Phylogenetic Characterization and Seroprevalence of Senecavirus A from Swine Farms in Taiwan
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. RNA Extraction
2.3. RRT-PCR
2.4. Amplification of the SVA Genome and Sequencing
2.5. Sequence Identity and Phylogenetic Analysis
2.6. Epitope Sequencec Analysis
2.7. Serological Surveillance
2.8. Anti-SVA Neutralizing Anitibody Assay
2.9. Statistical Analysis
3. Results
3.1. Phylogenetic Analysis of Full-Length Sequence in Taiwanese SVA Strains
3.1.1. Full-Length Sequence Analysis
3.1.2. Structural Protein Sequence Analysis
3.1.3. Epitope Sequence Analysis
3.2. Seroprevalence of SVA in Nursery/Weaner Stage and Finisher Stage
3.2.1. Herd and Animal-Level Seroprevalence in Nursery/Weaned Swine
3.2.2. Herd and Animal-Level Seroprevalence in Finisher Swine
3.2.3. Comparison of Seroprevalence Between Nursery/Weaner Stage and Finisher Stage
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hales, L.M.; Knowles, N.J.; Reddy, P.S.; Xu, L.; Hay, C.; Hallenbeck, P.L. Complete Genome Sequence Analysis of Seneca Valley Virus-001, a Novel Oncolytic Picornavirus. J. Gen. Virol. 2008, 89, 1265–1275. [Google Scholar] [CrossRef]
- Vernygora, O.; Sullivan, D.; Nielsen, O.; Huntington, K.B.; Rouse, N.; Popov, V.L.; Lung, O. Senecavirus cetus a Novel Picornavirus Isolated from Cetaceans Represents a Major Host Switching to the Marine Environment. npj Viruses 2024, 2, 33. [Google Scholar] [CrossRef]
- Houston, E.; Temeeyasen, G.; Piñeyro, P.E. Comprehensive Review on Immunopathogenesis, Diagnostic and Epidemiology of Senecavirus A. Virus Res. 2020, 286, 198038. [Google Scholar] [CrossRef]
- Knowles, N.J.; Hales, L.M.; Jones, B.H.; Landgraf, J.G.; House, J.A.; Skele, K.L.; Burroughs, K.D.; Hallenbeck, P.L. Epidemiology of Seneca Valley Virus: Identification and Characterization of Isolates from Pigs in the United States. In Proceedings of the Northern Lights EUROPIC 2006—14th Meeting of the European Study Group on the Molecular Biology of Picornaviruses, Inari, Finland, 26 November–1 December 2006. [Google Scholar]
- Pasma, T.; Davidson, S.; Shaw, S.L. Idiopathic Vesicular Disease in Swine in Manitoba. Can. Vet. J. 2008, 49, 84–85. [Google Scholar] [PubMed]
- Singh, K.; Corner, S.; Clark, S.G.; Scherba, G.; Fredrickson, R. Seneca Valley Virus and Vesicular Lesions in a Pig with Idiopathic Vesicular Disease. J. Vet. Sci. Technol. 2012, 3, 1000123. [Google Scholar] [CrossRef]
- Leme, R.A.; Zotti, E.; Alcântara, B.K.; Oliveira, M.V.; Freitas, L.A.; Alfieri, A.F.; Alfieri, A.A. Senecavirus A: An Emerging Vesicular Infection in Brazilian Pig Herds. Transbound. Emerg. Dis. 2015, 62, 603–611. [Google Scholar] [CrossRef]
- Joshi, L.R.; Fernandes, M.H.V.; Clement, T.; Lawson, S.; Pillatzki, A.; Resende, T.P.; Vannucci, F.A.; Kutish, G.F.; Nelson, E.A.; Diel, D.G. Pathogenesis of Senecavirus A Infection in Finishing Pigs. J. Gen. Virol. 2016, 97, 3267–3279. [Google Scholar] [CrossRef] [PubMed]
- Sun, D.; Vannucci, F.; Knutson, T.P.; Corzo, C.; Marthaler, D.G. Emergence and Whole-Genome Sequence of Senecavirus A in Colombia. Transbound. Emerg. Dis. 2017, 64, 1346–1349. [Google Scholar] [CrossRef] [PubMed]
- Saeng-chuto, K.; Rodtian, P.; Temeeyasen, G.; Wegner, M.; Nilubol, D. The First Detection of Senecavirus A in Pigs in Thailand, 2016. Transbound. Emerg. Dis. 2018, 65, 285–288. [Google Scholar] [CrossRef]
- Qian, S.; Fan, W.; Qian, P.; Chen, H.; Li, X. Isolation and Full-Genome Sequencing of Seneca Valley Virus in Piglets from China, 2016. Virol. J. 2016, 13, 173. [Google Scholar] [CrossRef]
- Canning, P.; Canon, A.; Bates, J.L.; Gerardy, K.; Linhares, D.C.L.; Piñeyro, P.E.; Schwartz, K.J.; Yoon, K.J.; Rademacher, C.J.; Holtkamp, D.; et al. Neonatal Mortality, Vesicular Lesions and Lameness Associated with Senecavirus A in a U.S. Sow Farm. Transbound. Emerg. Dis. 2016, 63, 373–378. [Google Scholar] [CrossRef]
- Houston, E.; Giménez-Lirola, L.G.; Magtoto, R.; Mora-Díaz, J.C.; Baum, D.; Piñeyro, P.E. Seroprevalence of Senecavirus A in Sows and Grower-Finisher Pigs in Major Swine Producing-States in the United States. Prev. Vet. Med. 2019, 165, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Hause, B.M.; Myers, O.; Duff, J.; Hesse, R.A. Senecavirus A in Pigs, United States, 2015. Emerg. Infect. Dis. 2016, 22, 1323–1325. [Google Scholar] [CrossRef] [PubMed]
- Joshi, L.R.; Mohr, K.A.; Gava, D.; Kutish, G.; Buysse, A.S.; Vannucci, F.A.; Piñeyro, P.E.; Crossley, B.M.; Schiltz, J.J.; Jenkins-Moore, M.; et al. Genetic Diversity and Evolution of the Emerging Picornavirus Senecavirus A. J. Gen. Virol. 2020, 101, 175–187. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, M.H.V.; Maggioli, M.F.; Joshi, L.R.; Clement, T.; Faccin, T.C.; Rauh, R.; Bauermann, F.V.; Diel, D.G. Pathogenicity and Cross-Reactive Immune Responses of a Historical and a Contemporary Senecavirus A Strains in Pigs. Virology 2018, 522, 147–157. [Google Scholar] [CrossRef]
- World Organisation for Animal Health(WOAH). Resolution No. 7—Recognition of the Foot and Mouth Disease Status of Members; WOAH: Paris, France, 2020. [Google Scholar]
- Humphreys, J.M.; Stenfeldt, C.; King, D.P.; Knight-Jones, T.; Perez, A.M.; VanderWaal, K.; Sanderson, M.W.; Di Nardo, A.; Jemberu, W.T.; Pamornchainavakul, N.; et al. Epidemiology and Economics of Foot-and-Mouth Disease: Current Understanding and Knowledge Gaps. Vet. Res. 2025, 56, 141. [Google Scholar] [CrossRef]
- Paton, D.J.; Gubbins, S.; King, D.P. Understanding the Transmission of Foot-and-Mouth Disease Virus at Different Scales. Curr Opin. Virol. 2018, 28, 85–91. [Google Scholar] [CrossRef]
- Segalés, J.; Barcellos, D.; Alfieri, A.; Burrough, E.; Marthaler, D. Senecavirus A: An Emerging Pathogen Causing Vesicular Disease and Mortality in Pigs? Vet. Pathol. 2017, 54, 11–21. [Google Scholar] [CrossRef]
- Leme, R.A.; Alfieri, A.F.; Alfieri, A.A. Update on Senecavirus Infection in Pigs. Viruses 2017, 9, 170. [Google Scholar] [CrossRef]
- Dall Agnol, A.M.; Otonel, R.A.A.; Leme, R.A.; Alfieri, A.A.; Alfieri, A.F. A TaqMan-Based QRT-PCR Assay for Senecavirus A Detection in Tissue Samples of Neonatal Piglets. Mol. Cell Probes 2017, 33, 28–31. [Google Scholar] [CrossRef]
- Maggioli, M.F.; Lawson, S.; de Lima, M.; Joshi, L.R.; Faccin, T.C.; Bauermann, F.V.; Diel, D.G. Adaptive Immune Responses Following Senecavirus A Infection in Pigs. J. Virol. 2018, 92, e01717-17. [Google Scholar] [CrossRef]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef]
- Fan, H.; Zhu, H.; Li, S.; Shi, M.; Zhou, E.; Wang, X.; Jiang, P.; Bai, J. Identification of Linear B Cell Epitopes on VP1 and VP2 Proteins of Senecavirus A (SVA) Using Monoclonal Antibodies. Vet. Microbiol. 2020, 247, 108753. [Google Scholar] [CrossRef]
- Chen, M.; Chen, L.; Wang, J.; Mou, C.; Chen, Z. Identification of a B-Cell Epitope in the Vp3 Protein of Senecavirus A. Viruses 2021, 13, 2300. [Google Scholar] [CrossRef]
- Zhou, H.; Sun, M.; Su, S.; Meng, L.; Yang, W.; Yang, L.; Shi, X.; Li, X.; Wang, H.; Ma, H.; et al. Identification of a Linear B-Cell Epitope on the “Puff” Loop of the Senecavirus A VP2 Protein Involved in Receptor Binding. Front. Microbiol. 2024, 15, 1387309. [Google Scholar] [CrossRef] [PubMed]
- Preis, G.; Sanhueza, J.M.; Vilalta, C.; Vannucci, F.A.; Culhane, M.R.; Corzo, C.A. Senecavirus A Seroprevalence and Risk Factors in United States Pig Farms. Front. Vet. Sci. 2022, 9, 1011975. [Google Scholar] [CrossRef] [PubMed]
- Goolia, M.; Vannucci, F.; Yang, M.; Patnayak, D.; Babiuk, S.; Nfon, C.K. Validation of a Competitive ELISA and a Virus Neutralization Test for the Detection and Confirmation of Antibodies to Senecavirus A in Swine Sera. J. Vet. Diagn. Investig. 2017, 29, 250–253. [Google Scholar] [CrossRef] [PubMed]
- Kahn, H.A.; Sempos, C.T. Monographs in Epidemiology and Biostatistics. In Statistical Methods in Epidemiology; Oxford University Press: Oxford, UK, 1989; Volume 12. [Google Scholar]
- Buckley, A.C.; Michael, D.D.; Faaberg, K.S.; Guo, B.; Yoon, K.J.; Lager, K.M. Comparison of Historical and Contemporary Isolates of Senecavirus A. Vet. Microbiol. 2021, 253, 108946. [Google Scholar] [CrossRef]
- UK Government News. 2024. Available online: https://www.gov.uk/government/news/seneca-valley-virus-confirmed-in-pigs-in-england (accessed on 1 November 2024).
- Gimenez-Lirola, L.G.; Rademacher, C.; Linhares, D.; Harmon, K.; Rotolo, M.; Sun, Y.; Baum, D.H.; Zimmerman, J.; Piñeyro, P. Serological and Molecular Detection of Senecavirus A Associated with an Outbreak of Swine Idiopathic Vesicular Disease and Neonatal Mortality. J. Clin. Microbiol. 2016, 54, 2082–2089. [Google Scholar] [CrossRef]
- Yang, F.; Zhu, Z.; Liu, H.; Cao, W.; Zhang, W.; Wei, T.; Zheng, M.; Zhang, K.; Tian, H.; Zeng, Q.; et al. Evaluation of Antibody Response in Sows after Vaccination with Senecavirus A Vaccine and the Effect of Maternal Antibody Transfer on Antibody Dynamics in Offspring. Vaccines 2021, 9, 1066. [Google Scholar] [CrossRef]
- Dee, S.; Brands, L.; Edler, R.; Schelkopf, A.; Nerem, J.; Spronk, G.; Kikuti, M.; Corzo, C.A. Further Evidence That Science-Based Biosecurity Provides Sustainable Prevention of Porcine Reproductive and Respiratory Syndrome Virus Infection and Improved Productivity in Swine Breeding Herds. Animals 2024, 14, 2530. [Google Scholar] [CrossRef]
- Maggioli, M.F.; Fernandes, M.H.V.; Joshi, L.R.; Sharma, B.; Tweet, M.M.; Noll, J.C.G.; Bauermann, F.V.; Diel, D.G. Persistent Infection and Transmission of Senecavirus A from Carrier Sows to Contact Piglets. J. Virol. 2019, 93, e00819–19. [Google Scholar] [CrossRef]
Primer | Sequence (5′–3′) | Location of MN233025(nt) |
---|---|---|
SVA-1F | ATGCCCAGTCCTTCCTTTCC | 18–782 |
SVA-1R | CGAATCGTAAACACCATTGTTCACC | 18–782 |
SVA-2F | TACTGCCTGATAGGGCGAC | 608–1408 |
SVA-2R | CCGTTGAGGCCTCCCT | 608–1408 |
SVA-3F | GCCATCGACAGGTGGTACA | 1290–2497 |
SVA-3R | TAGTCACTGGGCGAGATGTAG | 1290–2497 |
SVA-4F | ATGGCAAGAGGGAAATTCCT | 2343–3821 |
SVA-4R | TGGAGGAGGCGGTTCTAC | 2343–3821 |
SVA-5F | CGCTATCTAACCAAGCTTCAG | 3689–5198 |
SVA-5R | GTTAGGCTGTTGCATTTCCAT | 3689–5198 |
SVA-6F | AAGTACTTCTCTGGCTCTGATACA | 5049–6434 |
SVA-6R | AGGATGGGATTGAAACTTGG | 5049–6434 |
SVA-7F | CTACTCTGATCATGTCTTCCAAAC | 6272–7295 |
SVA-7R | TTTTTTTTTTTTTTTTCCCTTTTCTGTCCC | 6272–7295 |
Regions | Number of Test-Positive Farms/Total Number Tested | Farm-Level Seroprevalence (95% CI) | OR (95% CI) | p-Value | Number of Test-Positive Animals/Total Number Tested | Animal-Level Seroprevalence (95% CI) | OR (95% CI) | p-Value |
---|---|---|---|---|---|---|---|---|
Northern | 10/27 | 37.0% (19.4–57.6) | 1.0 | - | 97/405 | 24.0% (19.9–28.4) | 1.0 | - |
Central | 58/123 | 47.2% (38.1–56.4) | 1.5 (0.6–3.6) | 0.3969 | 573/1824 | 31.4% (29.3–33.6) | 1.5 (1.1–1.9) | 0.0033 * |
Southern | 88/134 | 65.7% (57.0–73.7) | 3.3 (1.4–7.7) | 0.0087 * | 931/2009 | 46.3% (44.1–48.6) | 2.7 (2.2–3.5) | <0.0001 * |
Eastern | 3/8 | 37.5% (8.5–75.5) | 1.0 (0.2–5.2) | 1 | 33/120 | 27.5% (19.7–36.4) | 1.2 (0.8–1.9) | 0.4702 |
Offshore islands | 0/8 | 0.0 (0.0–36.9) | - | 0.0734 | 0/150 | 0.0% (0.0–2.4) | - | <0.0001 * |
Total | 159/300 | 53.0% (47.2–58.8) | - | - | 1634/4508 | 36.2% (34.8–37.7) | - | - |
Regions | Number of Test-Positive Farms/Total Number Tested | Farm-Level Seroprevalence (95% CI) | OR (95% CI) | p-Value | Number of Test-Positive Animals/Total Number Tested | Animal-Level Seroprevalence (95% CI) | OR (95% CI) | p-Value |
---|---|---|---|---|---|---|---|---|
Northern | 2/27 | 7.4% (0.9–24.3) | 1.45 (0.3–7.4) | 0.6473 | 10/380 | 2.6% (1.3–4.8) | 3.5 (0.5–27.7) | 0.304 |
Central | 11/123 | 8.9% (4.6–15.4) | 1.78 (0.7–4.8) | 0.3286 | 102/1667 | 6.1% (5.0–7.4) | 8.5 (1.2–61.2) | 0.0055 * |
Southern | 7/134 | 5.2% (2.1–10.5) | 1.0 | - | 78/1852 | 4.2% (3.3–5.2) | 5.7 (0.8–41.4) | 0.0596 |
Eastern | 0/8 | 0 (0.0–36.9) | - | 1 | 1/115 | 0.9% (0.0–4.7) | 1.1 (0.1–18.4) | 1 |
Offshore islands | 0/8 | 0 (0.0–36.9) | - | 1 | 1/131 | 0.8% (0.0–4.2) | 1.0 | - |
Total | 20/300 | 6.7% (4.1–10.1%) | - | - | 192/4145 | 4.6% (4.0–5.3%) | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, C.-J.; Tsai, K.-J.; Chang, J.-C.; Deng, M.-C.; Lin, N.-N.; Lager, K.M.; Robertson, I.D.; Huang, Y.-L. Phylogenetic Characterization and Seroprevalence of Senecavirus A from Swine Farms in Taiwan. Animals 2025, 15, 2786. https://doi.org/10.3390/ani15192786
Pan C-J, Tsai K-J, Chang J-C, Deng M-C, Lin N-N, Lager KM, Robertson ID, Huang Y-L. Phylogenetic Characterization and Seroprevalence of Senecavirus A from Swine Farms in Taiwan. Animals. 2025; 15(19):2786. https://doi.org/10.3390/ani15192786
Chicago/Turabian StylePan, Cheng-Ju, Kuo-Jung Tsai, Jen-Chieh Chang, Ming-Chung Deng, Nien-Nung Lin, Kelly M. Lager, Ian D. Robertson, and Yu-Liang Huang. 2025. "Phylogenetic Characterization and Seroprevalence of Senecavirus A from Swine Farms in Taiwan" Animals 15, no. 19: 2786. https://doi.org/10.3390/ani15192786
APA StylePan, C.-J., Tsai, K.-J., Chang, J.-C., Deng, M.-C., Lin, N.-N., Lager, K. M., Robertson, I. D., & Huang, Y.-L. (2025). Phylogenetic Characterization and Seroprevalence of Senecavirus A from Swine Farms in Taiwan. Animals, 15(19), 2786. https://doi.org/10.3390/ani15192786