Livestock Dung Proxies Provide Insights into Grazing Density Quantification and Distribution
Simple Summary
Abstract
1. Introduction
2. Material and Method
2.1. Study Area
2.2. Field Sampling and Data Collection
2.2.1. Yak Dung Sampling Based on UAV
2.2.2. Yak Dung Extraction on the Aerial Images
2.2.3. Samples Collection of Yak Dung for Ground Validation
2.2.4. Grazing Intensity Determination of Household Pasture
2.2.5. Establish the Relationship Between Grazing Intensity and Dung Density
2.3. Data Statistical Analysis
3. Results
3.1. The Accuracy of Identifying Yak Dung Based on Aerial Images
3.2. Relationships Between the Yak Dung Density and Grazing Intensity
3.3. Suitability Variations in Yak Dung Density as a Proxy of Grazing Intensity
4. Discussions
4.1. Quantification of the Relationship Between Yak Dung Density and Grazing Intensity
4.2. Identification of Livestock Dung
4.3. Limitations and Future Prospects
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, L.; Delgado-Baquerizo, M.; Wang, D.; Isbell, F.; Liu, J.; Feng, C.; Liu, J.; Zhong, Z.; Zhu, H.; Yuan, X.; et al. Diversifying livestock promotes multidiversity and multifunctionality in managed grasslands. Proc. Natl. Acad. Sci. USA 2019, 116, 6187–6192. [Google Scholar] [CrossRef]
- Godde, C.; Mason-D’Croz, D.; Mayberry, D.; Thornton, P.K.; Herrero, M. Impacts of climate change on the livestock food supply chain; a review of the evidence. Glob. Food Secur. 2021, 28, 100488. [Google Scholar] [CrossRef]
- Mehrabi, Z.; Gill, M.; Wijk, M.V.; Herrero, M.; Ramankutty, N. Livestock policy for sustainable development. Nat. Food 2020, 1, 160–165. [Google Scholar] [CrossRef]
- Eldridge, D.J.; Sáez-Sandino, T.; Maestre, F.T.; Ding, J.; Guirado, E.; Delgado-Baquerizo, M. Dung predicts the global distribution of herbivore grazing pressure in drylands. Nat. Food 2025, 6, 253–259. [Google Scholar] [CrossRef]
- Yao, W.; Wang, X.; Wang, X.; Zhou, C.; Yin, L.; Zhou, J.; Tu, Y.; Sun, Z. Grazing on the Tibetan plateau currently exceeds the safe boundary of its ecosystem services. J. Environ. Manag. 2025, 373, 123761. [Google Scholar] [CrossRef] [PubMed]
- Ren, S.; Wang, T.; Ji, X.; Wei, L.; Wei, J.; Cao, Y.; Ding, J. Grazing reverses climate-induced soil carbon gains on the Tibetan Plateau. Nat. Commun. 2025, 16, 6978. [Google Scholar] [CrossRef]
- Hazhir, S.; Erfanzadeh, R.; Ghelichnia, H.; Razavi, B.S.; Török, P. Effects of livestock grazing on soil seed banks vary between regions with different climates. Agric. Ecosyst. Environ. 2024, 364, 108901. [Google Scholar] [CrossRef]
- Ren, H.; Han, G.; Ohm, M.; Schönbach, P.; Gierus, M.; Taube, F. Do sheep grazing patterns affect ecosystem functioning in steppe grassland ecosystems in Inner Mongolia? Agric. Ecosyst. Environ. 2015, 213, 1–10. [Google Scholar] [CrossRef]
- Sun, Y.; Angerer, J.P.; Hou, F. Effects of grazing systems on herbage mass and liveweight gain of Tibetan sheep in Eastern Qinghai-Tibetan Plateau, China. Rangel. J. 2015, 37, 181–190. [Google Scholar] [CrossRef]
- Ji, W.; Luo, Y.; Liao, Y.; Wu, W.; Wei, X.; Yang, Y.; He, X.Z.; Shen, Y.; Ma, Q.; Yi, S.; et al. UAV Assisted Livestock Distribution Monitoring and Quantification: A Low-Cost and High-Precision Solution. Animals 2023, 13, 3069. [Google Scholar] [CrossRef]
- Wesuls, D.; Pellowski, M.; Suchrow, S.; Oldeland, J.; Jansen, F.; Dengler, J. The grazing fingerprint: Modelling species responses and trait patterns along grazing gradients in semi-arid Namibian rangelands. Ecol. Indic. 2013, 27, 61–70. [Google Scholar] [CrossRef]
- Gurarie, E.; Andrews, R.D.; Laidre, K.L. A novel method for identifying behavioural changes in animal movement data. Ecol. Lett. 2009, 12, 395–408. [Google Scholar] [CrossRef]
- Ma, Q.; Chai, L.; Hou, F.; Chang, S.; Cheng, Y. Quantifying Grazing Intensity Using Remote Sensing in Alpine Meadows on Qinghai-Tibetan Plateau. Sustainability 2019, 11, 417. [Google Scholar] [CrossRef]
- Witczuk, J.; Pagacz, S.; Zmarz, A.; Cypel, M. Exploring the feasibility of unmanned aerial vehicles and thermal imaging for ungulate surveys in forests—Preliminary results. Int. J. Remote Sens. 2017, 39, 5503–5520. [Google Scholar] [CrossRef]
- Herlin, A.; Brunberg, E.; Hultgren, J.; Högberg, N.; Rydberg, A.; Skarin, A. Animal welfare implications of digital tools for monitoring and management of cattle and sheep on pasture. Animals 2021, 11, 829. [Google Scholar] [CrossRef]
- Luo, W.; Zhang, Z.; Fu, P.; Wei, G.; Wang, D.; Li, X.; Shao, Q.; He, Y.; Wang, H.; Zhao, Z.; et al. Intelligent grazing UAV based on airborne depth reasoning. Remote Sens. 2022, 14, 4188. [Google Scholar] [CrossRef]
- Luo, W.; Zhang, G.; Shao, Q.; Zhao, Y.; Wang, D.; Zhang, X.; Liu, K.; Li, X.; Liu, J.; Wang, P.; et al. An efficient visual servo tracker for herd monitoring by UAV. Sci. Rep. 2024, 14, 10463. [Google Scholar] [CrossRef]
- Chen, T.; Zheng, H.; Chen, J.; Zhang, Z.; Huang, X. Novel intelligent grazing strategy based on remote sensing, herd perception and UAVs monitoring. Comput. Electron. Agric. 2024, 219, 108807. [Google Scholar] [CrossRef]
- Groom, G.; Stjernholm, M.; Nielsen, R.D.; Fleetwood, A.; Petersen, I.K. Remote sensing image data and automated analysis to describe marine bird distributions and abundances. Ecol. Inform. 2013, 14, 2–8. [Google Scholar] [CrossRef]
- Peper, M.J. Estimation of grazing intensity along grazing gradients—The bias of nonlinearity. J. Arid. Environ. 2010, 74, 1351–1354. [Google Scholar]
- Yoshitoshi, R.; Watanabe, N.; Yasuda, T.; Kawamura, K.; Sakanoue, S.; Lim, J.; Lee, H.J. Methodology to predict the spatial distribution of cattle dung using manageable factors and a Bayesian approach. Agric. Ecosyst. Environ. 2016, 220, 135–141. [Google Scholar] [CrossRef]
- Auerswald, K.; Mayer, F.; Schnyder, H. Coupling of spatial and temporal pattern of cattle excreta patches on a low intensity pasture. Nutr. Cycl. Agroecosystems 2010, 88, 275–288. [Google Scholar] [CrossRef]
- Nuñez, C.L.; Froese, G.; Meier, A.C.; Beirne, C.; Depenthal, J.; Kim, S.; Mbélé, A.E.; Nordseth, A.; Poulsen, J.R. Stronger together: Comparing and integrating camera trap, visual, and dung survey data in tropical forest communities. Ecosphere 2019, 10, e02965. [Google Scholar] [CrossRef]
- Oliver, D.M.; Young, G. Evaluating a Rapid Method to Determine Faecal Burden on Pasture from Grazing Cattle. Water Air Soil Pollut. 2012, 223, 6051–6058. [Google Scholar] [CrossRef]
- Yoshitake, S.; Soutome, H.; Koizumi, H. Deposition and decomposition of cattle dung and its impact on soil properties and plant growth in a cool-temperate pasture. Ecol. Res. 2014, 29, 673–684. [Google Scholar] [CrossRef]
- Oñatibia, G.R.; Aguiar, M.R. Paddock Size Mediates the Heterogeneity of Grazing Impacts on Vegetation. Rangel. Ecol. Manag. 2018, 71, 470–480. [Google Scholar] [CrossRef]
- Dubeux, J.C.B., Jr.; Sollenberger, L.E.; Vendramini, J.M.B.; Interrante, S.M.; Lira, M.A., Jr. Stocking Method, Animal Behavior, and Soil Nutrient Redistribution: How are They Linked? Crop Sci. 2014, 54, 2341–2350. [Google Scholar] [CrossRef]
- Sheidai Karkaj, E.; Motamedi, J. Evaluation of species diversity indices in Chaharbagh rangelands of Golestan province. Iran. J. Range Desert Res. 2021, 28, 238–251. [Google Scholar]
- Yoshitoshi, R.; Watanabe, N.; Lim, J. Spatial Distribution of Grazing Sites and Dung of Beef Cows in a Sloping Pasture. Jpn. Agric. Res. Q. JARQ 2020, 54, 299–306. [Google Scholar] [CrossRef]
- Shine, A.E.; Mamo, M.; Abagandura, G.O.; Schacht, W.; Volesky, J.; Wardlow, B. Unmanned Aerial Vehicle–Based Remote Sensing of Cattle Dung: Detection, Classification, and Spatial Analysis of Distribution. Rangel. Ecol. Manag. 2025, 98, 192–203. [Google Scholar] [CrossRef]
- Zhu, Q.; Chen, H.; Peng, C.H.; Liu, J.X.; Piao, S.L.; He, J.S.; Wang, S.P.; Zhao, X.Q.; Zhang, J.; Fang, X.Q.; et al. An early warning signal for grassland degradation on the Qinghai-Tibetan Plateau. Nat. Commun. 2023, 14, 6406. [Google Scholar] [CrossRef]
- Xin, G.S.; Long, R.J.; Guo, X.S.; Irvine, J.; Ding, L.M.; Ding, L.L.; Shang, Z.H. Blood mineral status of grazing Tibetan sheep in the Northeast of the Qinghai–Tibetan Plateau. Livest. Sci. 2011, 136, 102–107. [Google Scholar] [CrossRef]
- Feng, B.; Zhao, X.; Dong, Q.; Xu, S.; Zhao, L.; Cao, J. The Effect of Feed Supplementing and Processing on the Live Weight Gain of Tibetan Sheep During the Cold Season on the Qinghai-Tibetan Plateau. J. Anim. Vet. Adv. 2013, 12, 312–315. [Google Scholar]
- Harris, R.B. Rangeland degradation on the Qinghai-Tibetan plateau: A review of the evidence of its magnitude and causes. J. Arid. Environ. 2010, 74, 1–12. [Google Scholar] [CrossRef]
- Cao, J.; Yeh, E.T.; Holden, N.M.; Qin, Y.; Ren, Z. The Roles of Overgrazing, Climate Change and Policy as Drivers of Degradation of China’s Grasslands. Nomadic Peoples 2013, 17, 82–101. [Google Scholar] [CrossRef]
- Sun, Y.; Yi, S.; Hou, F. Unmanned aerial vehicle methods makes species composition monitoring easier in grasslands. Ecol. Indic. 2018, 95, 825–830. [Google Scholar] [CrossRef]
- Chillo, V.; Ojeda, R.A.; Anand, M.; Reynolds, J.F. A novel approach to assess livestock management effects on biodiversity of drylands. Ecol. Indic. 2015, 50, 69–78. [Google Scholar] [CrossRef]
- Yi, S. FragMAP: A tool for long-term and cooperative monitoring and analysis of small-scale habitat fragmentation using an unmanned aerial vehicle. Int. J. Remote Sens. 2017, 38, 2029–2036. [Google Scholar] [CrossRef]
- Yi, S.; Qin, Y.; Chen, J.; Xu, G. The burying and grazing effects of plateau pika on alpine grassland are small: A pilot study in a semiarid basin on the Qinghai-Tibet Plateau. Biogeosciences 2016, 13, 6273–6284. [Google Scholar] [CrossRef]
- Sun, Y.; Yi, S.; Hou, F.; Luo, D.; Hu, J.; Zhou, Z. Quantifying the Dynamics of Livestock Distribution by Unmanned Aerial Vehicles (UAVs): A Case Study of Yak Grazing at the Household Scale. Rangel. Ecol. Manag. 2020, 73, 642–648. [Google Scholar] [CrossRef]
- Sheidai-Karkaj, E.; Haghiyan, I.; Mofidi-Chelan, M.; Sharifian-Bahreman, A.; Siroosi, H. Determining and comparing grazing zones based on animals’ dung in semi-steppe rangelands: The case of North Iran. J. Saudi Soc. Agric. Sci. 2022, 21, 180–186. [Google Scholar] [CrossRef]
- Wang, Y.; Pei, L.; Wu, Z.; Chu, J.; Zhou, Q.; Hou, F. Yak (Bos grunniens) excreta further facilitate the positive effects of soil fauna on litter decomposition in alpine meadow ecosystems. Commun. Biol. 2025, 8, 799. [Google Scholar] [CrossRef] [PubMed]
- Kawamura, K.; Kato, Y.; Yasuda, T.; Aozasa, E.; Yayota, M.; Kitagawa, M.; Kunishige, K. Cattle dung detection in pastures from drone images using YOLOv5. Grassl. Sci. 2024, 70, 168–174. [Google Scholar] [CrossRef]
- Sun, Y.; Yuan, Y.; Luo, Y.; Ji, W.; Bian, Q.; Zhu, Z.; Wang, J.; Qin, Y.; He, X.Z.; Li, M.; et al. An Improved Method for Monitoring Multiscale Plant Species Diversity of Alpine Grassland Using UAV: A Case Study in the Source Region of the Yellow River, China. Front. Plant Sci. 2022, 13, 905715. [Google Scholar] [CrossRef]
- Sun, Y.; He, X.Z.; Hou, F.J.; Wang, Z.F.; Chang, S.H. Grazing increases litter decomposition rate but decreases nitrogen release rate in an alpine meadow. Biogeosciences 2018, 15, 4233–4243. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, B.; Liu, Y.; Chen, Y.; Dong, Y.; Hou, F.; Chang, S.; Yi, S.; Sun, Y. Livestock Dung Proxies Provide Insights into Grazing Density Quantification and Distribution. Animals 2025, 15, 2789. https://doi.org/10.3390/ani15192789
Huang B, Liu Y, Chen Y, Dong Y, Hou F, Chang S, Yi S, Sun Y. Livestock Dung Proxies Provide Insights into Grazing Density Quantification and Distribution. Animals. 2025; 15(19):2789. https://doi.org/10.3390/ani15192789
Chicago/Turabian StyleHuang, Bo, Yingying Liu, Yingxi Chen, Yixuan Dong, Fujiang Hou, Shenghua Chang, Shuhua Yi, and Yi Sun. 2025. "Livestock Dung Proxies Provide Insights into Grazing Density Quantification and Distribution" Animals 15, no. 19: 2789. https://doi.org/10.3390/ani15192789
APA StyleHuang, B., Liu, Y., Chen, Y., Dong, Y., Hou, F., Chang, S., Yi, S., & Sun, Y. (2025). Livestock Dung Proxies Provide Insights into Grazing Density Quantification and Distribution. Animals, 15(19), 2789. https://doi.org/10.3390/ani15192789