Exploratory Metabolomic Fingerprinting of Aqueous Humor in Healthy Horses and Donkeys, and in Horses with Ocular Pathologies
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Study Design
2.2. Ophthalmic Examination
2.3. Sample Collection and Preparation
2.4. Data Acquisition and Analysis
2.5. Quantification of Metabolites
2.6. Comparative Analysis
3. Results
3.1. Samples
3.2. Characterization of the Metabolomic Profile of the AH of the Horse and Donkey Healthy Eyes
3.3. Characterization of the Metabolomic Profile of AH According to Age and Sex Groups of Normal Equine Eyes
3.4. Characterization of the Metabolomic Profile of the AH of the Equine Eyes with Ocular Disease
4. Discussion
4.1. Age-Related Variations in AH Composition
4.2. Significant Metabolite Changes in Horse AH of Eyes with Cataracts and Retinal Disease
4.3. Metabolomic Trends in Horse AH Associated with Ocular Disease
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Patti, G.J.; Yanes, O.; Siuzdak, G. Innovation: Metabolomics: The apogee of the omics trilogy. Nat. Rev. Mol. Cell Biol. 2012, 13, 263–269. [Google Scholar] [CrossRef]
- Kennedy, A.D.; Wittmann, B.M.; Evans, A.M.; Miller, L.A.D.; Toal, D.R.; Lonergan, S.; Elsea, S.H.; Pappan, K.L. Metabolomics in the clinic: A review of the shared and unique features of untargeted metabolomics for clinical research and clinical testing. J. Mass Spectrom. 2018, 53, 1143–1154. [Google Scholar] [CrossRef] [PubMed]
- Pang, H.; Jia, W.; Hu, Z. Emerging Applications of Metabolomics in Clinical Pharmacology. Clin. Pharmacol. Ther. 2019, 106, 544–556. [Google Scholar] [CrossRef] [PubMed]
- Gu, H.; Chen, H.; Pan, Z.; Jackson, A.U.; Talaty, N.; Xi, B.; Kissinger, C.; Duda, C.; Mann, D.; Raftery, D.; et al. Monitoring diet effects via biofluids and their implications for metabolomics studies. Anal. Chem. 2007, 79, 89–97. [Google Scholar] [CrossRef] [PubMed]
- Ohmura, H.; Mukai, K.; Takahashi, Y.; Takahashi, T. Metabolomic analysis of skeletal muscle before and after strenuous exercise to fatigue. Sci. Rep. 2021, 11, 11261. [Google Scholar] [CrossRef]
- Markin, P.A.; Brito, A.; Moskaleva, N.; Lartsova, E.V.; Shpot, Y.V.; Lerner, Y.V.; Mikhajlov, V.Y.; Potoldykova, N.V.; Enikeev, D.V.; La Frano, M.R.; et al. Plasma metabolomic profile in prostatic intraepithelial neoplasia and prostate cancer and associations with the prostate-specific antigen and the Gleason score. Metabolomics 2020, 16, 74. [Google Scholar] [CrossRef]
- Ussher, J.R.; Elmariah, S.; Gerszten, R.E.; Dyck, J.R.B. The Emerging Role of Metabolomics in the Diagnosis and Prognosis of Cardiovascular Disease. J. Am. Coll. Cardiol. 2016, 68, 2850–2870. [Google Scholar] [CrossRef]
- Cardoso, A.S.; Whitby, A.; Green, M.J.; Kim, D.; Randall, L.V. Identification of Predictive Biomarkers of Lameness in Transition Dairy Cows. Animals 2024, 14, 2030. [Google Scholar] [CrossRef]
- Yu, Z.; Zhai, G.; Singmann, P.; He, Y.; Xu, T.; Prehn, C.; Romisch-Margl, W.; Lattka, E.; Gieger, C.; Soranzo, N.; et al. Human serum metabolic profiles are age dependent. Aging Cell 2012, 11, 960–967. [Google Scholar] [CrossRef]
- Bouatra, S.; Aziat, F.; Mandal, R.; Guo, A.C.; Wilson, M.R.; Knox, C.; Bjorndahl, T.C.; Krishnamurthy, R.; Saleem, F.; Liu, P.; et al. The human urine metabolome. PLoS ONE 2013, 8, e73076. [Google Scholar] [CrossRef]
- Humer, E.; Pieh, C.; Probst, T. Metabolomic Biomarkers in Anxiety Disorders. Int. J. Mol. Sci. 2020, 21, 4784. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.; Faillace, V.; Laus, F.; Bazzano, M.; Laghi, L. Characterization of trotter horses urine metabolome by means of proton nuclear magnetic resonance spectroscopy. Metabolomics 2018, 14, 106. [Google Scholar] [CrossRef] [PubMed]
- Escalona, E.E.; Leng, J.; Dona, A.C.; Merrifield, C.A.; Holmes, E.; Proudman, C.J.; Swann, J.R. Dominant components of the Thoroughbred metabolome characterised by (1) H-nuclear magnetic resonance spectroscopy: A metabolite atlas of common biofluids. Equine Vet. J. 2015, 47, 721–730. [Google Scholar] [CrossRef] [PubMed]
- Psychogios, N.; Hau, D.D.; Peng, J.; Guo, A.C.; Mandal, R.; Bouatra, S.; Sinelnikov, I.; Krishnamurthy, R.; Eisner, R.; Gautam, B.; et al. The human serum metabolome. PLoS ONE 2011, 6, e16957. [Google Scholar] [CrossRef]
- MacDonald, K.; Jiang, Y.; Krishnan, A.; Sardaar, S.; Qi, B.; Eleftheriadis, A.; Glatt, S.J.; Joober, R.; Mitchell, J.; Tabbane, K.; et al. Border-box, Patient Stratification Using Metabolomics to Address the Heterogeneity of Psychosis. Schizophr. Bull. Open 2020, 1, sgaa032. [Google Scholar] [CrossRef]
- Csaicsich, D.; Lichtenauer, A.M.; Vychytil, A.; Kasper, D.C.; Herzog, R.; Aufricht, C.; Kratochwill, K. Feasibility of Metabolomics Analysis of Dialysate Effluents from Patients Undergoing Peritoneal Equilibration Testing. Perit. Dial. Int. 2015, 35, 590–592. Available online: https://www.ncbi.nlm.nih.gov/pubmed/26450481 (accessed on 21 September 2025). [CrossRef]
- Yang, B.; Yin, H.; Wang, J.; Gan, J.; Li, J.; Han, R.; Pei, M.; Song, L.; Yang, H. A metabolic biomarker panel of restless legs syndrome in peritoneal dialysis patients. Metabolomics 2022, 18, 79. Available online: https://www.ncbi.nlm.nih.gov/pubmed/36260187 (accessed on 21 September 2025). [CrossRef]
- Lin, H.T.; Cheng, M.L.; Lo, C.J.; Hsu, W.C.; Lin, G.; Liu, F.C. H NMR metabolomic profiling of human cerebrospinal fluid in aging process. Am. J. Transl. Res. 2021, 13, 12495–12508. Available online: https://www.ncbi.nlm.nih.gov/pubmed/34956468 (accessed on 21 September 2025).
- Bazzano, M.; Laghi, L.; Zhu, C.; Lotito, E.; Sgariglia, S.; Tesei, B.; Laus, F. Exercise Induced Changes in Salivary and Serum Metabolome in Trained Standardbred, Assessed by. Metabolites 2020, 10, 298. Available online: https://www.ncbi.nlm.nih.gov/pubmed/32708237 (accessed on 21 September 2025). [CrossRef]
- Laus, F.; Gialletti, R.; Bazzano, M.; Laghi, L.; Dini, F.; Marchegiani, A. Synovial Fluid Metabolome Can Differentiate between Healthy Joints and Joints Affected by Osteoarthritis in Horses. Metabolites 2023, 13, 913. Available online: https://www.ncbi.nlm.nih.gov/pubmed/37623857 (accessed on 21 September 2025). [CrossRef]
- Catalán, J.; Yánez-Ortiz, I.; Martínez-Rodero, I.; Mateo-Otero, Y.; Nolis, P.; Yeste, M.; Miró, J. Comparison of the metabolite profile of donkey and horse seminal plasma and its relationship with sperm viability and motility. Res. Vet. Sci. 2023, 165, 105046. Available online: https://www.ncbi.nlm.nih.gov/pubmed/37883856 (accessed on 21 September 2025). [CrossRef]
- Maniscalco, M.; Cutignano, A.; Paris, D.; Melck, D.J.; Molino, A.; Fuschillo, S.; Motta, A. Metabolomics of Exhaled Breath Condensate by Nuclear Magnetic Resonance Spectroscopy and Mass Spectrometry: A Methodological Approach. Curr. Med. Chem. 2020, 27, 2381–2399. [Google Scholar] [CrossRef]
- Snytnikova, O.A.; Khlichkina, A.A.; Yanshole, L.V.; Yanshole, V.V.; Iskakov, I.A.; Egorova, E.V.; Stepakov, D.A.; Novoselov, V.P.; Tsentalovich, Y.P. Metabolomics of the human aqueous humor. Metabolomics 2017, 13, 5. [Google Scholar] [CrossRef]
- Pietrowska, K.; Dmuchowska, D.A.; Samczuk, P.; Kowalczyk, T.; Krasnicki, P.; Wojnar, M.; Skowronska, A.; Mariak, Z.; Kretowski, A.; Ciborowski, M. LC-MS-Based Metabolic Fingerprinting of Aqueous Humor. J. Anal. Methods Chem. 2017, 2017, 6745932. Available online: https://www.ncbi.nlm.nih.gov/pubmed/28154769 (accessed on 21 September 2025). [CrossRef] [PubMed]
- Gowtham, L.; Halder, N.; Angmo, D.; Singh, S.B.; Jayasundar, R.; Dada, T.; Velpandian, T. Untargeted metabolomics in the aqueous humor reveals the involvement of TAAR pathway in glaucoma. Exp. Eye Res. 2023, 234, 109592. Available online: https://www.ncbi.nlm.nih.gov/pubmed/37474016 (accessed on 21 September 2025). [CrossRef] [PubMed]
- Huo, Q.; Xu, Y.; Wang, Y.; Zhang, S.; Liu, Z.; Li, J. Metabolomics analysis of aqueous humor from patients with high-myopia complicated nuclear cataract. Front. Med. 2025, 12, 1454840. [Google Scholar] [CrossRef]
- Monu, M.; Kumar, B.; Asfiya, R.; Nassiri, N.; Patel, V.; Das, S.; Syeda, S.; Kanwar, M.; Rajeswaren, V.; Hughes, B.A.; et al. Metabolomic Profiling of Aqueous Humor From Glaucoma Patients Identifies Metabolites with Anti-Inflammatory and Neuroprotective Potential in Mice. Investig. Ophthalmol. Vis. Sci. 2025, 66, 28. [Google Scholar] [CrossRef]
- Qi, X.; Dai, Y.; Pan, X.; Shan, X.; Ge, Q.; Zhou, J.; Wang, H.; Lan, J. Oleic acid association with primary angle-closure glaucoma: A finding using metabolomics. Exp. Eye Res. 2025, 256, 110418. [Google Scholar] [CrossRef]
- Mayordomo-Febrer, A.; López-Murcia, M.; Morales-Tatay, J.; Monleón-Salvado, D.; Pinazo-Durán, M.D. Metabolomics of the aqueous humor in the rat glaucoma model induced by a series of intracamerular sodium hyaluronate injection. Exp. Eye Res. 2015, 131, 84–92. Available online: https://www.ncbi.nlm.nih.gov/pubmed/25479046 (accessed on 21 September 2025). [CrossRef] [PubMed]
- Song, Z.; Gao, H.; Liu, H.; Sun, X. Metabolomics of rabbit aqueous humor after administration of glucocorticosteroid. Curr. Eye Res. 2011, 36, 563–570. Available online: https://www.ncbi.nlm.nih.gov/pubmed/21591866 (accessed on 21 September 2025). [CrossRef]
- Pang, Z.; Lu, Y.; Zhou, G.; Hui, F.; Xu, L.; Viau, C.; Spigelman, A.F.; MacDonald, P.E.; Wishart, D.S.; Li, S.; et al. MetaboAnalyst 6.0: Towards a unified platform for metabolomics data processing, analysis and interpretation. Nucleic Acids Res. 2024, 52, W398–W406. [Google Scholar] [CrossRef]
- Tang, Q.; Tan, P.; Ma, N.; Ma, X. Physiological Functions of Threonine in Animals: Beyond Nutrition Metabolism. Nutrients 2021, 13, 2592. [Google Scholar] [CrossRef]
- Nishimura, Y.; Hojfeldt, G.; Breen, L.; Tetens, I.; Holm, L. Dietary protein requirements and recommendations for healthy older adults: A critical narrative review of the scientific evidence. Nutr. Res. Rev. 2023, 36, 69–85. [Google Scholar] [CrossRef]
- Jin, H.; Zhu, B.; Liu, X.; Jin, J.; Zou, H. Metabolic characterization of diabetic retinopathy: An (1)H-NMR-based metabolomic approach using human aqueous humor. J. Pharm. Biomed. Anal. 2019, 174, 414–421. [Google Scholar] [CrossRef]
- Lains, I.; Gantner, M.; Murinello, S.; Lasky-Su, J.A.; Miller, J.W.; Friedlander, M.; Husain, D. Metabolomics in the study of retinal health and disease. Prog. Retin. Eye Res. 2019, 69, 57–79. [Google Scholar] [CrossRef] [PubMed]
- Wei, P.; He, M.; Teng, H.; Han, G. Metabolomic analysis of the aqueous humor from patients with central retinal vein occlusion using UHPLC-MS/MS. J. Pharm. Biomed. Anal. 2020, 188, 113448. [Google Scholar] [CrossRef] [PubMed]
- Yanshole, V.V.; Yanshole, L.V.; Snytnikova, O.A.; Tsentalovich, Y.P. Quantitative metabolomic analysis of changes in the lens and aqueous humor under development of age-related nuclear cataract. Metabolomics 2019, 15, 29. Available online: https://www.ncbi.nlm.nih.gov/pubmed/30830501 (accessed on 21 September 2025). [CrossRef] [PubMed]
- Wu, G.; Meininger, C.J.; McNeal, C.J.; Bazer, F.W.; Rhoads, J.M. Role of L-Arginine in Nitric Oxide Synthesis and Health in Humans. Adv. Exp. Med. Biol. 2021, 1332, 167–187. [Google Scholar] [CrossRef] [PubMed]
- Xiang, L.; Yang, Q.; Xie, B.; Zeng, H.; Ding, L.; Rao, F.; Yan, T.; Lu, F.; Chen, Q.; Huang, X. Dysregulated Arginine Metabolism Is Linked to Retinal Degeneration in Cep250 Knockout Mice. Investig. Ophthalmol. Vis. Sci. 2023, 64, 2. [Google Scholar] [CrossRef]
- Moreau, K.L.; King, J.A. Protein misfolding and aggregation in cataract disease and prospects for prevention. Trends Mol. Med. 2012, 18, 273–282. [Google Scholar] [CrossRef]
- Wu, G.; Morris, S.M., Jr. Arginine metabolism: Nitric oxide and beyond. Biochem. J. 1998, 336 Pt 1, 1–17. [Google Scholar] [CrossRef]
- Jin, J.; Sun, Q.; Wu, Z.; Liu, K.; Song, Z.; Su, L. (1)H-NMR analysis of amino acid metabolism in aqueous humor of patients with cataract, according to diabetes status. J. Int. Med. Res. 2020, 48, 300060520934658. [Google Scholar] [CrossRef]
- Xiong, X.; Chen, X.; Ma, H.; Zheng, Z.; Yang, Y.; Chen, Z.; Zhou, Z.; Pu, J.; Chen, Q.; Zheng, M. Metabolite Changes in the Aqueous Humor of Patients with Retinal Vein Occlusion Macular Edema: A Metabolomics Analysis. Front. Cell Dev. Biol. 2021, 9, 762500. [Google Scholar] [CrossRef] [PubMed]
- Elmi, A.; Ventrella, D.; Laghi, L.; Carnevali, G.; Zhu, C.; Pertile, G.; Barone, F.; Benfenati, F.; Bacci, M.L. 1H NMR Spectroscopy Characterization of Porcine Vitreous Humor in Physiological and Photoreceptor Degeneration Conditions. Investig. Ophthalmol. Vis. Sci. 2019, 60, 741–747. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Slupsky, C.M. Metabolic fingerprint of dimethyl sulfone (DMSO2) in microbial-mammalian co-metabolism. J. Proteome Res. 2014, 13, 5281–5292. [Google Scholar] [CrossRef] [PubMed]
- Mach, N.; Moroldo, M.; Rau, A.; Lecardonnel, J.; Le Moyec, L.; Robert, C.; Barrey, E. Understanding the Holobiont: Crosstalk Between Gut Microbiota and Mitochondria During Long Exercise in Horse. Front. Mol. Biosci. 2021, 8, 656204. [Google Scholar] [CrossRef]
- Wong, J.K.Y.; Choi, T.L.S.; Wong, C.O.L.; Curl, P.; Wan, T.S.M.; Ho, E.N.M. Doping Control Analysis of Methylsulfonylmethane in Horses. Drug Test. Anal. 2024, 17, 1380–1383. [Google Scholar] [CrossRef]
- Locci, E.; Stocchero, M.; Noto, A.; Chighine, A.; Natali, L.; Napoli, P.E.; Caria, R.; De-Giorgio, F.; Nioi, M.; d’Aloja, E. A (1)H NMR metabolomic approach for the estimation of the time since death using aqueous humour: An animal model. Metabolomics 2019, 15, 76. [Google Scholar] [CrossRef]
- Fernandes Silva, L.; Hokkanen, J.; Vangipurapu, J.; Oravilahti, A.; Laakso, M. Metabolites as Risk Factors for Diabetic Retinopathy in Patients with Type 2 Diabetes: A 12-Year Follow-up Study. J. Clin. Endocrinol. Metab. 2023, 109, 100–106. [Google Scholar] [CrossRef]
- Still, A.B.; Sellers, J.T.; Chrenek, M.; Nickerson, J.M.; Boatright, J.H. Systemic treatment with methylsulfonylmethane protects against light-induced retinal degeneration. Investig. Ophthalmol. Vis. Sci. 2022, 63, 2971–F0212. [Google Scholar]
- Chaudhary, R.; Young, S.; Blachford, K.; Logan, A.; Scott, R.; Blanch, R.J. Vitreous metabolomic predictors of proliferative vitreoretinopathy. Investig. Ophthalmol. Vis. Sci. 2021, 62, 3619. Available online: https://iovs.arvojournals.org/article.aspx?articleid=2775972 (accessed on 21 September 2025).
- Jiang, J.; Zhao, H.; Chen, J.; Du, J.; Ni, W.; Zheng, B.; Wu, J.; Xiao, C. The association between dietary creatine intake and cancer in U.S. adults: Insights from NHANES 2007-2018. Front. Nutr. 2025, 11, 1460057. [Google Scholar] [CrossRef]
- Goel, M.; Picciani, R.G.; Lee, R.K.; Bhattacharya, S.K. Aqueous humor dynamics: A review. Open Ophthalmol. J. 2010, 4, 52–59. [Google Scholar] [CrossRef]
- Nell, B.; Walde, I. Posterior segment diseases. Equine Vet. J. 2010, 42, 69–79. Available online: https://www.ncbi.nlm.nih.gov/pubmed/20939170 (accessed on 21 September 2025). [CrossRef]
- Allbaugh, R.A.; Townsend, W.M.; Wilkie, D.A. Diseases of the equine vitreous and retina. In Equine Ophthalmology, 3rd ed.; Gilger, B.C., Ed.; John Wiley & Sons, Inc.: Dubuque, IA, USA, 2017; pp. 469–507. [Google Scholar]
- Rebhun, W.C. Retinal and optic nerve diseases. Vet. Clin. N. Am. Equine Pract. 1992, 8, 587–608. Available online: https://www.ncbi.nlm.nih.gov/pubmed/1458331 (accessed on 21 September 2025). [CrossRef]
- Hussey, G.S.; Goehring, L.S.; Lunn, D.P.; Hussey, S.B.; Huang, T.; Osterrieder, N.; Powell, C.; Hand, J.; Holz, C.; Slater, J. Experimental infection with equine herpesvirus type 1 (EHV-1) induces chorioretinal lesions. Vet. Res. 2013, 44, 118. Available online: https://www.ncbi.nlm.nih.gov/pubmed/24308772 (accessed on 21 September 2025). [CrossRef] [PubMed]
Group | Lesion | N |
---|---|---|
Cataract group | Incipient cataract | 5 |
Immature cataract | 2 | |
Mature cataract | 1 | |
Retina group | <10 bullet holes | 2 |
>10 bullet holes | 2 | |
Retinal dysplasia | 2 | |
ACD group | Anterior uveitis | 3 |
Corpora nigra cyst | 1 |
Horses | Donkeys | |||||
---|---|---|---|---|---|---|
Metabolite | Median | IQR | N | Median | IQR | N |
Acetate | 0.30 | 0.09 | 16 | 0.29 | 0.08 | 5 |
Alanine | 0.65 | 0.12 | 17 | 0.80 | 0.19 | 5 |
Arginine | 0.12 | 0.04 | 17 | 0.17 | 0.06 | 5 |
Ascorbate | 1.16 | 0.70 | 17 | 1.11 | 0.18 | 5 |
Citrate | 0.11 | 0.05 | 17 | 0.11 | 0.02 | 5 |
Creatine | 0.29 | 0.13 | 17 | 0.33 | 0.13 | 5 |
Creatinine | 0.07 | 0.04 | 17 | 0.09 | 0.08 | 5 |
Dimethyl sulfone | 0.07 | 0.11 | 12 | 0.04 | 0.01 | 5 |
Ethanol | 0.17 | 0.29 | 14 | 0.23 | 0.06 | 4 |
Glucose | 4.37 | 1.68 | 17 | 5.32 | 0.76 | 5 |
Glutamine | 0.64 | 0.34 | 17 | 0.55 | 0.31 | 5 |
Isoleucine | 0.18 | 0.06 | 17 | 0.17 | 0.05 | 5 |
Lactate | 3.92 | 2.15 | 17 | 3.84 | 0.39 | 5 |
Leucine | 0.29 | 0.10 | 17 | 0.43 | 0.09 | 5 |
Methanol | 0.11 | 0.21 | 17 | 0.08 | 0.09 | 5 |
Phenylalanine | 0.19 | 0.07 | 17 | 0.20 | 0.03 | 5 |
Proline | 0.07 | 0.04 | 14 | 0.14 | 0.06 | 2 |
Propylene glycol | 0.08 | 0.05 | 17 | 0.12 | 0.03 | 5 |
Pyruvate | 0.24 | 0.06 | 16 | 0.34 | 0.09 | 5 |
Serine | 0.76 | 0.30 | 12 | 0.72 | 0.56 | 4 |
Threonine | 0.09 | 0.09 | 12 | 0.16 | 0.05 | 5 |
Tryptophan | 0.04 | 0.03 | 16 | 0.04 | 0.02 | 4 |
Tyrosine | 0.15 | 0.04 | 17 | 0.16 | 0.02 | 5 |
Urea | 0.48 | 0.21 | 13 | 0.39 | 0.23 | 5 |
Valine | 0.50 | 0.37 | 17 | 0.25 | 0.55 | 5 |
Histidine | 0.10 | 0.03 | 17 | 0.08 | 0.03 | 5 |
2-Hydroxyvalerate | 0.01 | 0.003 | 8 | 0.004 | 0.002 | 4 |
Metabolite | Group | Median | IQR | Group | Median | IQR | FDR-Adj. p |
---|---|---|---|---|---|---|---|
Arginine | Retina | 0.07 | 0.01 | Control | 0.12 | 0.07 | 0.05 |
Dimethyl sulfone | Retina | 0.28 | 0.21 | Control | 0.07 | 0.05 | 0.00 |
Cataract | 0.16 | 0.23 | Control | 0.07 | 0.05 | 0.05 | |
Valine | Retina | 0.15 | 0.07 | Control | 0.50 | 0.33 | 0.03 |
Metabolite | Group | Median | IQR | Group | Median | IQR | FDR-Adj. p |
---|---|---|---|---|---|---|---|
Arginine | Cataract | 0.08 | 0.06 | Control | 0.12 | 0.07 | 0.09 |
Ascorbate | ACD | 1.03 | 1.02 | Control | 1.16 | 0.70 | 0.12 |
Retina | 0.79 | 0.14 | Control | 1.16 | 0.70 | 0.12 | |
Creatinine | Retina | 0.04 | 0.02 | Control | 0.48 | 0.27 | 0.15 |
2-hydroxivalerate | Cataract | 0.02 | 0.01 | Control | 0.01 | 0.00 | 0.07 |
Pyruvate | ACD | 0.38 | 0.34 | Control | 0.24 | 0.06 | 0.09 |
Valine | ACD | 0.31 | 0.20 | Control | 0.50 | 0.33 | 0.10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Corradini, I.; Jose-Cunilleras, E.; Nolis, P.; López-Murcia, M.M.; Mayordomo-Febrer, A. Exploratory Metabolomic Fingerprinting of Aqueous Humor in Healthy Horses and Donkeys, and in Horses with Ocular Pathologies. Animals 2025, 15, 2810. https://doi.org/10.3390/ani15192810
Corradini I, Jose-Cunilleras E, Nolis P, López-Murcia MM, Mayordomo-Febrer A. Exploratory Metabolomic Fingerprinting of Aqueous Humor in Healthy Horses and Donkeys, and in Horses with Ocular Pathologies. Animals. 2025; 15(19):2810. https://doi.org/10.3390/ani15192810
Chicago/Turabian StyleCorradini, Ignacio, Eduard Jose-Cunilleras, Pau Nolis, María Mar López-Murcia, and Aloma Mayordomo-Febrer. 2025. "Exploratory Metabolomic Fingerprinting of Aqueous Humor in Healthy Horses and Donkeys, and in Horses with Ocular Pathologies" Animals 15, no. 19: 2810. https://doi.org/10.3390/ani15192810
APA StyleCorradini, I., Jose-Cunilleras, E., Nolis, P., López-Murcia, M. M., & Mayordomo-Febrer, A. (2025). Exploratory Metabolomic Fingerprinting of Aqueous Humor in Healthy Horses and Donkeys, and in Horses with Ocular Pathologies. Animals, 15(19), 2810. https://doi.org/10.3390/ani15192810