Reproductive Effects of Endocrine Disruptors in Domestic Ruminants: Integrating In Vitro and In Vivo Evidence
Simple Summary
Abstract
1. Introduction
1.1. Definition and Classification of Endocrine-Disrupting Chemicals (EDCs)
1.2. Main Sources of Exposure
1.3. Relevance to Animal Reproduction, Productivity, and Health
1.4. Aims and Scope of the Review
- BPA and its analogues are among the most studied EDCs globally because of their widespread use in consumer products, despite regulatory restrictions in various regions, and their high persistence in the environment.
- BPA analogues are now widely used due to regulatory efforts for BPA substitution. However, recent data indicate that these analogues may be as harmful—or even more so—as BPA. The potential toxicity of BPA analogues has not been reviewed before.
- There is ample evidence of the endocrine-disrupting relevance to human reproduction: BPA and PFAS have an impact on estrogenic and androgenic pathways, steroidogenesis, Leydig cell function, and epigenetic regulation of reproductive capacity that is well-documented.
1.5. Methodology
2. Bisphenols and PFAS Exposure Pathways and Mechanisms of Action
2.1. Bisphenols
- Disruption of normal cellular function by acting as estrogen [52,53], or androgen [54] antagonists. Thus, they can interfere with several physiological processes in reproductive tissues, such as gonad development and function, lactation, placental development, etc. BPA has structural similarities with estradiol (a phenol ring) and exhibits moderate estrogenic activity, despite a 10,000-fold lower binding affinity to estrogen receptors (ERs), compared to that of estradiol [55,56]. Thus, BPA is considered a weak estrogen due to its low affinity for nuclear estrogen receptors [11,55]. However, other studies have shown that BPA is equipotent with estradiol in its ability to initiate rapid nongenomic responses from membrane surface receptors.
- Overproduction of reactive oxygen species (ROS). BPA induces oxidative stress (OS) and decreases the expression of antioxidant enzymes, such as superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPX). In bovine gametes, BPA and BPS differentially affect the activity of the above enzymes [51,59,60].
- Induction of apoptosis. BPA and BPF disrupt the balance between the proapoptotic BCL2-Associated X (BAX) and the anti-apoptotic B-cell lymphoma 2 (BCL-2) proteins promoting apoptosis [49].
- Epigenetic modifications. BPA regulates microRNA (miRNA) levels. For example, it increases the expression of miR-21, miR-155, and miR-29a, and decreases the expression of miR-34c and miR-10b [61,62,63]. These miRNAs play a regulatory role in bovine female fertility. In particular, increased expression of miR-155 impairs cumulus expansion and oocyte maturation, thus reducing cleavage and early embryo development rates [64]. Moreover, reduced levels of miR-34c have been associated with reduced blastocyst quality, as they negatively affect total cell number, inner cell mass (ICM) and ICM-to-total cell ratio [65].
2.2. PFAS
- Disruption of normal cellular function by acting as agonists or antagonists of nuclear hormone receptors, including estrogen, androgen, and thyroid hormone receptors [75].
- Reduction of steroidogenesis by altering the expression of genes involved in steroid hormone synthesis (in bovine granulosa cells) [76].
3. Effects of EDCs on Reproductive Physiology in Ruminants
3.1. Effects of BPA In Vitro
3.1.1. Effects on Oocytes
- i.
- Effects of BPA at concentrations lower than LOAEL
- ii.
- Effects of BPA and its analogues at concentrations similar to the LOAEL in mice
3.1.2. Ovarian and Follicular Cells
3.1.3. Spermatozoa
3.1.4. Embryos
3.2. Effects of BPA In Vivo
3.3. Effects of PFAS In Vitro
4. The Potential for Cumulative or Synergistic Impacts of BPA and PFAS in Ruminants
5. Limitations
6. Proposed Biomarkers to Assess the Toxicity of EDCs
- i.
- BPA Concentration in Biological Matrices
- ii.
- Concentration of PFAS in biological matrices
7. Conclusions and Future Directions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AMH | anti-Müllerian hormone |
AMHRII | anti-Müllerian hormone receptor II |
ARTs | assisted reproductive techniques |
AURKA | aurora kinase A |
BCL-2 | B-cell lymphoma 2 protein |
BAX | BCL2-associated X protein |
BPA | bisphenol A |
BPF | bisphenol F |
BPS | bisphenol S |
CAT | catalase |
CDC2 | cell division cycle 2 |
COCs | cumulus–oocyte complexes |
CYP19A1 | cytochrome P450 family 19 subfamily A member 1 |
CYP11A1 | cytochrome P450 side-chain cleavage |
EDCs | endocrine-disrupting chemicals |
EFSA | European Food Safety Authority |
ERS | endoplasmic reticulum stress |
ER | estrogen receptor |
FSH | follicle-stimulating hormone |
GD | gestation day |
GPX | glutathione peroxidase |
GSR | glutathione reductase |
HPG axis | hypothalamic–pituitary–gonadal axis |
ICM | inner cell mass |
IPCS | International Program on Chemical Safety |
IVM | in vitro maturation |
IVF | in vitro fertilization |
LH | luteinizing hormone |
LPO | lipid peroxidation |
LOAEL | lowest observed adverse effect level |
miRNA | microRNA |
non-POPs | non-persistent organic pollutants |
OS | oxidative stress |
PFOA | perfluorooctanoic acid |
PFOS | perfluorooctyl sulfonate |
PFHxS | perfluorohexane sulfonate |
PFNA | perfluorononanoic acid |
POPs | persistent organic pollutants |
PCBs | polychlorinated biphenyls |
PFAS | polyfluoroalkyl substances |
PVC | polyvinyl chloride |
ROS | reactive oxygen species |
SOD | superoxide dismutase |
TE | trophectoderm |
References
- Tata, J.R. One Hundred Years of Hormones: A New Name Sparked Multidisciplinary Research in Endocrinology, Which Shed Light on Chemical Communication in Multicellular Organisms. EMBO Rep. 2005, 6, 490–496. [Google Scholar] [CrossRef]
- Colborn, T.; Vom Saal, F.S.; Soto, A.M. Developmental Effects of Endocrine-Disrupting Chemicals in Wildlife and Humans. Environ. Health Perspect 1993, 101, 378–384. [Google Scholar] [CrossRef]
- Global Assessment of the State-of-the-Science of Endocrine Disruptors; International Program on Chemical Safety; World Health Organization: Geneva, Switzerland, 2002.
- Macedo, S.; Teixeira, E.; Gaspar, T.B.; Boaventura, P.; Soares, M.A.; Miranda-Alves, L.; Soares, P. Endocrine-Disrupting Chemicals and Endocrine Neoplasia: A Forty-Year Systematic Review. Environ. Res. 2023, 218, 114869. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.T.; Lee, H.K. Metabolic Syndrome and the Environmental Pollutants from Mitochondrial Perspectives. Rev. Endocr. Metab. Disord. 2014, 15, 253–262. [Google Scholar] [CrossRef] [PubMed]
- Smith, G.S.; Watkins, J.B.; Thompson, T.N.; Rozman, K.; Klaassen, C.D. Oxidative and Conjugative Metabolism of Xenobiotics by Livers of Cattle, Sheep, Swine and Rats. J. Anim. Sci. 1984, 58, 386–395. [Google Scholar] [CrossRef]
- Calafat, A.M.; Needham, L.L. Human Exposures and Body Burdens of Endocrine-Disrupting Chemicals. In Endocrine-Disrupting Chemicals; Gore, A.C., Ed.; Humana Press: Totowa, NJ, USA, 2007; pp. 253–268. ISBN 978-1-58829-830-0. [Google Scholar]
- Kumar, M.; Sarma, D.K.; Shubham, S.; Kumawat, M.; Verma, V.; Prakash, A.; Tiwari, R. Environmental Endocrine-Disrupting Chemical Exposure: Role in Non-Communicable Diseases. Front. Public Health 2020, 8, 553850. [Google Scholar] [CrossRef]
- Encarnação, T.; Pais, A.A.; Campos, M.G.; Burrows, H.D. Endocrine disrupting chemicals: Impact on human health, wildlife and the environment. Sci. Prog. 2019, 102, 3–42. [Google Scholar] [CrossRef] [PubMed]
- Mortimer, M.; Reichelt-Brushett, A. Persistent Organic Pollutants (POPs). In Marine Pollution—Monitoring, Management and Mitigation; Reichelt-Brushett, A., Ed.; Springer Textbooks in Earth Sciences, Geography and Environment; Springer Nature Switzerland: Cham, Switzerland, 2023; pp. 185–205. ISBN 978-3-031-10126-7. [Google Scholar]
- Stahlhut, R.W.; Welshons, W.V.; Swan, S.H. Bisphenol A Data in NHANES Suggest Longer than Expected Half-Life, Substantial Nonfood Exposure, or Both. Environ. Health Perspect. 2009, 117, 784–789. [Google Scholar] [CrossRef]
- Hauser, R.; Calafat, A.M. Phthalates and human health. Occup. Environ. Med. 2005, 62, 806–818. [Google Scholar] [CrossRef]
- Smith, S.R. Agricultural Recycling of Sewage Sludge and the Environment; CAB International: Wallingford, UK, 1995; Chapter 10; pp. 207–236. [Google Scholar]
- Nimrod, A.C.; Benson, W.H. Environmental Estrogenic Effects of Alkylphenol Ethoxylates. Crit. Rev. Toxicol. 1996, 26, 335–364. [Google Scholar] [CrossRef]
- Liu, J.; Martin, J.W. Prolonged Exposure to Bisphenol A from Single Dermal Contact Events. Environ. Sci. Technol. 2017, 51, 9940–9949. [Google Scholar] [CrossRef] [PubMed]
- Death, C.; Bell, C.; Champness, D.; Milne, C.; Reichman, S.; Hagen, T. Per- and Polyfluoroalkyl Substances (PFAS) in Livestock and Game Species: A Review. Sci. Total Environ. 2021, 774, 144795. [Google Scholar] [CrossRef]
- Vasiljevic, T.; Harner, T. Bisphenol A and Its Analogues in Outdoor and Indoor Air: Properties, Sources and Global Levels. Sci. Total Environ. 2021, 789, 148013. [Google Scholar] [CrossRef] [PubMed]
- Rhind, S.M.; Kyle, C.E.; Mackie, C.; McDonald, L.; Zhang, Z.; Duff, E.I.; Bellingham, M.; Amezaga, M.R.; Mandon-Pepin, B.; Loup, B.; et al. Maternal and Fetal Tissue Accumulation of Selected Endocrine Disrupting Compounds (EDCs) Following Exposure to Sewage Sludge-Treated Pastures before or after Conception. J. Environ. Monit. 2010, 12, 1582. [Google Scholar] [CrossRef] [PubMed]
- Magnusson, U.; Persson, S. Endocrine Disruptors in Domestic Animal Reproduction: A Clinical Issue? Reprod Domest. Anim. 2015, 50, 15–19. [Google Scholar] [CrossRef]
- Annamalai, J.; Namasivayam, V. Endocrine Disrupting Chemicals in the Atmosphere: Their Effects on Humans and Wildlife. Environ. Int. 2015, 76, 78–97. [Google Scholar] [CrossRef]
- Dekant, W.; Völkel, W. Human Exposure to Bisphenol A by Biomonitoring: Methods, Results and Assessment of Environmental Exposures. Toxicol. Appl. Pharmacol. 2008, 228, 114–134. [Google Scholar] [CrossRef]
- Kowalczyk, J.; Ehlers, S.; Oberhausen, A.; Tischer, M.; Fürst, P.; Schafft, H.; Lahrssen-Wiederholt, M. Absorption, Distribution, and Milk Secretion of the Perfluoroalkyl Acids PFBS, PFHxS, PFOS, and PFOA by Dairy Cows Fed Naturally Contaminated Feed. J. Agric. Food Chem. 2013, 61, 2903–2912. [Google Scholar] [CrossRef]
- Boerjan, M.L.; Freijnagel, S.; Rhind, S.M.; Meijer, G.A.L. The Potential Reproductive Effects of Exposure of Domestic Ruminants to Endocrine Disrupting Compounds. Anim. Sci. 2002, 74, 3–12. [Google Scholar] [CrossRef]
- Sinclair, K.D.; Rutherford, K.M.D.; Wallace, J.M.; Brameld, J.M.; Stöger, R.; Alberio, R.; Sweetman, D.; Gardner, D.S.; Perry, V.E.A.; Adam, C.L.; et al. Epigenetics and Developmental Programming of Welfare and Production Traits in Farm Animals. Reprod. Fertil. Dev. 2016, 28, 1443. [Google Scholar] [CrossRef]
- Diamanti-Kandarakis, E.; Bourguignon, J.-P.; Giudice, L.C.; Hauser, R.; Prins, G.S.; Soto, A.M.; Zoeller, R.T.; Gore, A.C. Endocrine-Disrupting Chemicals: An Endocrine Society Scientific Statement. Endocr. Rev. 2009, 30, 293–342. [Google Scholar] [CrossRef] [PubMed]
- Maradonna, F.; Carnevali, O. Lipid Metabolism Alteration by Endocrine Disruptors in Animal Models: An Overview. Front. Endocrinol. 2018, 9, 654. [Google Scholar] [CrossRef] [PubMed]
- Pocar, P.; Grieco, V.; Aidos, L.; Borromeo, V. Endocrine-Disrupting Chemicals and Their Effects in Pet Dogs and Cats: An Overview. Animals 2023, 13, 378. [Google Scholar] [CrossRef]
- Criswell, R.; Crawford, K.A.; Bucinca, H.; Romano, M.E. Endocrine-Disrupting Chemicals and Breastfeeding Duration: A Review. Curr. Opin. Endocrinol. Diabetes Obes. 2020, 27, 388–395. [Google Scholar] [CrossRef] [PubMed]
- Winkler, J.; Liu, P.; Phong, K.; Hinrichs, J.H.; Ataii, N.; Williams, K.; Hadler-Olsen, E.; Samson, S.; Gartner, Z.J.; Fisher, S.; et al. Bisphenol A Replacement Chemicals, BPF and BPS, Induce Protumorigenic Changes in Human Mammary Gland Organoid Morphology and Proteome. Proc. Natl. Acad. Sci. USA 2022, 119, e2115308119. [Google Scholar] [CrossRef]
- Bansal, A.; Henao-Mejia, J.; Simmons, R.A. Immune System: An Emerging Player in Mediating Effects of Endocrine Disruptors on Metabolic Health. Endocrinology 2018, 159, 32–45. [Google Scholar] [CrossRef]
- Schug, T.T.; Blawas, A.M.; Gray, K.; Heindel, J.J.; Lawler, C.P. Elucidating the Links Between Endocrine Disruptors and Neurodevelopment. Endocrinology 2015, 156, 1941–1951. [Google Scholar] [CrossRef]
- Rochester, J.R.; Bolden, A.L. Bisphenol S and F: A Systematic Review and Comparison of the Hormonal Activity of Bisphenol A Substitutes. Environ. Health Perspect. 2015, 123, 643–650. [Google Scholar] [CrossRef]
- Tyner, M.D.W.; Maloney, M.O.; Kelley, B.J.B.; Combelles, C.M.H. Comparing the Effects of Bisphenol A, C, and F on Bovine Theca Cells in Vitro. Reprod. Toxicol. 2022, 111, 27–33. [Google Scholar] [CrossRef]
- Davis, O.S.; Truong, V.B.; Hickey, K.D.; Favetta, L.A. Quality of Fresh and Cryopreserved Bovine Sperm Is Reduced by BPA and BPF Exposure. Reprod. Fertil. 2023, 4, e230018. [Google Scholar] [CrossRef]
- Russo, G.; Barbato, F.; Mita, D.G.; Grumetto, L. Occurrence of Bisphenol A and Its Analogues in Some Foodstuff Marketed in Europe. Food Chem. Toxicol. 2019, 131, 110575. [Google Scholar] [CrossRef]
- Corrales, J.; Kristofco, L.A.; Steele, W.B.; Yates, B.S.; Breed, C.S.; Williams, E.S.; Brooks, B.W. Global Assessment of Bisphenol A in the Environment: Review and Analysis of Its Occurrence and Bioaccumulation. Dose-Response 2015, 13, 1559325815598308. [Google Scholar] [CrossRef]
- Gatimel, N.; Lacroix, M.Z.; Chanthavisouk, S.; Picard-Hagen, N.; Gayrard, V.; Parinaud, J.; Léandri, R.D. Bisphenol A in Culture Media and Plastic Consumables Used for ART. Hum. Reprod. 2016, 31, 1436–1444. [Google Scholar] [CrossRef]
- Mahalingaiah, S.; Hauser, R.; Patterson, D.G.; Woudneh, M.; Racowsky, C. Bisphenol A Is Not Detectable in Media or Selected Contact Materials Used in IVF. Reprod. Biomed. Online 2012, 25, 608–611. [Google Scholar] [CrossRef]
- Ferris, J.; Favetta, L.A.; King, W.A. Bisphenol A Exposure during Oocyte Maturation in Vitro Results in Spindle Abnormalities and Chromosome Misalignment in Bos Taurus. Cytogenet. Genome Res. 2015, 145, 50–58. [Google Scholar] [CrossRef] [PubMed]
- Campen, K.A.; Kucharczyk, K.M.; Bogin, B.; Ehrlich, J.M.; Combelles, C.M.H. Spindle Abnormalities and Chromosome Misalignment in Bovine Oocytes after Exposure to Low Doses of Bisphenol A or Bisphenol S. Hum. Reprod. 2018, 33, 895–904. [Google Scholar] [CrossRef] [PubMed]
- Desmarchais, A.; Téteau, O.; Papillier, P.; Jaubert, M.; Druart, X.; Binet, A.; Maillard, V.; Elis, S. Bisphenol S Impaired In Vitro Ovine Early Developmental Oocyte Competence. IJMS 2020, 21, 1238. [Google Scholar] [CrossRef]
- Thayer, K.A.; Doerge, D.R.; Hunt, D.; Schurman, S.H.; Twaddle, N.C.; Churchwell, M.I.; Garantziotis, S.; Kissling, G.E.; Easterling, M.R.; Bucher, J.R.; et al. Pharmacokinetics of Bisphenol A in Humans Following a Single Oral Administration. Environ. Int. 2015, 83, 107–115. [Google Scholar] [CrossRef] [PubMed]
- Balakrishnan, B.; Henare, K.; Thorstensen, E.B.; Ponnampalam, A.P.; Mitchell, M.D. Transfer of Bisphenol A across the Human Placenta. Am. J. Obstet. Gynecol. 2010, 202, 393.e1–393.e7. [Google Scholar] [CrossRef]
- Person, E.; Bruel, S.; Manzano, T.I.; Jamin, E.L.; Zalko, D.; Combelles, C.M. The Fate of Bisphenol A, Bisphenol S, and Their Respective Glucuronide Metabolites in Ovarian Cells. Reprod. Toxicol. 2023, 118, 108380. [Google Scholar] [CrossRef]
- Abdulhameed, A.-S.A.R.; Lim, V.; Bahari, H.; Khoo, B.Y.; Abdullah, M.N.H.; Tan, J.J.; Yong, Y.K. Adverse Effects of Bisphenol A on the Liver and Its Underlying Mechanisms: Evidence from In Vivo and In Vitro Studies. BioMed Res. Int. 2022, 2022, 8227314. [Google Scholar] [CrossRef] [PubMed]
- Rhind, S.M.; Evans, N.P.; Bellingham, M.; Sharpe, R.M.; Cotinot, C.; Mandon-Pepin, B.; Loup, B.; Sinclair, K.D.; Lea, R.G.; Pocar, P.; et al. Effects of Environmental Pollutants on the Reproduction and Welfare of Ruminants. Animal 2010, 4, 1227–1239. [Google Scholar] [CrossRef] [PubMed]
- Ginsberg, G.; Rice, D.C. Does Rapid Metabolism Ensure Negligible Risk from Bisphenol A? Environ. Health Perspect. 2009, 117, 1639–1643. [Google Scholar] [CrossRef]
- Téteau, O.; Jaubert, M.; Desmarchais, A.; Papillier, P.; Binet, A.; Maillard, V.; Elis, S. Bisphenol A and S Impaired Ovine Granulosa Cell Steroidogenesis. Reproduction 2020, 159, 571–583. [Google Scholar] [CrossRef]
- Kourmaeva, E.; Sabry, R.; Favetta, L.A. Bisphenols A and F, but Not S, Induce Apoptosis in Bovine Granulosa Cells via the Intrinsic Mitochondrial Pathway. Front. Endocrinol. 2022, 13, 1028438. [Google Scholar] [CrossRef]
- Qiu, W.; Liu, S.; Chen, H.; Luo, S.; Xiong, Y.; Wang, X.; Xu, B.; Zheng, C.; Wang, K.-J. The Comparative Toxicities of BPA, BPB, BPS, BPF, and BPAF on the Reproductive Neuroendocrine System of Zebrafish Embryos and Its Mechanisms. J. Hazard. Mater. 2021, 406, 124303. [Google Scholar] [CrossRef]
- Sabry, R.; Nguyen, M.; Younes, S.; Favetta, L.A. BPA and Its Analogs Increase Oxidative Stress Levels in in Vitro Cultured Granulosa Cells by Altering Anti-Oxidant Enzymes Expression. Mol. Cell. Endocrinol. 2022, 545, 111574. [Google Scholar] [CrossRef]
- Peretz, J.; Craig, Z.R.; Flaws, J.A. Bisphenol A Inhibits Follicle Growth and Induces Atresia in Cultured Mouse Antral Follicles Independently of the Genomic Estrogenic Pathway. Biol. Reprod. 2012, 87, 63. [Google Scholar] [CrossRef]
- Téteau, O.; Vitorino Carvalho, A.; Papillier, P.; Mandon-Pépin, B.; Jouneau, L.; Jarrier-Gaillard, P.; Desmarchais, A.; Lebachelier De La Riviere, M.-E.; Vignault, C.; Maillard, V.; et al. Bisphenol A and Bisphenol S Both Disrupt Ovine Granulosa Cell Steroidogenesis but through Different Molecular Pathways. J. Ovarian Res. 2023, 16, 30. [Google Scholar] [CrossRef]
- Lee, H.J. Antiandrogenic Effects of Bisphenol A and Nonylphenol on the Function of Androgen Receptor. Toxicol. Sci. 2003, 75, 40–46. [Google Scholar] [CrossRef]
- Wozniak, A.L.; Bulayeva, N.N.; Watson, C.S. Xenoestrogens at Picomolar to Nanomolar Concentrations Trigger Membrane Estrogen Receptor-α–Mediated Ca2+ Fluxes and Prolactin Release in GH3/B6 Pituitary Tumor Cells. Environ. Health Perspect. 2005, 113, 431–439. [Google Scholar] [CrossRef] [PubMed]
- Grignard, E.; Lapenna, S.; Bremer, S. Weak Estrogenic Transcriptional Activities of Bisphenol A and Bisphenol S. Toxicol. Vitr. 2012, 26, 727–731. [Google Scholar] [CrossRef] [PubMed]
- Kabakci, R.; Yigit, A.A. Effects of Bisphenol A, Diethylhexyl Phthalate and Pentabrominated Diphenyl Ether 99 on Steroid Synthesis in Cultured Bovine Luteal Cells. Reprod Domest. Anim. 2020, 55, 683–690. [Google Scholar] [CrossRef]
- Saleh, A.C.; Sabry, R.; Mastromonaco, G.F.; Favetta, L.A. BPA and BPS Affect the Expression of Anti-Mullerian Hormone (AMH) and Its Receptor during Bovine Oocyte Maturation and Early Embryo Development. Reprod Biol. Endocrinol. 2021, 19, 119. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, M.; Sabry, R.; Davis, O.S.; Favetta, L.A. Effects of BPA, BPS, and BPF on Oxidative Stress and Antioxidant Enzyme Expression in Bovine Oocytes and Spermatozoa. Genes 2022, 13, 142. [Google Scholar] [CrossRef]
- Zhang, H.; Zha, X.; Zheng, Y.; Liu, X.; Elsabagh, M.; Wang, H.; Jiang, H.; Wang, M. Mechanisms Underlying the Role of Endoplasmic Reticulum Stress in the Placental Injury and Fetal Growth Restriction in an Ovine Gestation Model. J. Anim. Sci. Biotechnol. 2023, 14, 117. [Google Scholar] [CrossRef]
- Sabry, R.; Saleh, A.C.; Stalker, L.; LaMarre, J.; Favetta, L.A. Effects of Bisphenol A and Bisphenol S on microRNA Expression during Bovine (Bos taurus) Oocyte Maturation and Early Embryo Development. Reprod. Toxicol. 2021, 99, 96–108. [Google Scholar] [CrossRef]
- Sabry, R.; May, D.R.; Favetta, L.A. The Relationship between miR-21, DNA Methylation, and Bisphenol a in Bovine COCs and Granulosa Cells. Front. Cell Dev. Biol. 2023, 11, 1294541. [Google Scholar] [CrossRef]
- Davis, O.S.; Scandlan, O.L.M.; Potestio, E.A.; Robinson, C.; Hickey, K.D.; Ross, M.; Favetta, L.A. Impact of BPA and Its Analogs on Sperm Hyperactivity, Acrosome Reaction, Epigenetic Profiles and in Vitro Embryo Development. Mol. Cell. Endocrinol. 2025, 604, 112555. [Google Scholar] [CrossRef]
- Dehghan, Z.; Mohammadi-Yeganeh, S.; Salehi, M. MiRNA-155 Regulates Cumulus Cells Function, Oocyte Maturation, and Blastocyst Formation. Biol. Reprod. 2020, 103, 548–559. [Google Scholar] [CrossRef]
- Benedetti, C.; Pavani, K.C.; Gansemans, Y.; Azari-Dolatabad, N.; Pascottini, O.B.; Peelman, L.; Six, R.; Fan, Y.; Guan, X.; Deserranno, K.; et al. From Follicle to Blastocyst: microRNA-34c from Follicular Fluid-Derived Extracellular Vesicles Modulates Blastocyst Quality. J. Anim. Sci. Biotechnol. 2024, 15, 104. [Google Scholar] [CrossRef]
- Ikezuki, Y.; Tsutsumi, O.; Takai, Y.; Kamei, Y.; Taketani, Y. Determination of Bisphenol A Concentrations in Human Biological Fluids Reveals Significant Early Prenatal Exposure. Hum. Reprod. 2002, 17, 2839–2841. [Google Scholar] [CrossRef] [PubMed]
- Lukasiewicz, M.; Czerniecki, J.; Ponikwicka-Tyszko, D.; Sztachelska, M.; Hryniewicka, M.; Nalewajko-Sieliwoniuk, E.; Wiczkowski, W.; Banaszewska, B.; Milewski, R.; Toppari, J.; et al. Placenta Is Capable of Protecting the Male Fetus from Exposure to Environmental Bisphenol A. Expo. Health 2021, 13, 1–14. [Google Scholar] [CrossRef]
- Dinoiu, V. Fluorine Chemistry: Past, Present and Future. ChemInform 2007, 38, chin.200744226. [Google Scholar] [CrossRef]
- Ross, I.; McDonough, J.; Miles, J.; Storch, P.; Thelakkat Kochunarayanan, P.; Kalve, E.; Hurst, J.; Dasgupta, S.S.; Burdick, J. A Review of Emerging Technologies for Remediation of PFASs. Remediat. J. 2018, 28, 101–126. [Google Scholar] [CrossRef]
- Wee, S.Y.; Aris, A.Z. Revisiting the “Forever Chemicals”, PFOA and PFOS Exposure in Drinking Water. npj Clean Water 2023, 6, 57. [Google Scholar] [CrossRef]
- Maerten, A.; Callewaert, E.; Sanz-Serrano, J.; Devisscher, L.; Vinken, M. Effects of Per- and Polyfluoroalkyl Substances on the Liver: Human-Relevant Mechanisms of Toxicity. Sci. Total Environ. 2024, 954, 176717. [Google Scholar] [CrossRef]
- Pizzurro, D.M.; Seeley, M.; Kerper, L.E.; Beck, B.D. Interspecies Differences in Perfluoroalkyl Substances (PFAS) Toxicokinetics and Application to Health-Based Criteria. Regul. Toxicol. Pharmacol. 2019, 106, 239–250. [Google Scholar] [CrossRef]
- Hall, S.M.; Zhang, S.; Hoffman, K.; Miranda, M.L.; Stapleton, H.M. Concentrations of Per- and Polyfluoroalkyl Substances (PFAS) in Human Placental Tissues and Associations with Birth Outcomes. Chemosphere 2022, 295, 133873. [Google Scholar] [CrossRef]
- Zhao, L.; Teng, M.; Zhao, X.; Li, Y.; Sun, J.; Zhao, W.; Ruan, Y.; Leung, K.M.Y.; Wu, F. Insight into the Binding Model of Per- and Polyfluoroalkyl Substances to Proteins and Membranes. Environ. Int. 2023, 175, 107951. [Google Scholar] [CrossRef]
- Lockington, C.; Favetta, L.A. How Per- and Poly-Fluoroalkyl Substances Affect Gamete Viability and Fertilization Capability: Insights from the Literature. JoX 2024, 14, 651–678. [Google Scholar] [CrossRef] [PubMed]
- Henry, N.D.; Fair, P.A. Comparison of in Vitro Cytotoxicity, Estrogenicity and Anti-estrogenicity of Triclosan, Perfluorooctane Sulfonate and Perfluorooctanoic Acid. J. Appl. Toxicol. 2013, 33, 265–272. [Google Scholar] [CrossRef] [PubMed]
- Kabakci, R.; Clark, K.L.; Plewes, M.R.; Monaco, C.F.; Davis, J.S. Perfluorooctanoic Acid (PFOA) Inhibits Steroidogenesis and Mitochondrial Function in Bovine Granulosa Cells in Vitro. Environ. Pollut. 2023, 338, 122698. [Google Scholar] [CrossRef]
- Chaparro-Ortega, A.; Betancourt, M.; Rosas, P.; Vázquez-Cuevas, F.G.; Chavira, R.; Bonilla, E.; Casas, E.; Ducolomb, Y. Endocrine Disruptor Effect of Perfluorooctane Sulfonic Acid (PFOS) and Perfluorooctanoic Acid (PFOA) on Porcine Ovarian Cell Steroidogenesis. Toxicol. Vitr. 2018, 46, 86–93. [Google Scholar] [CrossRef] [PubMed]
- Guidance on PFAS Exposure, Testing, and Clinical Follow-Up; National Academies Press (US): Washington, DC, USA, 2022; PFAS Testing and Concentrations to Inform Clinical Care of Exposed Patients. Available online: https://www.ncbi.nlm.nih.gov/books/NBK584705/ (accessed on 28 August 2025).
- Regulation (EC) No 850/2004 of the European Parliament and of the Council of 29 April 2004 on Persistent Organic Pollutants and Amending Directive 79/117/EEC. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:52022DC0463#:~:text=Article%206(1)%20of%20Regulation%20(EC)%20No%20850/2004,is%20needed%20to%20help%20characterise%20a%20source (accessed on 28 August 2025).
- Magnusson, U. Environmental Endocrine Disruptors in Farm Animal Reproduction: Research and Reality. Reprod Domest. Anim. 2012, 47, 333–337. [Google Scholar] [CrossRef]
- Ménézo, Y.J.; Hérubel, F. Mouse and Bovine Models for Human IVF. Reprod. Biomed. Online 2002, 4, 170–175. [Google Scholar] [CrossRef]
- Ferris, J.; Mahboubi, K.; MacLusky, N.; King, W.A.; Favetta, L.A. BPA Exposure during in Vitro Oocyte Maturation Results in Dose-Dependent Alterations to Embryo Development Rates, Apoptosis Rate, Sex Ratio and Gene Expression. Reprod. Toxicol. 2016, 59, 128–138. [Google Scholar] [CrossRef]
- Lukacova, J.; Jambor, T.; Knazicka, Z.; Tvrda, E.; Kolesarova, A.; Lukac, N. Dose- and Time-Dependent Effects of Bisphenol A on Bovine Spermatozoa in Vitro. J. Environ. Sci. Health Part A 2015, 50, 669–676. [Google Scholar] [CrossRef]
- Choi, B.-I.; Harvey, A.J.; Green, M.P. Bisphenol A Affects Early Bovine Embryo Development and Metabolism That Is Negated by an Oestrogen Receptor Inhibitor. Sci. Rep. 2016, 6, 29318. [Google Scholar] [CrossRef]
- Song, W.; Puttabyatappa, M.; Zeng, L.; Vazquez, D.; Pennathur, S.; Padmanabhan, V. Developmental Programming: Prenatal Bisphenol A Treatment Disrupts Mediators of Placental Function in Sheep. Chemosphere 2020, 243, 125301. [Google Scholar] [CrossRef]
- Sang, C.; Song, Y.; Jin, T.; Zhang, S.; Fu, L.; Zhao, Y.; Zou, X.; Wang, Z.; Gao, H.; Liu, S. Bisphenol A Induces Ovarian Cancer Cell Proliferation and Metastasis through Estrogen Receptor-α Pathways. Environ. Sci. Pollut. Res. 2021, 28, 36060–36068. [Google Scholar] [CrossRef]
- Hallberg, I.; Persson, S.; Olovsson, M.; Sirard, M.-A.; Damdimopoulou, P.; Rüegg, J.; Sjunnesson, Y.C.B. Perfluorooctane Sulfonate (PFOS) Exposure of Bovine Oocytes Affects Early Embryonic Development at Human-Relevant Levels in an in Vitro Model. Toxicology 2021, 464, 153028. [Google Scholar] [CrossRef]
- Hallberg, I.; Persson, S.; Olovsson, M.; Moberg, M.; Ranefall, P.; Laskowski, D.; Damdimopoulou, P.; Sirard, M.-A.; Rüegg, J.; Sjunnesson, Y.C.B. Bovine Oocyte Exposure to Perfluorohexane Sulfonate (PFHxS) Induces Phenotypic, Transcriptomic, and DNA Methylation Changes in Resulting Embryos in Vitro. Reprod. Toxicol. 2022, 109, 19–30. [Google Scholar] [CrossRef] [PubMed]
- Hallberg, I.; Kjellgren, J.; Persson, S.; Örn, S.; Sjunnesson, Y. Perfluorononanoic Acid (PFNA) Alters Lipid Accumulation in Bovine Blastocysts after Oocyte Exposure during in Vitro Maturation. Reprod. Toxicol. 2019, 84, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Sabry, R.; Apps, C.; Reiter-Saunders, J.A.; Saleh, A.C.; Balachandran, S.; St. John, E.J.; Favetta, L.A. BPA and BPS Affect Connexin 37 in Bovine Cumulus Cells. Genes 2021, 12, 321. [Google Scholar] [CrossRef] [PubMed]
- Souter, I.; Smith, K.W.; Dimitriadis, I.; Ehrlich, S.; Williams, P.L.; Calafat, A.M.; Hauser, R. The Association of Bisphenol-A Urinary Concentrations with Antral Follicle Counts and Other Measures of Ovarian Reserve in Women Undergoing Infertility Treatments. Reprod. Toxicol. 2013, 42, 224–231. [Google Scholar] [CrossRef]
- Peretz, J.; Flaws, J.A. Bisphenol A Down-Regulates Rate-Limiting Cyp11a1 to Acutely Inhibit Steroidogenesis in Cultured Mouse Antral Follicles. Toxicol. Appl. Pharmacol. 2013, 271, 249–256. [Google Scholar] [CrossRef]
- Pérez-Bermejo, M.; Mas-Pérez, I.; Murillo-Llorente, M.T. The Role of the Bisphenol A in Diabetes and Obesity. Biomedicines 2021, 9, 666. [Google Scholar] [CrossRef]
- Colby, H.D. Regulation of hepatic and steroid metabolism by androgens and estrogens. In Advances in Sex Hormone Research; Thomas, J., Singhal, R.L., Eds.; Urban and Schwarzenberg: Baltimore, MD, USA, 1980; pp. 27–71. [Google Scholar]
- Téteau, O.; Liere, P.; Pianos, A.; Desmarchais, A.; Lasserre, O.; Papillier, P.; Vignault, C.; Lebachelier De La Riviere, M.-E.; Maillard, V.; Binet, A.; et al. Bisphenol S Alters the Steroidome in the Preovulatory Follicle, Oviduct Fluid and Plasma in Ewes with Contrasted Metabolic Status. Front. Endocrinol. 2022, 13, 892213. [Google Scholar] [CrossRef]
- Sudano, M.J.; Paschoal, D.M.; Da Silva Rascado, T.; Magalhães, L.C.O.; Crocomo, L.F.; De Lima-Neto, J.F.; Da Cruz Landim-Alvarenga, F. Lipid Content and Apoptosis of in Vitro-Produced Bovine Embryos as Determinants of Susceptibility to Vitrification. Theriogenology 2011, 75, 1211–1220. [Google Scholar] [CrossRef]
- Messerschmidt, D.; De Vries, W.N.; Lorthongpanich, C.; Balu, S.; Solter, D.; Knowles, B.B. β-Catenin-Mediated Adhesion Is Required for Successful Preimplantation Mouse Embryo Development. Development 2016, 143, 1993–1999. [Google Scholar] [CrossRef]
- Nishikimi, A.; Mukai, J.; Yamada, M. Nuclear Translocation of Nuclear Factor Kappa B in Early 1-Cell Mouse Embryos1. Biol. Reprod. 1999, 60, 1536–1541. [Google Scholar] [CrossRef] [PubMed]
- Zhou, R.; Cheng, W.; Feng, Y.; Wang, W.; Liang, F.; Luo, F.; Yang, S.; Wang, Y. Combined Effects of BPA and PFOS on Fetal Cardiac Development: In Vitro and in Vivo Experiments. Environ. Toxicol. Pharmacol. 2020, 80, 103434. [Google Scholar] [CrossRef] [PubMed]
- Di Credico, A.; Gaggi, G.; Bucci, I.; Ghinassi, B.; Di Baldassarre, A. The Effects of Combined Exposure to Bisphenols and Perfluoroalkyls on Human Perinatal Stem Cells and the Potential Implications for Health Outcomes. Int. J. Mol. Sci. 2023, 24, 15018. [Google Scholar] [CrossRef] [PubMed]
- Di Marco Pisciottano, I.; Guadagnuolo, G.; Busico, F.; Alessandroni, L.; Neri, B.; Vecchio, D.; Di Vuolo, G.; Cappelli, G.; Martucciello, A.; Gallo, P. Determination of 20 Endocrine-Disrupting Compounds in the Buffalo Milk Production Chain and Commercial Bovine Milk by UHPLC-MS/MS and HPLC-FLD. Animals 2022, 12, 410. [Google Scholar] [CrossRef]
- Kowalczyk, J.; Ehlers, S.; Fürst, P.; Schafft, H.; Lahrssen-Wiederholt, M. Transfer of Perfluorooctanoic Acid (PFOA) and Perfluorooctane Sulfonate (PFOS) From Contaminated Feed Into Milk and Meat of Sheep: Pilot Study. Arch. Environ. Contam. Toxicol. 2012, 63, 288–298. [Google Scholar] [CrossRef]
- Molina-García, L.; Fernández-de Córdova, M.L.; Ruiz-Medina, A. Analysis of Bisphenol A in Milk by Using a Multicommuted Fluorimetric Sensor. Talanta 2012, 96, 195–201. [Google Scholar] [CrossRef]
- Wang, H.; Tang, Z.; Liu, Z.; Zeng, F.; Zhang, J.; Dang, Z. Ten Bisphenol Analogs Were Abundantly Found in Swine and Bovine Urines Collected from Two Chinese Farms: Concentration Profiles and Risk Evaluation. Environ. Sci. Pollut. Res. 2022, 30, 13407–13417. [Google Scholar] [CrossRef]
- Gonkowski, S.; Tzatzarakis, M.; Kadyralieva, N.; Vakonaki, E.; Lamprakis, T.; Sen, I.; Tulobaev, A.; Istanbullugil, F.R.; Zhunushova, A.; Rytel, L. Assessment of Bisphenol A (BPA) Exposure in Dairy Cows Using Hair Samples Analysis. Animals 2025, 15, 939. [Google Scholar] [CrossRef]
- Olsen, G.W.; Zobel, L.R. Assessment of Lipid, Hepatic, and Thyroid Parameters with Serum Perfluorooctanoate (PFOA) Concentrations in Fluorochemical Production Workers. Int. Arch. Occup. Environ. Health 2007, 81, 231–246. [Google Scholar] [CrossRef]
- Bujalance-Reyes, F.; Molina-López, A.M.; Ayala-Soldado, N.; Lora-Benitez, A.; Mora-Medina, R.; Moyano-Salvago, R. Analysis of Indirect Biomarkers of Effect after Exposure to Low Doses of Bisphenol A in a Study of Successive Generations of Mice. Animals 2022, 12, 300. [Google Scholar] [CrossRef] [PubMed]
- Lupton, S.J.; Smith, D.J.; Scholljegerdes, E.; Ivey, S.; Young, W.; Genualdi, S.; DeJager, L.; Snyder, A.; Esteban, E.; Johnston, J.J. Plasma and Skin Per- and Polyfluoroalkyl Substance (PFAS) Levels in Dairy Cattle with Lifetime Exposures to PFAS-Contaminated Drinking Water and Feed. J. Agric. Food Chem. 2022, 70, 15945–15954. [Google Scholar] [CrossRef] [PubMed]
- Rock, K.D.; Polera, M.E.; Guillette, T.C.; Starnes, H.M.; Dean, K.; Watters, M.; Stevens-Stewart, D.; Belcher, S.M. Domestic Dogs and Horses as Sentinels of Per- and Polyfluoroalkyl Substance Exposure and Associated Health Biomarkers in Gray’s Creek North Carolina. Environ. Sci. Technol. 2023, 57, 9567–9579. [Google Scholar] [CrossRef]
- Agency for Toxic Substances and Disease Registry (US). Toxicological Profile for Perfluoroalkyls; Agency for Toxic Substances and Disease Registry (US): Atlanta, GA, USA, 2021. Available online: https://www.ncbi.nlm.nih.gov/books/NBK592137/ (accessed on 28 August 2025).
- Ma, X.; Cai, D.; Chen, Q.; Zhu, Z.; Zhang, S.; Wang, Z.; Hu, Z.; Shen, H.; Meng, Z. Hunting Metabolic Biomarkers for Exposure to Per- and Polyfluoroalkyl Substances: A Review. Metabolites 2024, 14, 392. [Google Scholar] [CrossRef]
- Takeda, K.; Saito, T.; Sasaki, S.; Eguchi, A.; Sugiyama, M.; Eto, S.; Suzuki, K.; Kamata, R. Toxicity Assessment of Mixed Exposure of Nine Perfluoroalkyl Substances at Concentrations Relevant to Daily Intake. Toxics 2024, 12, 52. [Google Scholar] [CrossRef] [PubMed]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; The PRISMA Group. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef]
Cell Type | Dose | Effects | References |
---|---|---|---|
Bovine oocytes | 0.03 mg/mL BPA | Skewed sex ratio (34 male: 66 female) ↑ apoptosis and DNA damage in blastocysts | [83] |
0.03 mg/mL BPA | ↓ % oocytes in MII ↑ in spindle abnormalities | [39,40] | |
Bovine oocytes | 0.05 mg/mL BPA | ↓ AMH production ↑ AMHRII expression | [58] |
0.05 mg/mL BPA and BPS | ↓ activity of enzymatic antioxidants ↓ of oocytes reaching MII ↓ fertilizing capacity ↓ cleavage and blastocyst rates | [59] | |
COCs and embryos | 0.05 mg/mL BPA | ↑ expression miR-155 and miR-29; ↓ expression miR-34c and miR-10b | [61,62,63] |
Ovine oocytes | 0.05 mg/mL BPS | ↓ % oocytes in MII and blastocyst rates no effect on viability | [41] |
Bovine spermatozoa (fresh) | 0.05 mg/mL BPA | ↓ motility, viability and mitochondrial potential inhibited capacitation, ↑ ROS | [34,59,63,84] |
Bovine spermatozoa (cryopreserved) | 0.05 mg/mL BPA and BPF | Inhibited capacitation ↓ viability, ↑ apoptosis and necrosis | [34,59,63] |
Bovine embryos | 0.01 mg/mL BPA | ↓ blastocyst development and embryo quality ↑ lipid accumulation | [85] |
Bovine granulosa cells | 0.05 mg/mL BPA and BPF | ↓ viability, ↑ apoptosis ↑ ROS altered antioxidant genes expression | [49,51] |
Ovine granulosa cells | 10–50 μM BPA and BPS | ↓ progesterone (BPA and BPS) ↓ estradiol (PBS) disruption of gene expression | [53] |
Species | Dose | Effects | Reference |
---|---|---|---|
Sheep | 0.5 mg/kg/day BPA subcutaneous injection GD 30–GD 90 | ↓ fetal weight, placental efficiency ↑ ROS altered hormone receptor expression | [86] |
5 mg/kg/day BPA subcutaneous injection GD 40–GD 130 | ↓ fetal weight, placental efficiency, progesterone levels ↑ ROS; mitochondrial dysfunction | [60] | |
Sheep | 50 μg/kg/day BPS oral chronic (3 months) | ↑ estradiol in preovulatory follicular fluid ↓ hormone concentration in metabolically restricted ewes | [87] |
Cell Type | Compound | Dose | Effects | Reference |
---|---|---|---|---|
Oocytes | PFOS | 53 ng/mL (106 nM) | Delayed cleavage to the two-cell stage at 44 h post-fertilization ↓ number of blastomeres and altered lipid distribution ↓ developmental potential and cryotolerance | [88] |
PFHxS | 0.01–0.1 mg/mL | ↓ cleavage rates and disruption of early embryonic development (≥0.04 mg/mL) ↑ total lipid volume and lipid volume per cell ↑ ROS production, and inhibition of estrogen-activated pathways | [89] | |
Granulosa cells | PFNA | 0.01 mg/mL | Disrupted lipid metabolism in developed embryos (even at concentrations not affecting overall development) | [90] |
PFOA | 40 μM | ↓ mRNA and protein levels of key steroidogenic enzymes (CYP11A1, HSD3B, CYP19A1) ↓ progesterone and estradiol ↑ ROS, apoptosis, autophagy | [90] |
Matrix | BPA | PFOA | PFOS | PFHxS |
---|---|---|---|---|
Blood serum/Plasma | 0.7–28 nM | ~0.12–0.58 nM | ~0.12–0.58 nM | 0.025–1.625 nM |
Milk (Group 1) | 11.3 nM | 4.65 nM | 0.032 nM | |
Milk (Group 2) | 34.0 nM | 4.37 nM | 0.013 nM | |
Muscle (Group 1) | 1.67 ± 0.68 nM | 289.9 ± 72.0 nM | 47.7 ± 17.7 nM | |
Muscle (Group 2) | ~0.08 ± 0.14 nM | 356.0 ± 96.0 nM | 12.2 ± 6.7 nM |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sapanidou, V.G.; Lavrentiadou, S.N.; Tsantarliotou, M.P. Reproductive Effects of Endocrine Disruptors in Domestic Ruminants: Integrating In Vitro and In Vivo Evidence. Animals 2025, 15, 2712. https://doi.org/10.3390/ani15182712
Sapanidou VG, Lavrentiadou SN, Tsantarliotou MP. Reproductive Effects of Endocrine Disruptors in Domestic Ruminants: Integrating In Vitro and In Vivo Evidence. Animals. 2025; 15(18):2712. https://doi.org/10.3390/ani15182712
Chicago/Turabian StyleSapanidou, Vasiliki G., Sophia N. Lavrentiadou, and Maria P. Tsantarliotou. 2025. "Reproductive Effects of Endocrine Disruptors in Domestic Ruminants: Integrating In Vitro and In Vivo Evidence" Animals 15, no. 18: 2712. https://doi.org/10.3390/ani15182712
APA StyleSapanidou, V. G., Lavrentiadou, S. N., & Tsantarliotou, M. P. (2025). Reproductive Effects of Endocrine Disruptors in Domestic Ruminants: Integrating In Vitro and In Vivo Evidence. Animals, 15(18), 2712. https://doi.org/10.3390/ani15182712