Optimizing Enzymatic Pretreatment of Wet-Grade Maize Distiller’s Dried Grains with Solubles and Maize Germ Meal for Enhanced Metabolizable Energy Utilization in Broilers
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Sources of Feed, Enzyme Preparation, and Bacterial Culture
2.2. Separation of Insoluble Fiber from Maize DDGS and MGM
2.3. Single-Factor Optimization of the Effect of Four Enzyme–Substrate Ratios on Insoluble Fibers in Two Raw Materials
2.3.1. Optimization of Cellulase Enzyme–Substrate Ratio
2.3.2. Optimized Ratio of Laccase Substrates
2.3.3. Optimization of the Basal Ratio of Ferulic Acid Esterase Enzyme
2.3.4. Optimized Ratio of Pectinase to Substrate
2.4. The Effect of the X1 Enzyme Combined with Cellulase on Insoluble Fiber in Two Kinds of Raw Materials
2.5. Optimization of SSF Conditions of Maize DDGS-MGM
2.5.1. Single-Factor Optimization of Cellulase Enzyme Concentration Ratio
2.5.2. Single-Factor Optimization of X1 Enzyme–Substrate Ratio
2.5.3. Single-Factor Optimization of Fermentation Time
2.5.4. SSF of Wet Maize DDGS-MGM Response Surface Experiment
2.6. Metabolism Experiment
2.6.1. Animals, Diet, and Manure Collection Procedures
2.6.2. Quantification of Reducing Sugars Using the Dinitrosalicylic Acid Method
2.6.3. Sample Treatment and Chemical Analysis
2.6.4. Determination of DMS and Apparent ME
after sample pretreatment)/dry matter content before sample pretreatment
(MJ/kg) − fecal volume (kg) × excreta energy (MJ/kg)]/feed intake (kg)
diet metabolic energy − (100 − proportion of the tested feed ingredient)/100]
× basal diet metabolic energy/proportion of the tested feed ingredient (%)
excreta = Feed intake (kg) × Feed N content (%) − Output in excreta (kg) × N
content in excreta (%)
2.6.5. Analysis Using Fourier Transform Infrared Spectroscopy
2.6.6. Determination of Monosaccharides
2.6.7. Statistical Analysis
3. Results
3.1. Optimization of Pre-Digestion Conditions for Insoluble Fiber in Maize DDGS and MGM, and Economic Benefit Analysis
3.1.1. Optimization of Pre-Digestion Conditions for Insoluble Fiber in Maize DDGS
3.1.2. Optimization of Pre-Digestion Conditions for Insoluble Fiber in MGM
3.1.3. Optimization of Cellulase and X1 Synergistic Pre-Digestion Parameters for Insoluble Fibers in Maize DDGS and MGM
3.1.4. Economic Benefit Analysis
3.2. Experimental Design and Optimization of SSF Conditions of Maize DDGS-MGM
3.2.1. Optimization of SSF Conditions of Maize DDGS-MGM by Cellulase and X1 Enzyme
Single-Factor Optimization of Cellulase and X1 Enzyme–Substrate Ratio
Single-Factor Optimization of Fermentation Time
3.2.2. Optimization of SSF Conditions by Response Surface Methodology
0.000222 × AC − 0.000833 × BC − 0.000174 × A2 − 0.001204 × B2 − 0.001803 × C2
3.2.3. Verification and Determination of Optimal Co-Fermentation Culture Conditions
3.3. Effects of SSF of Maize DDGS-MGM on Metabolic Energy of White Feather Broilers
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Deepak, T.S.; Jayadeep, P.A. Prospects of maize (corn) wet milling by-products as a source of functional food ingredients and nutraceuticals. Food Technol. Biotechnol. 2022, 60, 109–120. [Google Scholar] [CrossRef] [PubMed]
- Gwirtz, J.A.; Garcia-Casal, M.N. Processing maize flour and corn meal food products. Ann. N. Y. Acad. Sci. 2014, 1312, 66–75. [Google Scholar] [CrossRef] [PubMed]
- Mansfield, S.D.; Meder, R. Cellulose hydrolysis–the role of monocomponent cellulases in crystalline cellulose degradation. Cellulose 2003, 10, 159–169. [Google Scholar] [CrossRef]
- Lin, S.; Hunt, C.J.; Holck, J.; Brask, J.; Krogh, K.B.; Meyer, A.S.; Wilkens, C.; Agger, J.W. Fungal feruloyl esterases can catalyze release of diferulic acids from complex arabinoxylan. Int. J. Biol. Macromol. 2023, 232, 123365. [Google Scholar] [CrossRef]
- Zhou, M.; Fakayode, O.A.; Ren, M.; Li, H.; Liang, J.; Yagoub, A.E.A.; Fan, Z.; Zhou, C. Laccase-catalyzed lignin depolymerization in deep eutectic solvents: Challenges and prospects. Bioresour. Bioprocess. 2023, 10, 21–43. [Google Scholar] [CrossRef]
- Haile, S.; Ayele, A. Pectinase from microorganisms and its industrial applications. Sci. World J. 2022, 2022, 1881305. [Google Scholar] [CrossRef]
- Knudsen, K.E. Fiber and nonstarch polysaccharide content and variation in common crops used in broiler diets. Poult. Sci. 2014, 93, 2380–2393. [Google Scholar] [CrossRef]
- Jaworski, N.W.; Lærke, H.N.; Bach Knudsen, K.E.; Stein, H.H. Carbohydrate composition and in vitro digestibility of dry matter and nonstarch polysaccharides in corn, sorghum, and wheat and coproducts from these grains. J. Anim. Sci. 2015, 93, 1103–1113. [Google Scholar] [CrossRef]
- Gutierrez, N.A.; Serão, N.V.; Kerr, B.J.; Zijlstra, R.T.; Patience, J.F. Relationships among dietary fiber components and the digestibility of energy, dietary fiber, and amino acids and energy content of nine corn coproducts fed to growing pigs. J. Anim. Sci. 2014, 92, 4505–4517. [Google Scholar] [CrossRef]
- Jin, D.; Tugiyanti, E.; Rimbawanto, E.A.; Rosidi, R.; Widiyastuti, T.; Susanto, A.; Ismoyowati, I. Effects of high-level dietary distillers dried grains with solubles supplemented with multienzymes on growth performance, nutrient utilization, intestinal morphology, and pellet quality in broiler chickens. Vet. World 2024, 17, 1943–1954. [Google Scholar] [CrossRef]
- Kwak, M.J.; Ha, D.J.; Park, M.Y.; Eor, J.Y.; Whang, K.Y.; Kim, Y. Comparison study between single enzyme and multienzyme complex in distiller’s dred grains with soluble supplemented diet in broiler chicken. J. Anim. Sci. Technol. 2024, 66, 398–411. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Urriola, P.E.; Shurson, G.; Tiffany, D.; Hu, B. Enhancing feeding value of corn distiller’s grains with solubles via fungal co-cultured solid-state fermentation for monogastric animal nutrition. Anim. Feed. Sci. Technol. 2023, 303, 115673. [Google Scholar] [CrossRef]
- Ximenes, E.A.; Dien, B.S.; Ladisch, M.R.; Mosier, N.; Cotta, M.A.; Li, X.L. Enzyme production by industrially relevant fungi cultured on coproduct from corn dry grind ethanol plants. Appl. Biochem. Biotechnol. 2007, 137, 171–183. [Google Scholar] [CrossRef] [PubMed]
- Moran-Aguilar, M.G.; Costa-Trigo, I.; Calderón-Santoyo, M.; Domínguez, J.M.; Aguilar-Uscanga, M.G. Production of cellulases and xylanases in solid-state fermentation by different strains of Aspergillus niger using sugarcane bagasse and brewery spent grain. Biochem. Eng. J. 2021, 172, 108060–108071. [Google Scholar] [CrossRef]
- Fan, W.; Huang, X.; Liu, K.; Xu, Y.P.; Hu, B.; Chi, Z.Y. Nutrition component adjustment of distilled dried grain with solubles via aspergillus Niger and its change about dynamic physiological metabolism. Fermentation 2022, 8, 264–277. [Google Scholar] [CrossRef]
- Peng, Y.; Wang, M.; Zheng, Z.; Wang, L.; Zhang, X.; Cheng, K.; Zhang, Y. Optimization of solid-state fermented corn distillers dried grains with solubles: Effects on growth performance and tissue morphology in broiler chickens. Front. Anim. Sci. 2024, 5, 1459552. [Google Scholar] [CrossRef]
- Yuan, H.; Zhou, Y.; Lin, Y.; Tu, R.; Guo, Y.; Zhang, Y.; Wang, Q. Microfluidic screening and genomic mutation identification for enhancing cellulase production in Pichia pastoris. Biotechnol. Biofuels Bioprod. 2022, 15, 50. [Google Scholar] [CrossRef]
- Li, C.L.; Guo, Y.L.; Zhang, T.Y.; Wang, L.H.; Gao, A.Q. Screening, identification and optimization of solid-state fermentation conditions for high-yield laccase strain. Chin. J. Anim. Nutr. 2021, 33, 6501–6509. [Google Scholar]
- NY/T 912-2020; Determination of Feed Ingredients—Acid Detergent Fiber (ADF) Content. Ministry of Agriculture and Rural Affairs of the People’s Republic of China: Beijing, China, 2020.
- GB/T 23874-2009; Determination of Xylanase Activity in Feed Additives—Spectrophotometric Method. General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China (AQSIQ); Standardization Administration of the People’s Republic of China: Beijing, China, 2009.
- Al-Shwafy, K.W.A.; Chadni, M.; Zamari, M.H.H.A.; Ioannou, I. Enzymatic extraction of ferulic acid from brewer’s spent grain: Effect of physical pretreatments and optimization using design of experiments. Biocatal. Agric. Biotechnol. 2023, 172, 108060. [Google Scholar] [CrossRef]
- QB 1502-1992; Food additive—Pectinase preparation. Ministry of Light Industry of the People’s Republic of China: Beijing, China, 1992.
- Tian, H.Y. Purification and Characterization of β–Xylosidase Produced by Mixed Fermentation; Beijing University of Chemical Technology: Beijing, China, 2012; pp. 1–75. [Google Scholar]
- Zhang, Y.L. Heterologous Expression, Characterization, and Molecular Modification Study of High-Efficiency Endo-β-1,3-Glucanase; Jiangnan University: Wuxi, China, 2024; pp. 1–57. [Google Scholar]
- Xiao, Z.L. Screening of β-Glucosidase-Producing Bacteria from Coral and Genes Expression for Preparation Gentiooligosaccharides; Guangxi University: Nanning, China, 2021; pp. 1–75. [Google Scholar]
- GB/T 6433-2006; Determination of Crude Fat in Feeds. General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China; Standardization Administration of the People’s Republic of China: Beijing, China, 2006.
- GB/T 20806-2022; Determination of Fiber Content in Feed Ingredients—Neutral Detergent Fiber (NDF) Content. State Administration for Market Regulation; Standardization Administration of the People’s Republic of China: Beijing, China, 2022.
- Guo, Y.; Zhang, Z.; Dou, J.; Liu, G.; Li, X.; Zhao, J. Structural characterization of corn fiber hemicelluloses extracted by organic solvent and screening of degradation enzymes. Carbohydr. Polym. 2023, 313, 120820. [Google Scholar] [CrossRef]
- Technical Regulation of Nutritional Value Evaluation and Establishment of Parameters for Feed Ingredients. Bureau of Animal Husbandry and Veterinary; Ministry of Agriculture and Rural Affairs of the People’s Republic of China: Beijing, China, 2020.
- NY/T 33-2004; Feeding Standard of Chicken. Ministry of Agriculture of the People’s Re-public of China: Beijing, China, 2004.
- Jain, A.; Jain, R.; Jain, S.; Jain, A.; Jain, R.; Jain, S. Quantitative analysis of reducing sugars by 3, 5-dinitrosalicylic acid (DNSA method). In Basic Techniques in Biochemistry, Microbiology and Molecular Biology; Humana: New York, NY, USA, 2020; pp. 181–183. [Google Scholar]
- GB/T 6435-2014; Determination of Moisture in Feedstuffs. General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China; Standardization Administration of the People’s Republic of China: Beijing, China, 2014.
- GB/T 6432-2018; Determination of Crude Protein in Feeds—Kjeldahl Method. State Administration for Market Regulation; Standardization Administration of the People’s Republic of China: Beijing, China, 2018.
- ISO 9831:1998; Animal Feeding Stuffs, Animal Products, and Faeces or Urine—Determination of Gross Calorific Value—Bomb Calorimeter Method. International Organi-zation for Standardization: Geneva, Switzerland, 1998.
- AOAC 1990; Official Methods of Analysis, 15th ed. Association of Official Analytical Chemists: Arlington, VA, USA, 1990.
- AOAC 2001-12; Determination of Water/Dry Matter (Moisture) in Animal Feed, Grain, and Forage (Plant Tissue). Official Methods of Analysis of AOAC INTERNATIONAL; AOAC INTERNATIONAL: Gaithersburg, MD, USA, 2005.
- Kong, C.; Adeola, O. Evaluation of amino acid and energy utilization in feedstuff for swine and poultry diets. Asian-Australas. J. Anim. Sci. 2014, 27, 917–925. [Google Scholar] [CrossRef] [PubMed]
- Saha, N.R.; Sarkar, G.; Roy, I.; Rana, D.; Bhattacharyya, A.; Adhikari, A.; Mukhopadhyay, A.; Chattopadhyay, D. Studies on methylcellulose/pectin/montmorillonite nanocomposite films and their application possibilities. Carbohydr. Polym. 2016, 136, 1218–1227. [Google Scholar] [CrossRef] [PubMed]
- GB/T 40980-2021; Determination of Reducing Sugar in Biochemical Products—High-Performance Liquid Chromatography with Pre-Column Derivatization. Standardization Administration of the People’s Republic of China: Beijing, China, 2021.
- Li, L.; Xie, X.; Zhao, G.; He, J.; Zhang, Y. The effects of applying cellulase and laccase on fermentation quality and microbial community in mixed silage containing corn stover and wet brewer’s grains. Front. Plant Sci. 2024, 15, 1441873. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Gonzalez, M.d.R.; Miranda-Lopez, R. Cellulases, hemicellulases and ligninolytic enzymes: Mechanism of action, optimal processing conditions and obtaining value-added compounds in plant matrices. MOJ Food Process. Technol. 2022, 10, 30–37. [Google Scholar] [CrossRef]
- Scheibel, D.M.; Gitsov, I.P.I.; Gitsov, I. Enzymes in “Green” synthetic chemistry: Laccase and lipase. Molecules 2024, 29, 989. [Google Scholar] [CrossRef]
- Kumar, V.P.; Sridhar, M.; Rao, R.G. Biological depolymerization of lignin using laccase harvested from the autochthonous fungus Schizophyllum commune employing various production methods and its efficacy in augmenting in vitro digestibility in ruminants. Sci. Rep. 2022, 12, 11170. [Google Scholar] [CrossRef]
- Zhang, S.; Dong, Z.; Shi, J.; Yang, C.; Fang, Y.; Chen, G.; Chen, H.; Tian, C. Enzymatic hydrolysis of corn stover lignin by laccase, lignin peroxidase, and manganese peroxidase. Bioresour. Technol. 2022, 361, 127699. [Google Scholar] [CrossRef]
- Nazar, M.; Xu, Q.; Ullah, M.W.; Khan, N.A.; Iqbal, B.; Zhu, D. Integrated laccase delignification with improved lignocellulose recalcitrance for enhancing enzymatic saccharification of ensiled rice straw. Ind. Crops Prod. 2023, 202, 116987. [Google Scholar] [CrossRef]
- Wong, D.W.; Chan, V.J.; Liao, H. Hydrolysis of ferulic acids in corn fiber by a metagenomic feruloyl esterase. BioResources 2021, 16, 825–834. [Google Scholar] [CrossRef]
- Schmitz, E.; Leontakianakou, S.; Norlander, S.; Karlsson, E.N.; Adlercreutz, P. Lignocellulose degradation for the bioeconomy: The potential of enzyme synergies between xylanases, ferulic acid esterase and laccase for the production of arabinoxylo-oligosaccharides. Bioresour. Technol. 2022, 343, 126114. [Google Scholar] [CrossRef]
- Bai, Y.; Gilbert, R.G. Mechanistic understanding of the effects of pectin on in vivo starch digestion: A review. Nutrients 2022, 14, 5107. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Diaby, M.; Zheng, N.; Wang, J. Sequential action of different fiber-degrading enzymes enhances the degradation of corn stover. Agriculture 2022, 12, 181. [Google Scholar] [CrossRef]
- Han, Y.; Chen, H. A β-xylosidase from cell wall of maize: Purification, properties and its use in hydrolysis of plant cell wall. J. Mol. Catal. B Enzym. 2010, 63, 135–140. [Google Scholar] [CrossRef]
- Yadav, M.; Joshi, C.; Paritosh, K.; Thakur, J.; Pareek, N.; Masakapalli, S.K.; Vivekanand, V. Organic waste conversion through anaerobic digestion: A critical insight into the metabolic pathways and microbial interactions. Metab. Eng. 2022, 69, 323–337. [Google Scholar] [CrossRef]
- Chen, H.; Chen, H. Biotechnology principles of solid state fermentation. In Modern Solid State Fermentation: Theory and Practice; Springer: Dordrecht, The Netherlands, 2013; pp. 23–74. [Google Scholar]
- Ridder, E.R.; Nokes, S.E.; Knutson, B.L. Optimization of solid-state fermentation parameters for the production of xylanase by Trichoderma longibrachiatum on wheat bran. Trans. ASAE 1998, 41, 1453–1459. [Google Scholar] [CrossRef]
- Gervais, P.; Molin, P. The role of water in solid-state fermentation. Biochem. Eng. J. 2003, 13, 85–101. [Google Scholar] [CrossRef]
- Son, J.; Kim, J.; Jo, H.; Kim, B.J. Fecal amylase-treated neutral detergent fiber and ash contents as independent variables can predict metabolizable energy and coefficient of energy digestibility of diets for growing pigs without dietary information. Anim. Feed. Sci. Technol. 2023, 305, 115790. [Google Scholar] [CrossRef]
- Wang, C.; Su, W.; Zhang, Y.; Hao, L.; Wang, F.; Lu, Z.; Zhao, J.; Liu, X.; Wang, Y. Solid-state fermentation of distilled dried grain with solubles with probiotics for degrading lignocellulose and upgrading nutrient utilization. AMB Express 2018, 8, 188. [Google Scholar] [CrossRef]
- Fan, W.; Liu, K.; Xu, Y.; Chi, Z. Solid-state fermentation of corn wet distiller grains and wheat bran with Trichoderma reesei and Candida utilis for improving feed value. J. Sci. Food Agric. 2025, 105, 2968–2977. [Google Scholar] [CrossRef]
- Barzegar, S.; Wu, S.B.; Choct, M.; Swick, R.A. Factors affecting energy metabolism and evaluating net energy of poultry feed. Poult. Sci. 2020, 99, 487–498. [Google Scholar] [CrossRef]
- Carpenter, K.; Clegg, K. The metabolizable energy of poultry feeding stuffs in relation to their chemical composition. J. Sci. Food Agric. 1956, 7, 45–51. [Google Scholar] [CrossRef]
- Singh, A.K.; Kim, W.K. Effects of dietary fiber on nutrients utilization and gut health of poultry: A review of challenges and opportunities. Animals 2021, 11, 181–199. [Google Scholar] [CrossRef]
- Walker, H.; Vartiainen, S.; Apajalahti, J.; Taylor-Pickard, J.; Nikodinoska, I.; Moran, C.A. The Effect of including a mixed-enzyme product in broiler diets on performance, metabolizable Energy, phosphorus and calcium retention. Animals 2024, 14, 328–338. [Google Scholar] [CrossRef] [PubMed]
- Alqhtani, A.H.; Al Sulaiman, A.R.; Alharthi, A.S.; Abudabos, A.M. Effect of exogenous enzymes cocktail on performance, carcass traits, biochemical metabolites, intestinal morphology, and nutrient digestibility of broilers fed normal and low-energy corn–soybean diets. Animals 2022, 12, 1094. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Liu, J.; Chen, J.; Pirzado, S.A.; Li, Y.; Cai, H.; Liu, G. Effects of fermentation on standardized ileal digestibility of amino acids and apparent metabolizable energy in rapeseed meal fed to broiler chickens. Animals 2020, 10, 1774. [Google Scholar] [CrossRef] [PubMed]
- Romero, L.; Parsons, C.; Utterback, P.; Plumstead, P.; Ravindran, V. Comparative effects of dietary carbohydrases without or with protease on the ileal digestibility of energy and amino acids and AMEn in young broilers. Anim. Feed Sci. Technol. 2013, 181, 35–44. [Google Scholar] [CrossRef]
- Kouzounis, D.; Hageman, J.A.; Soares, N.; Michiels, J.; Schols, H.A. Impact of xylanase and glucanase on oligosaccharide formation, carbohydrate fermentation patterns, and nutrient utilization in the gastrointestinal tract of broilers. Animals 2021, 11, 1285. [Google Scholar] [CrossRef]
- El-Ghany, W.A.A. Applications of organic acids in poultry production: An updated and comprehensive review. Agriculture 2024, 14, 1756. [Google Scholar] [CrossRef]
- An, J.; Shi, J.; Liu, K.; Li, A.; He, B.; Wang, Y.; Duan, T.; Wang, Y.; He, J. Effects of solid-state fermented wheat bran on growth performance, immune function, intestinal morphology and microflora in lipopolysaccharide-challenged broiler chickens. Animals 2022, 12, 1100. [Google Scholar] [CrossRef]
- Zhu, X.; Tao, L.; Liu, H.; Yang, G. Effects of fermented feed on growth performance, immune organ indices, serum biochemical parameters, cecal odorous compound production, and the microbiota community in broilers. Poult. Sci. 2023, 102, 102629. [Google Scholar] [CrossRef]
- Niakousari, M.; Razmjooei, M.; Nejadmansouri, M.; Barba, F.J.; Marszałek, K.; Koubaa, M. Current developments in industrial fermentation processes. In Fermentation Processes: Emerging and Conventional Technologies; Wiley: Hoboken, NJ, USA, 2021; pp. 23–96. [Google Scholar]
- Bellon-Maurel, V.; Orliac, O.; Christen, P. Sensors and measurements in solid state fermentation: A review. Process Biochem. 2003, 38, 881–896. [Google Scholar] [CrossRef]
- Palladino, F.; Marcelino, P.R.F.; Schlogl, A.E.; José, Á.H.M.; Rodrigues, R.d.C.L.B.; Fabrino, D.L.; Santos, I.J.B.; Rosa, C.A. Bioreactors: Applications and innovations for a sustainable and healthy future—A critical review. Appl. Sci. 2024, 14, 9346. [Google Scholar] [CrossRef]
Factor | A Cellulase Enzyme–Substrate Ratio (mg/kg) | B X1 Enzyme Base Ratio (mg/kg) | C Fermentation Time (h) |
---|---|---|---|
Level-1 | 45 | 20 | 48 |
Level 0 | 75 | 60 | 72 |
Level 1 | 105 | 100 | 96 |
Grouping | Treatment |
---|---|
1 | Control group |
2 | Unfermented group (50%DDGS + 50%MGM) |
3 | Fermented group (50%DDGS + 50%MGM) |
4 | Unfermented group (62.5%DDGS + 37.5%MGM) |
5 | Fermented group (62.5%DDGS + 37.5%MGM) |
Items | 22–42 d |
---|---|
Maize | 53.09 |
Soybean meal | 33.00 |
Flour | 5.00 |
Soya-bean oil | 5.50 |
CaHPO4 | 1.65 |
Limestone | 0.90 |
NaCl | 0.30 |
L-Lys 55% | 0.15 |
DL-Met 99% | 0.10 |
Threonine 98% | 0.00 |
Composite mineral premix a | 0.10 |
Antioxidant | 0.03 |
Choline chloride | 0.15 |
Multidimensional premix b | 0.035 |
Total | 100.00 |
Calculated nutritive value | |
ME (Mcal/kg) c | 3.151 |
Crude protein (%) c | 19.86 |
Calcium (%) | 0.81 |
Available phosphorus (%) | 0.40 |
Lysine (%) | 1.11 |
Methionine (%) | 0.41 |
Threonine (%) | 0.78 |
Arginine (%) | 1.36 |
Valine (%) | 0.90 |
Methionine + Cystine (%) | 0.65 |
Time [min] | A[%] | B[%] | Flow [mL/min] | Max. Pressure Limit [bar] |
---|---|---|---|---|
0.00 | 100.0 | 0.0 | 0.700 | 400.00 |
3.00 | 85.0 | 15.0 | 0.700 | ----- |
22.00 | 82.0 | 18.0 | 0.700 | ----- |
24.50 | 0.0 | 100.0 | 0.700 | ----- |
26.00 | 0.0 | 100.0 | 0.700 | ----- |
26.10 | 85.0 | 15.0 | 0.700 | ----- |
30.00 | 85.0 | 15.0 | 0.700 | ----- |
Item | Maize | Soybean Meal | Fermented Feed (Including Cost of Enzymes) | Fermented Feed Manpower + Equipment Depreciation and Other Costs | Price Difference |
---|---|---|---|---|---|
Price RMB/ton | 2400 | 2908 | 1804.33 | 20 | - |
Compound feed replacement ratio | 2.9% | 2.1% | 5% | - | |
Total | 69.60 | 61.07 | 90.22 | 20 | 20.45 |
Item | Reduced Sugar Content mg/g | DMS % |
---|---|---|
24 h | 177.27 b | 48.22 b |
48 h | 200.26 a | 48.77 b |
72 h | 175.85 b | 47.75 b |
96 h | 120.51 c | 52.53 a |
SEM | 8.193 | 0.847 |
p-value | <0.001 | 0.002 |
Source | Sum of Squares | df | Mean Square | F-Value | p-Value | |
---|---|---|---|---|---|---|
Model | 185.10 | 9 | 20.57 | 7.39 | 0.0076 | significant |
A—Cellulase addition | 6.11 | 1 | 6.11 | 2.20 | 0.1819 | |
B—X1 addition amount | 103.90 | 1 | 103.90 | 37.35 | 0.0005 | |
C—fermentation time | 50.30 | 1 | 50.30 | 18.08 | 0.0038 | |
AB | 0.5852 | 1 | 0.5852 | 0.2104 | 0.6604 | |
AC | 0.1024 | 1 | 0.1024 | 0.0368 | 0.8533 | |
BC | 2.56 | 1 | 2.56 | 0.9204 | 0.3693 | |
A2 | 0.1028 | 1 | 0.1028 | 0.0370 | 0.8530 | |
B2 | 15.62 | 1 | 15.62 | 5.62 | 0.0496 | |
C2 | 4.54 | 1 | 4.54 | 1.63 | 0.2420 | |
Residual | 19.47 | 7 | 2.78 | |||
Lack of Fit | 7.55 | 3 | 2.52 | 0.8437 | 0.5371 | not significant |
Pure Error | 11.92 | 4 | 2.98 | |||
Cor Total | 204.57 | 16 |
Std. Dev. | 1.67 | R2 | 0.9048 |
---|---|---|---|
Mean | 44.88 | Adjusted R2 | 0.7825 |
C. V.% | 3.72 | Predicted R2 | 0.7188 |
Adeq Precision | 9.8926 |
Item | Total Feed Intake (g) | GE (MJ/kg) | N in Feed (%) | N in Excreta (%) | AME (MJ/kg) | AMEn (MJ/kg) | AME/GE% | AMEn/GE% |
---|---|---|---|---|---|---|---|---|
Control group | 437.17 a | 18.01 | 18.95 | 28.06 | 13.99 a | 13.69 a | 0.78 a | 0.76 a |
Unfermented group (50%DDGS + 50%MGM) | 395.12 b | 18.38 | 19.86 | 24.28 | 11.87 c | 11.64 c | 0.65 d | 0.63 d |
Fermented group (50%DDGS + 50%MGM) | 412.51 ab | 18.17 | 19.79 | 27.33 | 12.69 c | 12.46 b | 0.70 b | 0.69 b |
Unfermented group (62.5%DDGS + 37.5%MGM) | 420.97 ab | 18.46 | 20.01 | 26.79 | 12.63 bc | 12.19 b | 0.67 c | 0.66 c |
Fermented group (62.5%DDGS + 37.5%MGM) | 411.63 ab | 18.24 | 20.17 | 28.89 | 12.84 b | 12.62 b | 0.70 b | 0.69 b |
SEM | 10.215 | - | 0.388 | 0.197 | 0.011 | 0.011 | ||
p-value | 0.011 | - | <0.001 | <0.001 | <0.001 | <0.001 |
Item | AME (MJ/kg) | AMEn (MJ/kg) |
---|---|---|
Unfermented group (50%DDGS + 50%MGM) | 6.92 b | 6.69 b |
Fermented group (50%DDGS + 50%MGM) | 9.66 a | 9.42 a |
Unfermented group (62.5%DDGS + 37.5%MGM) | 8.74 a | 8.51 a |
Fermented group (62.5%DDGS + 37.5%MGM) | 10.14 a | 9.93 a |
SEM | 0.243 | 0.230 |
p-value | 0.005 | 0.005 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, M.; Zhang, H.; An, J.; Wei, H.; Zhang, T.; Chen, Q. Optimizing Enzymatic Pretreatment of Wet-Grade Maize Distiller’s Dried Grains with Solubles and Maize Germ Meal for Enhanced Metabolizable Energy Utilization in Broilers. Animals 2025, 15, 2819. https://doi.org/10.3390/ani15192819
Zheng M, Zhang H, An J, Wei H, Zhang T, Chen Q. Optimizing Enzymatic Pretreatment of Wet-Grade Maize Distiller’s Dried Grains with Solubles and Maize Germ Meal for Enhanced Metabolizable Energy Utilization in Broilers. Animals. 2025; 15(19):2819. https://doi.org/10.3390/ani15192819
Chicago/Turabian StyleZheng, Mengli, Huixin Zhang, Jing An, Haoran Wei, Tieying Zhang, and Qinghua Chen. 2025. "Optimizing Enzymatic Pretreatment of Wet-Grade Maize Distiller’s Dried Grains with Solubles and Maize Germ Meal for Enhanced Metabolizable Energy Utilization in Broilers" Animals 15, no. 19: 2819. https://doi.org/10.3390/ani15192819
APA StyleZheng, M., Zhang, H., An, J., Wei, H., Zhang, T., & Chen, Q. (2025). Optimizing Enzymatic Pretreatment of Wet-Grade Maize Distiller’s Dried Grains with Solubles and Maize Germ Meal for Enhanced Metabolizable Energy Utilization in Broilers. Animals, 15(19), 2819. https://doi.org/10.3390/ani15192819