Effects of Coated Sodium Selenite Supplementation on the Milk Yield, Apparent Digestibility, Rumen Fermentation, Blood Biochemical Parameters and Antioxidant Parameters in Dairy Buffaloes
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals, Experimental Design and Management
- Control group: basal diet (Con);
- Treatment 1: basal diet + CSS 0.10 mg/kg (LCSS);
- Treatment 2: basal diet + CSS 0.15 mg/kg (MCSS);
- Treatment 3: basal diet + CSS 0.20 mg/kg (HCSS).
2.2. Sampling and Data Collection
2.3. Chemical Analyses
2.4. Statistical Analysis
3. Results
3.1. Lactation Performance
3.2. Apparent Digestibility
3.3. Rumen Fermentation
3.4. Blood Biochemical Parameters
3.5. Antioxidant Parameters
4. Discussion
4.1. Lactation Performance
4.2. Apparent Digestibility
4.3. Rumen Fermentation
4.4. Blood Biochemical Parameters
4.5. Antioxidant Parameters
4.6. Limitations of the Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sarwar, M.; Khan, M.A.; Nisa, M.; Bhatti, S.A.; Shahzad, M.A. Nutritional Management for Buffalo Production. Asian-Australas. J. Anim. Sci. 2009, 22, 1060–1068. [Google Scholar] [CrossRef]
- Javed, K.; Salman, M.; Sharif, M.; Muneer, H.; Muzammal, U.; Najam, T.; Iqbal, U. Nutritional Requirements of Dairy Buffalo. Braz. J. Sci. 2022, 1, 1–8. [Google Scholar] [CrossRef]
- Ahuja, R. An Analysis of Constraints Perceived by Dairy Farmers in Murrah Tract of Haryana State. Int. J. Pure Appl. Biosci. 2017, 5, 1048–1053. [Google Scholar] [CrossRef]
- Ullah, H.; Khan, R.U.; Tufarelli, V.; Laudadio, V. Selenium: An Essential Micronutrient for Sustainable Dairy Cows Production. Sustainability 2020, 12, 10693. [Google Scholar] [CrossRef]
- Pecoraro, B.M.; Leal, D.F.; Frias-De-Diego, A.; Browning, M.; Odle, J.; Crisci, E. The Health Benefits of Selenium in Food Animals: A Review. J. Anim. Sci. Biotechnol. 2022, 13, 58. [Google Scholar] [CrossRef]
- Peters, K.M.; Galinn, S.E.; Tsuji, P.A. Selenium: Dietary Sources, Human Nutritional Requirements and Intake Across Populations. In Selenium: Its Molecular Biology and Role in Human Health; Hatfield, D.L., Schweizer, U., Tsuji, P.A., Gladyshev, V.N., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 295–305. ISBN 978-3-319-41283-2. [Google Scholar]
- Čobanová, K.; Faix, Š.; Plachá, I.; Mihaliková, K.; Váradyová, Z.; Kišidayová, S.; Grešáková, Ľ. Effects of Different Dietary Selenium Sources on Antioxidant Status and Blood Phagocytic Activity in Sheep. Biol. Trace Elem. Res. 2017, 175, 339–346. [Google Scholar] [CrossRef]
- Zhang, Z.D.; Wang, C.; Du, H.S.; Liu, Q.; Guo, G.; Huo, W.J.; Zhang, J.; Zhang, Y.L.; Pei, C.X.; Zhang, S.L. Effects of Sodium Selenite and Coated Sodium Selenite on Lactation Performance, Total Tract Nutrient Digestion and Rumen Fermentation in Holstein Dairy Cows. Animal 2020, 14, 2091–2099. [Google Scholar] [CrossRef]
- Ganie, A.A.; Baghel, R.P.S.; Mudgal, V.; Aarif, O.; Sheikh, G.G. Effect of Selenium Supplementation on Reproductive Performance and Hormonal Profile in Buffalo Heifers. Indian J. Anim. Res. 2014, 48, 27–30. [Google Scholar] [CrossRef]
- Mirone, M.; Giannetta, E.; Isidori, A. Selenium and Reproductive Function. A Systematic Review. J. Endocrinol. Investig. 2013, 36, 28–36. [Google Scholar]
- Galbraith, M.L.; Vorachek, W.R.; Estill, C.T.; Whanger, P.D.; Bobe, G.; Davis, T.Z.; Hall, J.A. Rumen Microorganisms Decrease Bioavailability of Inorganic Selenium Supplements. Biol. Trace Elem. Res. 2016, 171, 338–343. [Google Scholar] [CrossRef] [PubMed]
- Spears, J.W. Trace Mineral Bioavailability in Ruminants. J. Nutr. 2003, 133, 1506S–1509S. [Google Scholar] [CrossRef]
- Sun, L.L.; Gao, S.T.; Wang, K.; Xu, J.C.; Sanz-Fernandez, M.V.; Baumgard, L.H.; Bu, D.P. Effects of Source on Bioavailability of Selenium, Antioxidant Status, and Performance in Lactating Dairy Cows during Oxidative Stress-Inducing Conditions. J. Dairy Sci. 2019, 102, 311–319. [Google Scholar] [CrossRef]
- Gresakova, L.; Cobanova, K.; Faix, S. Selenium Retention in Lambs Fed Diets Supplemented with Selenium from Inorganic or Organic Sources. Small Rumin. Res. 2013, 111, 76–82. [Google Scholar] [CrossRef]
- Du, H.S.; Wang, C.; Wu, Z.Z.; Zhang, G.W.; Liu, Q.; Guo, G.; Huo, W.J.; Zhang, Y.L.; Pei, C.X.; Zhang, S.L. Effects of Rumen-protected Folic Acid and Rumen-protected Sodium Selenite Supplementation on Lactation Performance, Nutrient Digestion, Ruminal Fermentation and Blood Metabolites in Dairy Cows. J. Sci. Food Agric. 2019, 99, 5826–5833. [Google Scholar] [CrossRef]
- National Academies of Sciences, Engineering, and Medicine. Nutrient Requirements of Dairy Cattle; The National Academies Press: Washington, DC, USA, 2021. [Google Scholar]
- Association of Official Analytical Chemists. Official Methods of Analysis of the Association of Official Analytical Chemists; The Association of Official Analytical Chemists: Gaithersburg, MD, USA, 2000. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Van Keulen, J.; Young, B.A. Evaluation of Acid-Insoluble Ash as a Natural Marker in Ruminant Digestibility Studies. J. Anim. Sci. 1977, 44, 282–287. [Google Scholar] [CrossRef]
- Ullah, H.; Mobashar, M.; Ahmad, S.; Sajid, A.; Khan, N.; Usman, T.; Khattak, I.; Khan, H. Effect of Yeast-Based Selenium on Blood Progesterone, Metabolites and Milk Yield in Achai Dairy Cows. Ital. J. Anim. Sci. 2019, 18, 1445–1450. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, J.; Bu, L.; Huo, W.; Pei, C.; Liu, Q. Effects of Nanoselenium Supplementation on Lactation Performance, Nutrient Digestion and Mammary Gland Development in Dairy Cows. Anim. Biotechnol. 2024, 35, 2290526. [Google Scholar] [CrossRef] [PubMed]
- Arshad, M.A.; Ebeid, H.M.; Hassan, F. Revisiting the Effects of Different Dietary Sources of Selenium on the Health and Performance of Dairy Animals: A Review. Biol. Trace Elem. Res. 2021, 199, 3319–3337. [Google Scholar] [CrossRef] [PubMed]
- Shi, L.; Xun, W.; Yue, W.; Zhang, C.; Ren, Y.; Liu, Q.; Wang, Q.; Shi, L. Effect of Elemental Nano-Selenium on Feed Digestibility, Rumen Fermentation, and Purine Derivatives in Sheep. Anim. Feed. Sci. Technol. 2011, 163, 136–142. [Google Scholar] [CrossRef]
- Del Razo-Rodriguez, O.E.; Ramirez-Bribiesca, J.E.; Lopez-Arellano, R.; Revilla-Vazquez, A.L.; Gonzalez-Munoz, S.S.; Cobos-Peralta, M.A.; Hernandez-Calva, L.M.; McDowell, L.R. Effects of Dietary Level of Selenium and Grain on Digestive Metabolism in Lambs. Czech J. Anim. Sci. 2013, 58, 253–261. [Google Scholar] [CrossRef]
- Nagata, R.; Kim, Y.-H.; Ohkubo, A.; Kushibiki, S.; Ichijo, T.; Sato, S. Effects of Repeated Subacute Ruminal Acidosis Challenges on the Adaptation of the Rumen Bacterial Community in Holstein Bulls. J. Dairy Sci. 2018, 101, 4424–4436. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Zhang, P.; Zhang, R.; Chang, J.; Chen, L.; Wang, G.; Tian, Y.; Zhang, G. Response of Rumen Microorganisms to pH during Anaerobic Hydrolysis and Acidogenesis of Lignocellulose Biomass. Waste Manag. 2024, 174, 476–486. [Google Scholar] [CrossRef] [PubMed]
- Hendawy, A.O.; Sugimura, S.; Sato, K.; Mansour, M.M.; Abd El-Aziz, A.H.; Samir, H.; Islam, M.A.; Bostami, A.B.M.R.; Mandour, A.S.; Elfadadny, A.; et al. Effects of Selenium Supplementation on Rumen Microbiota, Rumen Fermentation, and Apparent Nutrient Digestibility of Ruminant Animals: A Review. Fermentation 2021, 8, 4. [Google Scholar] [CrossRef]
- Lin, Y.; He, F.; Lian, S.; Xie, B.; Liu, T.; He, J.; Liu, C. Selenium Status in Patients with Chronic Liver Disease: A Systematic Review and Meta-Analysis. Nutrients 2022, 14, 952. [Google Scholar] [CrossRef]
- Farghaly, M.; Hassan, E.; Abdel-Raheem, S. Influence of Dietary Supplementation of Various Selenium Sources on Nutrient Digestibility, Growth Performance and Blood Metabolites in Male Buffalo Calves. Egypt. J. Nutr. Feeds 2017, 20, 421–428. [Google Scholar] [CrossRef]
- Lohakare, J.D.; Pattanaik, A.K.; Khan, S.A. Effect of Dietary Protein Levels on the Performance, Nutrient Balances, Metabolic Profile and Thyroid Hormones of Crossbred Calves. Asian-Australas. J. Anim. Sci 2006, 19, 1588–1596. [Google Scholar] [CrossRef]
- Sabasthin, A.; Kumar, V.G.; Nandi, S.; Murthy, V.C. Blood Haematological and Biochemical Parameters in Normal Cycling, Pregnant and Repeat Breeding Buffaloes (Bubalus bubalis) Maintained in Isothermic and Isonutritional Conditions. Asian Pac. J. Reprod. 2012, 1, 117–119. [Google Scholar] [CrossRef]
- Ceciliani, F.; Ceron, J.J.; Eckersall, D.; Sauerwein, H. Acute Phase Proteins in Ruminants. J. Proteom. 2012, 75, 4207–4231. [Google Scholar] [CrossRef]
- Cattaneo, L.; Lopreiato, V.; Piccioli-Cappelli, F.; Trevisi, E.; Minuti, A. Plasma Albumin-to-Globulin Ratio before Dry-off as a Possible Index of Inflammatory Status and Performance in the Subsequent Lactation in Dairy Cows. J. Dairy Sci. 2021, 104, 8228–8242. [Google Scholar] [CrossRef]
- Mudgal, V.; Garg, A.K.; Dass, R.S.; Varshney, V.P. Effect of Selenium, Zinc, and Copper Supplementation on Blood Metabolic Profile in Male Buffalo (Bubalus bubalis) Calves. Biol. Trace Elem. Res. 2012, 145, 304–311. [Google Scholar] [CrossRef] [PubMed]
- Brigelius-Flohé, R.; Maiorino, M. Glutathione Peroxidases. Biochim. Biophys. Acta (BBA)—Gen. Subj. 2013, 1830, 3289–3303. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Liu, J.X.; Xiong, J.L.; Wang, Y.M.; Zhang, W.X.; Wang, D.M. Effect of Hydroxyselenomethionine on Lactation Performance, Blood Profiles, and Transfer Efficiency in Early-Lactating Dairy Cows. J. Dairy Sci. 2019, 102, 6167–6173. [Google Scholar] [CrossRef] [PubMed]
Item | Content |
---|---|
Ingredient (% of DM) | |
Corn silage | 41.4 |
Fermented feed 1 | 30.0 |
Elephant grass | 25.9 |
Wheat bran | 2.5 |
Calcium phosphate | 0.10 |
Salt | 0.05 |
Premix 2 | 0.05 |
Chemical composition (% of DM) | |
CP | 14.78 |
EE | 6.74 |
NDF | 44.27 |
ADF | 22.81 |
Ca | 0.68 |
P | 0.42 |
Se (mg/kg) | 0.10 |
Item | Treatments 1 | SEM | p-Value | |||||
---|---|---|---|---|---|---|---|---|
Con | LCSS | MCSS | HCSS | Treatment | Time | Treatment × Time | ||
Dry matter intake (kg/d) | 9.35 c | 10.3 a | 10.1 b | 9.99 b | 0.39 | 0.001 | 0.584 | 0.767 |
Milk production (kg/d) | ||||||||
Actual | 5.78 b | 6.90 a | 6.51 a | 6.00 b | 0.85 | 0.001 | 0.019 | 0.997 |
FCM | 7.24 d | 9.38 a | 8.65 b | 8.02 c | 0.11 | 0.001 | 0.440 | 0.970 |
Fat | 0.328 d | 0.441 a | 0.403 b | 0.375 c | 0.06 | 0.001 | 0.898 | 0.983 |
True protein | 0.240 b | 0.291 a | 0.264 a | 0.254 b | 0.04 | 0.001 | 0.467 | 0.995 |
Lactose | 0.265 b | 0.330 a | 0.270 b | 0.248 b | 0.07 | 0.001 | 0.765 | 0.999 |
Milk composition (%) | ||||||||
Fat | 5.73 b | 6.46 a | 6.23 a | 6.26 a | 0.82 | 0.020 | 0.247 | 0.999 |
True protein | 4.17 | 4.24 | 4.07 | 4.23 | 0.37 | 0.342 | 0.030 | 0.990 |
Lactose | 4.61 a | 4.74 a | 4.13 b | 4.13 b | 0.71 | 0.003 | 0.485 | 0.998 |
Total solid | 14.5 b | 15.4 a | 14.4 b | 14.6 b | 0.12 | 0.013 | 0.028 | 0.998 |
Somatic cell count (×104 cells/mL) | 17.5 | 15.8 | 16.2 | 15.1 | 0.77 | 0.772 | 0.873 | 0.978 |
Milk urea nitrogen (mg/dL) | 22.4 | 21.2 | 22.7 | 22.8 | 0.28 | 0.159 | 0.043 | 0.290 |
Feed conversion ratio (kg/kg) | 0.603 b | 0.678 a | 0.646 a | 0.602 b | 0.08 | 0.001 | 0.068 | 0.931 |
Item | Treatments 1 | SEM | p-Value | |||
---|---|---|---|---|---|---|
Con | LCSS | MCSS | HCSS | |||
DM | 64.0 | 65.8 | 64.5 | 64.1 | 0.48 | 0.543 |
OM | 64.8 | 65.9 | 65.1 | 64.5 | 0.41 | 0.685 |
CP | 74.8 | 76.8 | 75.5 | 74.7 | 0.56 | 0.557 |
EE | 61.4 | 65.1 | 64.6 | 63.2 | 1.22 | 0.741 |
Starch | 93.8 | 94.6 | 93.9 | 93.9 | 0.27 | 0.738 |
NDF | 56.1 b | 59.7 a | 57.7 ab | 57.5 ab | 0.39 | 0.003 |
ADF | 34.1 | 37.6 | 34.1 | 35.8 | 0.59 | 0.087 |
Item | Treatments 1 | SEM | p-Value | |||
---|---|---|---|---|---|---|
Con | LCSS | MCSS | HCSS | |||
pH | 6.65 b | 6.54 b | 6.78 ab | 7.14 a | 0.13 | 0.001 |
Ammonia N (mg/dL) | 16.1 a | 12.6 b | 12.8 b | 13.2 b | 0.46 | 0.035 |
Acetate (mmol/L) | 56.56 b | 61.74 a | 59.89 ab | 57.60 b | 0.73 | 0.030 |
Propionate (mmol/L) | 21.04 b | 23.82 a | 23.31 a | 20.37 b | 0.45 | 0.002 |
Isobutyrate (mmol/L) | 0.96 ab | 1.12 a | 0.80 b | 0.74 b | 0.05 | 0.004 |
Butyrate (mmol/L) | 8.70 | 7.86 | 8.31 | 6.84 | 0.38 | 0.364 |
Isovalerate (mmol/L) | 1.60 | 1.74 | 1.40 | 1.27 | 0.08 | 0.109 |
Valerate (mmol/L) | 1.26 | 1.38 | 1.21 | 1.02 | 0.06 | 0.184 |
Total VFA (mmol/L) | 90.13 bc | 97.66 a | 94.92 ab | 87.84 c | 1.34 | 0.018 |
Item | Treatments 1 | SEM | p-Value | |||
---|---|---|---|---|---|---|
Con | LCSS | MCSS | HCSS | |||
TP (g/L) | 88.4 a | 71.4 b | 70.5 b | 69.2 b | 2.46 | 0.001 |
ALB (g/L) | 48.5 | 51.8 | 47.3 | 46.2 | 1.05 | 0.258 |
BUN (mmol/L) | 3.48 | 3.96 | 3.88 | 4.57 | 0.19 | 0.766 |
TC (mmol/L) | 2.45 | 2.48 | 2.42 | 3.07 | 0.13 | 0.335 |
TG (mmol/L) | 0.347 | 0.307 | 0.314 | 0.365 | 0.13 | 0.498 |
ALT (U/L) | 39.2 | 33.4 | 37.1 | 39.5 | 1.62 | 0.552 |
AST (U/L) | 113 | 104 | 90.8 | 99.9 | 3.58 | 0.298 |
Item | Treatments 1 | SEM | p-Value | |||
---|---|---|---|---|---|---|
Con | LCSS | MCSS | HCSS | |||
CAT (U/mL) | 5.94 | 6.04 | 6.23 | 6.14 | 0.223 | 0.980 |
SOD (U/mL) | 40.6 | 40.9 | 44.6 | 44.7 | 5.83 | 0.696 |
GSH-Px (U/mL) | 347 b | 452 a | 359 b | 482 a | 19.4 | 0.011 |
MDA (nmol/mL) | 4.11 a | 3.11 ab | 2.82 b | 2.39 b | 0.224 | 0.043 |
T-AOC (mM) | 0.487 b | 0.558 a | 0.501 b | 0.687 a | 0.021 | 0.002 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tan, L.; Zhao, Y.; Sun, J.; Bai, C.; Du, H.; Yan, X.; Guo, G.; Chen, L.; Liu, Q.; Wang, C.; et al. Effects of Coated Sodium Selenite Supplementation on the Milk Yield, Apparent Digestibility, Rumen Fermentation, Blood Biochemical Parameters and Antioxidant Parameters in Dairy Buffaloes. Animals 2025, 15, 2767. https://doi.org/10.3390/ani15192767
Tan L, Zhao Y, Sun J, Bai C, Du H, Yan X, Guo G, Chen L, Liu Q, Wang C, et al. Effects of Coated Sodium Selenite Supplementation on the Milk Yield, Apparent Digestibility, Rumen Fermentation, Blood Biochemical Parameters and Antioxidant Parameters in Dairy Buffaloes. Animals. 2025; 15(19):2767. https://doi.org/10.3390/ani15192767
Chicago/Turabian StyleTan, Li, Yuqi Zhao, Jiajin Sun, Chun Bai, He Du, Xinyu Yan, Gang Guo, Lei Chen, Qiang Liu, Cong Wang, and et al. 2025. "Effects of Coated Sodium Selenite Supplementation on the Milk Yield, Apparent Digestibility, Rumen Fermentation, Blood Biochemical Parameters and Antioxidant Parameters in Dairy Buffaloes" Animals 15, no. 19: 2767. https://doi.org/10.3390/ani15192767
APA StyleTan, L., Zhao, Y., Sun, J., Bai, C., Du, H., Yan, X., Guo, G., Chen, L., Liu, Q., Wang, C., & Huo, W. (2025). Effects of Coated Sodium Selenite Supplementation on the Milk Yield, Apparent Digestibility, Rumen Fermentation, Blood Biochemical Parameters and Antioxidant Parameters in Dairy Buffaloes. Animals, 15(19), 2767. https://doi.org/10.3390/ani15192767