesano, C.S.; Buonaiuto, G.; Accorsi, P.A. Assessing the effectiveness of cannabidiol additive supplementation on canine behavior and cortisol levels. Heliyon 2024, 10, e31345. [Google Scholar] [CrossRef]
- Smet, E.D.; Mensink, R.P.; Plat, J. Effects of plant sterols and stanols on intestinal cholesterol metabolism: Suggested mechanisms from past to present. Mol. Nutr. Food Res. 2012, 56, 1058–1072. [Google Scholar] [CrossRef] [PubMed]
- Tian, W. The property and function of phytosterols and their application in animal production. Feed Ind. 2018, 39, 1–10. [Google Scholar]
- Xi, Y.M.; Jin, Z.H.; Lin, L.J.; Han, Z.Y. Effect of phytosterols on rumen fermentation in vitro. Genet. Mol. Res. 2014, 13, 3869–3875. [Google Scholar] [CrossRef] [PubMed]
- Lv, D.; Gao, J.; Wu, Z.; Sun, Z.; Hao, L.; Liu, S.; Tan, Z.; Cheng, Y.; Zhu, W. Multiomic Analyses Reveal the Effects of Supplementing Phytosterols on the Metabolic Function of the Rumen Microbiota in Perinatal Cows. Appl. Environ. Microbiol. 2022, 88, e0099222. [Google Scholar] [CrossRef] [PubMed]
- Ryan, E.; McCarthy, F.O.; Maguire, A.R.; O’Brien, N.M. Phytosterol Oxidation Products: Their Formation, Occurrence, and Biological Effects. Food Rev. Int. 2009, 25, 157–174. [Google Scholar] [CrossRef]
- Hu, Q.; Li, S.; Zhang, Y.; Zhuo, Z.; Feng, J. Phytosterols on growth performance, antioxidant enzymes and intestinal morphology in weaned piglets. J. Sci. Food Agric. 2017, 97, 4629–4634. [Google Scholar] [CrossRef]
- Shen, M.; Yuan, L.; Zhang, J.; Wang, X.; Zhang, M.; Li, H.; Jing, Y.; Zeng, F.; Xie, J. Phytosterols: Physiological Functions and Potential Application. Foods 2024, 13, 1754. [Google Scholar] [CrossRef] [PubMed]
- Tan, Z.; Shahidi, F. Chemoenzymatic synthesis of phytosteryl ferulates and evaluation of their antioxidant activity. J. Agric. Food Chem. 2011, 59, 12375–12383. [Google Scholar] [CrossRef]
- Wang, Z.; Hwang, S.H.; Lim, S.S. Lipophilization of phenolic acids with phytosterols by a chemoenzymatic method to improve their antioxidant activities. Eur. J. Lipid Sci. Technol. 2015, 117, 1037–1048. [Google Scholar] [CrossRef]
- Song, L.; Li, Y.; Qu, D.; Ouyang, P.; Ding, X.; Wu, P.; Guan, Q.; Yang, L. The regulatory effects of phytosterol esters (PSEs on gut flora and faecal metabolites in rats with NAFLD. Food Funct. 2019, 11, 977–991. [Google Scholar] [CrossRef]
- Wang, L.; Zuo, X.; Zhao, W.; Zhou, G.; Luo, L.; Yang, K.; Shu, G.; Wang, S.; Gao, P.; Zhu, X.; et al. Effect of maternal dietary supplementation with phytosterol esters on muscle development of broiler offspring. Acta Biochim. Pol. 2020, 67, 135–141. [Google Scholar] [CrossRef]
- Li, D.; Kong, X.; Yu, Y.; Hu, Q.; Zhang, J.; Chen, Y. Research Progresses on Nutritional Components and Authenticity Identification of Camel Milk. Food Sci. 2025, 46, 346–357. [Google Scholar]
- Gross, J.J.; Bruckmaier, R.M. Review: Metabolic challenges in lactating dairy cows and their assessment via established and novel indicators in milk. Animal 2019, 13, s75–s81. [Google Scholar] [CrossRef]
- Bauman, D.E.; Mather, I.H.; Wall, R.J.; Lock, A.L. Major Advances Associated with the Biosynthesis of Milk. J. Dairy Sci. 2006, 89, 1235–1243. [Google Scholar] [CrossRef] [PubMed]
- McManaman, J.L.; Neville, M.C. Mammary physiology and milk secretion. Adv. Drug Deliv. Rev. 2003, 55, 629–641. [Google Scholar] [CrossRef] [PubMed]
- Mohammad, S.; Nilufar, N.; Waliul, K. Physico-Chemical Analysis and Composition of Camel Milk of Bangladesh. J. Basic Appl. Sci. 2016, 12, 231–235. [Google Scholar] [CrossRef]
- Anusha Siddiqui, S.; Mahmood Salman, S.H.; Ali Redha, A.; Zannou, O.; Chabi, I.B.; Oussou, K.F.; Bhowmik, S.; Nirmal, N.P.; Maqsood, S. Physicochemical and nutritional properties of different non-bovine milk and dairy products: A review. Int. Dairy J. 2024, 148, 105790. [Google Scholar] [CrossRef]
- Maryam, A.; Alyaa, F. Impact of cow, buffalo, goat or camel milk consumption on oxidative stress, inflammation and immune response post weaning time. Sci. Rep. 2024, 14, 9967. [Google Scholar] [CrossRef]
- Salwa, M.Q.; Lina, A.F.K. Antigenotoxic and anticytotoxic effect of camel milk in mice treated with cisplatin. Saudi J. Biol. Sci. 2010, 17, 159–166. [Google Scholar] [CrossRef]
- Konuspayeva, G.; Faye, B.; Loiseau, G. The composition of camel milk: A meta-analysis of the literature data. J. Food Compos. Anal. 2009, 22, 95–101. [Google Scholar] [CrossRef]
- Ereifej, K.I.; Alu’datt, M.H.; AlKhalidy, H.A.; Alli, I.; Rababah, T. Corrigendum to “Comparison and characterization of fat and protein composition for camel milk from eight Jordanian locations” (Food Chemistry 127 (2011) 282–289). Food Chem. 2011, 128, 222. [Google Scholar] [CrossRef]
- Muthukumaran, M.S.; Mudgil, P.; Ayoub, M.A.; Maqsood, S.; Baba, W.N. A comprehensive review on health benefits, nutritional composition and processed products of camel milk. Food Rev. Int. 2023, 39, 3080–3116. [Google Scholar] [CrossRef]
- Kamal, M.; Karoui, R. Monitoring of mild heat treatment of camel milk by front-face fluorescence spectroscopy. LWT Food Sci. Technol. 2017, 79, 586–593. [Google Scholar] [CrossRef]
- Alhassani, W.E. Camel milk: Nutritional composition, therapeutic properties, and benefits for human health. Open Vet. J. 2024, 14, 3164–3180. [Google Scholar] [CrossRef]
- Sun, H.Z.; Wang, D.M.; Wang, B.; Wang, J.K.; Liu, H.Y.; Guan, L.L.; Liu, J.X. Metabolomics of four biofluids from dairy cows: Potential biomarkers for milk production and quality. J. Proteome Res. 2015, 14, 1287–1298. [Google Scholar] [CrossRef] [PubMed]
- Xu, T.; Hu, C.; Xuan, Q.; Xu, G. Recent advances in analytical strategies for mass spectrometry-based lipidomics. Anal. Chim. Acta 2020, 1137, 156–169. [Google Scholar] [CrossRef] [PubMed]
- Fusaro, I.; Parrillo, S.; Buonaiuto, G.; Prasinou, P.; Gramenzi, A.; Bucci, R.; Cavallini, D.; Carosi, A.; Carluccio, A.; De Amicis, I. Effects of hemp-based polyunsaturated fatty acid supplementation on membrane lipid profiles and reproductive performance in Martina Franca jacks. Front. Vet. Sci. 2025, 12, 1553218. [Google Scholar] [CrossRef]
- GB 5009.3-2016; National Food Safety Standard Determination of Moisture in Foods. China Standards Press: Beijing, China, 2016.
- GB 5009.5-2016; National Food Safety Standard Determination of Protein in Foods. China Standards Press: Beijing, China, 2016.
- GB 5009.6-2016; National Food Safety Standard Determination of Fat in Foods. China Standards Press: Beijing, China, 2016.
- GB 5009.8-2016; National Food Safety Standard Determination of Fructose, Glucose, Sucrose, Maltose, and Lactose in Foods. China Standards Press: Beijing, China, 2016.
- GB 5413.39-2010; National Food Safety Standard—Determination of Milk Solids-Not-Fat in Milk and Milk Products. China Standards Press: Beijing, China, 2010.
- Zhang, M.H.; Lu, D.L.; Dong, J.; Chen, G.L.; Huang, X.X. The Analysis of Chemical Composition and Physico-chemical Indexes of the Junggar Bactrian Camel Milk. China Dairy 2016, 8, 52–55. [Google Scholar]
- Lv, R.; Zhou, G.; Chen, H.; Chi, C.; Han, Z. Effects of dietary Phytosterols on milk yield and composition in dairy cows. Anim. Husb. Vet. Med. 2010, 42, 13–16. [Google Scholar]
- Jin, Z. Application of Phytosterolsnd Its Mechanisms in Dairy Cows. Master’s Thesis, Nanjing Agricultural University, Nanjing, China, 2010. [Google Scholar]
- Ling, W.H.; Jones, P.J. Dietary phytosterols: A review of metabolism, benefits and side effects. Life Sci. 1995, 57, 195–206. [Google Scholar] [CrossRef] [PubMed]
- Mellanen, P.; Petänen, T.; Lehtimäki, J.; Mkel, S.; Bylund, G.R.; Holmbom, B.; Mannila, E.; Oikari, A.; Santti, R. Wood-derived estrogens: Studies in vitro with breast cancer cell lines and in vivo in trout. Toxicol. Appl. Pharmacol. 1996, 136, 381–388. [Google Scholar] [CrossRef]
- Yan, B.; Li, Z.; Li, S.; Wang, Y.; Cao, Z.; Li, Y. Effects of Different Yeast Cultures on Performance, Nutrient Apparent Digestibility and Serum Indexes of Dairy Cows in Mid-and Late-Lactation. Chin. J. Anim. Nutr. 2018, 30, 2732–2740. [Google Scholar]
- Chen, Z.; Gao, P.; Xu, H. Research Progress on the Mechanisms by Which Phytosterols Influence Cholesterol Metabolism. J. Environ. Hyg. 2008, 35, 360–363. [Google Scholar]
- Wu, W.; Ma, X.; Chen, R.; Fan, J.; Ye, W.; Chen, Z.; Huang, Q.; Qian, L. Effects of Phytosterol Ester Supplementation on Egg Characteristics, Eggshell Ultrastructure, Antioxidant Capacity, Liver Function and Hepatic Metabolites of Laying Hens during Peak Laying Period. Antioxidants 2024, 13, 458. [Google Scholar] [CrossRef]
- Xia, Y.; Yu, Z. Effect of different levels of esterified phytosterols on growth performance, immune function and serum biochemical indexes of piglets. Feed Res. 2023, 46, 26–29. [Google Scholar]
- Song, L.; Zhou, H.; Yu, W.; Ding, X.; Yang, L.; Wu, J.; Song, C. Effects of Phytosterol Ester on the Fatty Acid Profiles in Rats with Nonalcoholic Fatty Liver Disease. J. Med. Food 2020, 23, 161–172. [Google Scholar] [CrossRef]
- Zhang, C.-H.; Zhou, B.-G.; Sheng, J.-Q.; Chen, Y.; Cao, Y.-Q.; Chen, C. Molecular mechanisms of hepatic insulin resistance in nonalcoholic fatty liver disease and potential treatment strategies. Pharmacol. Res. 2020, 159, 104984. [Google Scholar] [CrossRef]
- Ouyang, P.; Guan, Q.; Qu, D.; Ding, X.; Yang, Y.; Song, L. Effect of Phytosterol Esters on Selected Serum Metabolites of Rats with Non-alcoholic Fatty Liver Disease(NAFLD). Food Sci. 2020, 41, 127–137. [Google Scholar]
- Liu, Y.; Jiao, J.-G.; Gao, S.; Ning, L.-J.; Limbu, S.M.; Qiao, F.; Chen, L.-Q.; Zhang, M.-L.; Du, Z.-Y. Dietary oils modify lipid molecules and nutritional value of fillet in Nile tilapia: A deep lipidomics analysis. Food Chem. 2019, 277, 515–523. [Google Scholar] [CrossRef]
- Deng, L.; Yang, Y.; Li, Z.; Li, J.; Zhu, Y.; Meng, Q.; Liu, J.; Liu, X. Impact of different dietary regimens on the lipidomic profile of mare’s milk. Food Res. Int. 2022, 156, 111305. [Google Scholar] [CrossRef]
- Satriana; Arpi, N.; Lubis, Y.M.; Adisalamun; Supardan, M.D.; Mustapha, W.A.W. Diacylglycerol-enriched oil production using chemical glycerolysis. Eur. J. Lipid Sci. Technol. 2016, 118, 1880–1890. [Google Scholar] [CrossRef]
- Wang, F. Effects of 1,3-Diacylglycerol Milk Fat on Lipid Metabolism in SD Rats and Its Underlying Mechanisms. Master’s Thesis, Anhui Agricultural University, Hefei, China, 2013. [Google Scholar]
- Castro-Gómez, P.; Garcia-Serrano, A.; Visioli, F.; Fontecha, J. Relevance of dietary glycerophospholipids and sphingolipids to human health. Prostaglandins Leukot. Essent. Fat. Acids PLEFA 2015, 101, 41–51. [Google Scholar] [CrossRef]
- van der Veen, J.N.; Kennelly, J.P.; Wan, S.; Vance, J.E.; Vance, D.E.; Jacobs, R.L. The critical role of phosphatidylcholine and phosphatidylethanolamine metabolism in health and disease. BBA Biomembr. 2017, 1859, 1558–1572. [Google Scholar] [CrossRef] [PubMed]
- Barron, K.; Ogretmen, B.; Krupenko, N. Dietary Folic Acid Alters Metabolism of Multiple Vitamins in a CerS6- and Sex-Dependent Manner. Front. Nutr. 2021, 8, 758403. [Google Scholar] [CrossRef]
- Yamauchi, I.; Uemura, M.; Hosokawa, M.; Iwashima-Suzuki, A.; Shiota, M.; Miyashita, K. The dietary effect of milk sphingomyelin on the lipid metabolism of obese/diabetic KK-A(y) mice and wild-type C57BL/6J mice. Food Funct. 2016, 7, 3854–3867. [Google Scholar] [CrossRef] [PubMed]
- Ganeshalingam, M.; Cheema, S.; Wagner, C.L.; Pham, T.H.; Enstad, S.; Andrews, C.; Grapov, D.; Esposito, F.; Sen, S.; Thomas, R. Exploring the impacts of human breast milk functional lipidome on infant health and growth outcomes in early life using lipid bioinformatics. bioRxiv 2024. [Google Scholar] [CrossRef]
- Wei, P.; Zhu, K.; Cao, J.; Lin, X.; Shen, X.; Duan, Z.; Li, C. Relationship between Micromolecules and Quality Changes of Tilapia Fillets after Partial Freezing Treatment with Polyphenols. J. Agric. Food Chem. 2021, 69, 8213–8226. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Zhu, W.; Chen, C.; Yan, B.; Zhu, L.; Chen, X.; Peng, C. The mechanisms of lysophosphatidylcholine in the development of diseases. Life Sci. 2020, 247, 117443. [Google Scholar] [CrossRef] [PubMed]
- Li, Z. Insights into the Role of Choline Kinase in Endochondral Bone Formation and Human Osteoblasts Function. Ph.D. Thesis, University of Alberta, Edmonton, AB, Canada, 2014. [Google Scholar]
- Jitrapakdee, S.; St Maurice, M.; Rayment, I.; Cleland, W.W.; Wallace, J.C.; Attwood, P.V. Structure, mechanism and regulation of pyruvate carboxylase. Biochem. J. 2008, 413, 369–387. [Google Scholar] [CrossRef]
- Li, Z.; Vance, D.E. Thematic Review Series: Glycerolipids. Phosphatidylcholine and choline homeostasis. J. Lipid Res. 2008, 49, 1187–1194. [Google Scholar] [CrossRef]
- Chevallier, J.; Chamoun, Z.; Jiang, G.; Prestwich, G.; Sakai, N.; Matile, S.; Parton, R.G.; Gruenberg, J. Lysobisphosphatidic acid controls endosomal cholesterol levels. J. Biol. Chem. 2008, 283, 27871–27880. [Google Scholar] [CrossRef]
- Kadegowda, A.K.; Piperova, L.S.; Erdman, R.A. Principal component and multivariate analysis of milk long-chain fatty acid composition during diet-induced milk fat depression. J. Dairy Sci. 2008, 91, 749–759. [Google Scholar] [CrossRef]
- Sadovnikova, A.; Garcia, S.C.; Hovey, R.C. A Comparative Review of the Extrinsic and Intrinsic Factors Regulating Lactose Synthesis. J. Mammary Gland. Biol. Neoplasia 2021, 26, 197–215. [Google Scholar] [CrossRef] [PubMed]
Items | C Group | L Group | M Group | H Group | SEM | Treatment | Linear | Quadratic |
---|---|---|---|---|---|---|---|---|
Milk yield (kg/d) | 2.76 Bb | 2.76 Bb | 2.92 ABb | 3.57 Aa | 1.254 | <0.01 | <0.01 | 0.063 |
Lactose yield (g/d) | 159.79 Bab | 154.65 Bb | 166.24 Bb | 188.15 Aa | 16.730 | <0.001 | <0.001 | <0.001 |
Milk protein yield (g/d) | 101.95 Bbc | 99.35 Bc | 105.94 Bb | 118.40 Aa | 10.281 | <0.001 | <0.001 | <0.01 |
Milk fat yield (g/d) | 60.49 Bb | 72.11 Bb | 78.09 Bb | 161.62 Aa | 53.396 | <0.01 | <0.01 | 0.135 |
Non-fat solids (g/d) | 245.43 Bbc | 236.36 Bc | 254.72 Bb | 283.82 Aa | 26.163 | <0.001 | <0.001 | <0.01 |
Items | C Group | L Group | M Group | H Group | SEM | Treatment | Linear | Quadratic |
---|---|---|---|---|---|---|---|---|
Glu mmol/L | 6.39 ABab | 5.75 Bb | 6.59 ABab | 7.03 Aa | 0.837 | <0.05 | <0.05 | 0.063 |
TP g/L | 66.96 | 67.99 | 66.59 | 65.27 | 4.454 | 0.745 | 0.403 | 0.504 |
ALB g/L | 43.50 | 42.80 | 43.77 | 43.47 | 3.776 | 0.972 | 0.893 | 0.894 |
GLB g/L | 23.46 | 25.19 | 22.81 | 21.81 | 3.928 | 0.454 | 0.270 | 0.363 |
A/G | 1.92 | 1.77 | 1.96 | 2.02 | 0.364 | 0.639 | 0.425 | 0.461 |
Urea mmol/L | 8.02 Bb | 9.53 Aa | 9.76 Aa | 9.78 Aa | 1.091 | <0.05 | <0.001 | 0.051 |
UA μmol/L | 13.40 | 16.17 | 13.86 | 18.33 | 6.050 | 0.501 | 0.296 | 0.738 |
TG mmol/L | 0.28 | 0.19 | 0.28 | 0.27 | 0.090 | 0.197 | 0.715 | 0.228 |
TC mmol/L | 1.83 Aa | 1.47 ABb | 1.35 Bb | 1.43 ABb | 0.336 | <0.05 | <0.05 | 0.055 |
HDL-C mmol/L | 0.31 | 0.30 | 0.25 | 0.29 | 0.070 | 0.426 | 0.361 | 0.484 |
LDL-C mmol/L | 1.55 a | 1.35 ab | 1.13 b | 1.10 b | 0.340 | 0.051 | <0.05 | 0.500 |
Groups | A | N | R2X | R2Y | Q2 |
---|---|---|---|---|---|
L vs. C | 1 + 1 | 16 | 0.833 | 0.77 | 0.534 |
M vs. C | 1 + 2 | 16 | 0.811 | 0.829 | 0.651 |
H vs. C | 1 + 1 | 15 | 0.597 | 0.759 | 0.525 |
BL vs. BC | 1 + 2 | 16 | 0.835 | 0.886 | 0.624 |
BM vs. BC | 1 + 1 | 16 | 0.703 | 0.786 | 0.528 |
BH vs. BC | 1 + 1 | 15 | 0.704 | 0.896 | 0.807 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dou, P.; Shen, Y.; Zheng, W.; Zhu, L.; Chen, Y.; Li, F. Lipidomics-Based Analysis of the Regulatory Effects of Phytosterol Esters on Lactation Performance and Lipid Metabolism in Tarim Bactrian camels. Animals 2025, 15, 2827. https://doi.org/10.3390/ani15192827
Dou P, Shen Y, Zheng W, Zhu L, Chen Y, Li F. Lipidomics-Based Analysis of the Regulatory Effects of Phytosterol Esters on Lactation Performance and Lipid Metabolism in Tarim Bactrian camels. Animals. 2025; 15(19):2827. https://doi.org/10.3390/ani15192827
Chicago/Turabian StyleDou, Penglan, Yusong Shen, Weihua Zheng, Lin Zhu, Yong Chen, and Fengming Li. 2025. "Lipidomics-Based Analysis of the Regulatory Effects of Phytosterol Esters on Lactation Performance and Lipid Metabolism in Tarim Bactrian camels" Animals 15, no. 19: 2827. https://doi.org/10.3390/ani15192827
APA StyleDou, P., Shen, Y., Zheng, W., Zhu, L., Chen, Y., & Li, F. (2025). Lipidomics-Based Analysis of the Regulatory Effects of Phytosterol Esters on Lactation Performance and Lipid Metabolism in Tarim Bactrian camels. Animals, 15(19), 2827. https://doi.org/10.3390/ani15192827