From Fragmentation to Recovery: Hydropower Impacts on River Connectivity and Fish Diversity Conservation in China’s Dongjiang River
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Methods
2.2.1. Cascade Hydropower Stations Surveys
2.2.2. River Longitudinal Connectivity Assessment
2.2.3. Fish Population Evolution
Field Fish Surveys
Historical Literature Analysis
3. Results
3.1. The Impact of Dam Passability p on DCI Values in Different Periods
3.2. Effects of Changes in the Number of Dams on DCI Values
3.3. Effects of Dam Passability at Different Locations on DCI Values
3.4. Composition and Ecological Traits of the Fish Community
4. Discussion
4.1. Threshold Mechanisms in Connectivity Restoration
4.2. Spatial Heterogeneity Dictates Restoration Efficacy
4.3. Adaptive Responses of Community Structure to Connectivity Degradation
4.4. Ecological Framework of Nature-Guided Restoration Strategy
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Panagiotou, A.; Zogaris, S.; Dimitriou, E.; Mentzafou, A.; Tsihrintzis, V. Anthropogenic barriers to longitudinal river connectivity in Greece: A review. Ecohydrol. Hydrobiol. 2022, 22, 295–309. [Google Scholar] [CrossRef]
- Tehrani, N.A.; Jafary, P.; Sarab, A.A. Ecosystem health assessment using a fuzzy spatial decision support system in Taleghan watershed before and after dam construction. Environ. Process. 2018, 5, 807–831. [Google Scholar] [CrossRef]
- Wolter, C.; Borcherding, J.; Ferreira, T. Characterization of European lampreys and fishes by their longitudinal and lateral distribution traits. Ecol. Indic. 2021, 123, 107350. [Google Scholar] [CrossRef]
- Reid, A.J.; Carlson, A.K.; Creed, I.F.; Eliason, E.J.; Gell, P.A.; Johnson, P.T.J.; Kidd, K.A.; MacCormack, T.J.; Olden, J.D.; Ormerod, S.J.; et al. Emerging threats and persistent conservation challenges for freshwater biodiversity. Biol. Rev. 2019, 94, 849–873. [Google Scholar] [CrossRef]
- Dudgeon, D. Multiple threats imperil freshwater biodiversity in the Anthropocene. Curr. Biol. 2019, 29, R960–R967. [Google Scholar] [CrossRef] [PubMed]
- Xia, J.; Chen, Y.; Zhou, Z.; Zhang, Q.; Peng, S.; Wang, J.; Yu, G.T. Review of mechanism and quantifying methods of river system connectivity. Adv. Water Sci. 2017, 28, 780–787. [Google Scholar] [CrossRef]
- Kondolf, G.M.; Boulton, A.J.; O’Daniel, S.; Poole, G.C.; Rahel, F.J.; Stanley, E.H.; Wohl, E.; Bang, A.; Carlstrom, J.; Huber, C.C.H.; et al. Process-based ecological river restoration: Visualizing three-dimensional connectivity and dynamic vectors to recover lost linkages. Ecol. Soc. 2006, 11, 1–16. [Google Scholar] [CrossRef]
- Nadeau, T.-L.; Rains, M.C. Hydrological connectivity between headwater streams and downstream waters: How science can inform policy. J. Am. Water Resour. Assoc. 2007, 43, 118–133. [Google Scholar] [CrossRef]
- Pringle, C. What is hydrologic connectivity and why is it ecologically important? Hydrol. Process. 2003, 17, 2685–2689. [Google Scholar] [CrossRef]
- Cui, G.; Zuo, Q.; Li, Z.; Dou, M. Analysis of function and adaptability for interconnected river system network. Water Resour. Power 2012, 30, 1–5. [Google Scholar]
- Gosset, C.; Rives, J.; Labonne, J. Effect of habitat fragmentation on spawning migration of brown trout Salmo trutta L. Ecol. Freshw. Fish 2006, 15, 247–254. [Google Scholar] [CrossRef]
- Nilsson, C.; Reidy, C.A.; Dynesius, M.; Revenga, C. Fragmentation and flow regulation of the world’s large river systems. Science 2005, 308, 405–408. [Google Scholar] [CrossRef]
- Sun, P.; Wang, L.; Wang, J.; Wang, C. A study of the effect of sluices and dams on river habitat connectivity. China Rural Water Hydropower 2016, 2, 53–56. [Google Scholar] [CrossRef]
- Li, R.; Chen, Q.; Duan, C. Ecological hydrograph based on Schizothorax chongi habitat conservation in the dewatered river channel between Jinping cascaded dams. Sci. China Technol. Sci. 2011, 54, 54–63. [Google Scholar] [CrossRef]
- Zheng, P.; Jiang, X.; Cao, L.; Wang, J.; Jiang, Z. Long-term changes in the functional trait composition and diversity of fish assemblages in eastern plain lakes under the regime of river-lake connectivity loss. J. Lake Sci. 2022, 34, 151–161. [Google Scholar] [CrossRef]
- Xie, P. Biodiversity crisis in the Yangtze River: The culprit was dams, followed by overfishing. J. Lake Sci. 2017, 29, 1279–1299. [Google Scholar] [CrossRef]
- Jager, H.I.; Chandler, J.A.; Lepla, K.B.; Winkle, W.V. A theoretical study of river fragmentation by dams and its effects on white sturgeon populations. Environ. Biol. Fishes 2001, 60, 347–361. [Google Scholar] [CrossRef]
- Wang, Q.; Pang, X.; Li, X.; Wang, Z.; Yuan, X.; Zhang, Y. Assessment method for the influence of hydroelectric dams on the physical habitat quality and longitudinal connectivity of rivers: A case study of the Wubu and Zaodu rivers. Acta Ecol. Sin. 2019, 39, 5508–5516. [Google Scholar] [CrossRef]
- Lv, J.; Wang, X.; Liu, W.; Wang, Y.; Wei, C.; Wu, J. Longitudinal connectivity and fish habitat of main tributaries in Songhuajiang River Basin. Water Resour. Prot. 2017, 33, 155–160. [Google Scholar] [CrossRef]
- Oldford, G.; Cote, D.; Kehler, D.G.; Riefesel, G.R.; Wierama, Y.F. FIPEX v10.4: An ArcGIS Desktop Add-in for assessing impacts of fish passage barriers and longitudinal connectivity of rivers. SoftwareX 2023, 23, 101469. [Google Scholar] [CrossRef]
- Dudgeon, D.; Arthington, A.H.; Gessner, M.O.; Kawabata, Z.; Knowler, D.J.; Leveque, C.; Naiman, R.J.; Richard, A.H.P.; Soto, D.; Stiassny, L.M.J.; et al. Freshwater biodiversity: Importance, threats, status and conservation challenges. Biol. Rev. 2006, 81, 163–182. [Google Scholar] [CrossRef]
- He, F.; Zarfl, C.; Tockner, K.; Olden, J.D.; Campos, Z.; Muniz, F.; Svenning, J.C.; Jähnig, S.C. Hydropower impacts on riverine biodiversity. Nat. Rev. Earth Environ. 2024, 5, 755–772. [Google Scholar] [CrossRef]
- Cheng, R.; Zhou, X.; Zhang, Y.; Cheng, R.; Zhou, X.; Zhang, Y.; Li, Q.; Zhang, J.; Luo, Y.; Chen, Q. eDNA reveals spatial homogenization of fish diversity in a mountain river affected by a reservoir cascade. J. Environ. Manag. 2024, 361, 121248. [Google Scholar] [CrossRef]
- Mu, Y. The Impact of Cascade Hydropower Development on River Depletion and Dewatering—A Case Study of the Upper Minjiang River. Master’s Thesis, University of Chinese Academy of Sciences, Beijing, China, 2015. [Google Scholar]
- Chen, A.; Wu, M.; Chen, K.Q.; Sun, Z.Y.; Shen, C.; Wang, P.Y. Main issues in environmental protection research and practice of water conservancy and hydropower projects in China. Water Sci. Eng. 2017, 10, 312–323. [Google Scholar] [CrossRef]
- Barbarossa, V.; Schmitt, R.J.P.; Huijbregts, M.A.J.; Zarfl, C.; Schipper, A.M. Impacts of current and future large dams on the geographic range connectivity of freshwater fish worldwide. Proc. Natl. Acad. Sci. USA 2020, 117, 201912776. [Google Scholar] [CrossRef] [PubMed]
- Grill, G.; Dallaire, C.O.; Chouinard, E.F.; Sindorf, N.; Lehner, B. Development of new indicators to evaluate river fragmentation and flow regulation at large scales: A case study for the Mekong River Basin. Ecol. Indic. 2014, 45, 148–159. [Google Scholar] [CrossRef]
- Shaad, K.; Souter, N.J.; Farrell, T.; Vollmer, D.; Regan, H.M. Evaluating the sensitivity of dendritic connectivity to fish pass efficiency for the Sesan, Srepok and Sekong tributaries of the Lower Mekong. Ecol. Indic. 2018, 91, 570–574. [Google Scholar] [CrossRef]
- Zeng, X.H. Analysis and evaluation of water environment effect of Dongjiang river Basin regulation in dry season. Pop. Sci. Technol. 2021, 23, 20–23. [Google Scholar] [CrossRef]
- Dong, M.Y.; Jiang, Y.; Li, Y.P.; Ren, F.P. Analysis of precipitation change trend in Dongjiang river Basin over the past 46 years. Hydrology 2010, 5, 6. [Google Scholar] [CrossRef]
- Jiang, X.; Jiang, Z.Y.; Li, Z.Y.; Su, J.; Tang, L.N.; Wu, M.D.; Wang, Y.J. A framework for the construction of effective landscape ecological network with integrating hydrological connectivity: A case study in Dongjiang River Basin, China. J. Environ. Manage. 2025, 376, 124509. [Google Scholar] [CrossRef]
- Shi, J.Z.; Wu, W.J.; Feng, Z.Z. Study of cascade hydropower stations regulation on Dongjiang river based on water quality control model. Guangdong Water Resour. Hydropower 2015, 2, 37–40, 60. [Google Scholar]
- Liu, J.F. Analysis of water regulation effect of Dongjiang river Basin in Guangdong Province. Guangdong Water Resour. Hydropower 2018, 8, 1–4. [Google Scholar]
- Gao, Y.Q.; Xiao, X.; Ding, M.M.; Tang, Y.Q.; Chen, H.Y. Evaluation of plain river network hydrologic connectivity based on improved graph theory. Water Resour. Prot. 2018, 34, 6. [Google Scholar] [CrossRef]
- Li, X.H.; Wang, Y.Y.; Cui, X.H.; Jia, G.D.; Yu, X.X. Spatiotemporal variations of hydrological connectivity and their driving factors in the Luan River Basin. Res. Soil Water Conserv. 2025, 32, 28–35, 54. [Google Scholar]
- Zhang, R. Connectivity Planning Research of Dujiangyan River System. Master’s Thesis, Chongqing University, Chongqing, China, 2020. [Google Scholar]
- Lu, J.; Wang, X.G.; Wang, Y.M.; Wei, C.F.; Liu, H.C.; Zhang, Z. Lateral Connectivity Analysis of River Wetlands in the Songhua River Basin. South North Water Transf. Water Sci. Technol. 2017, 15, 5. [Google Scholar]
- Ahmad, H.; Miranda, L.E.; Dunn, C.G.; Boudreau, M.R.; Colvin, M.E.; Dash, P. Confluence of Time and Space: An Innovation for Quantifying Dynamics of Hydrologic Floodplain Connectivity with Remote Sensing and GIS. River Res. Appl. 2025, 41, 5. [Google Scholar] [CrossRef]
- Ministry of Water Resources of the People’s Republic of China. SL167-96 Specifications for the Investigation of Fishery Resources in Reservoirs; China Water & Power Press: Beijing, China, 1996. [Google Scholar]
- Compilation Group of the Guide to River Aquatic Biological Surveys. Guide to River Aquatic Biological Surveys; Science Press: Beijing, China, 2014. [Google Scholar]
- Chen, Y.Y. Fauna Sinica, Osteichthyes: Cypriniformes (Middle Volume); Science Press: Beijing, China, 1998. [Google Scholar]
- Le, P.Q. Fauna Sinica, Osteichthyes: Cypriniformes (Lower Volume); Science Press: Beijing, China, 2000. [Google Scholar]
- Editorial Committee of Fauna Sinica. Fauna Sinica, Osteichthyes: Siluriformes; Science Press: Beijing, China, 2018. [Google Scholar]
- Guangdong Provincial Fisheries School. Freshwater Fishes of Guangdong; Guangdong Science and Technology Press: Guangzhou, China, 1989. [Google Scholar]
- Pearl River Fisheries Research Institute. Fishes of the Pearl River; Science Press: Beijing, China, 1989. [Google Scholar]
- Li, X.S.; Yu, Z.H.; Sun, S.; Jin, X.S. Niche Breadth and Overlap of Dominant Fish Species in the Yangtze Estuary and Adjacent Waters. Chin. J. Appl. Ecol. 2013, 24, 7. [Google Scholar] [CrossRef]
- Ye, F.L.; Yang, P.; Song, B.L. The Fish Fauna of the Dongjiang River. J. Zhanjiang Fish. Coll. 1991, 11, 1–7. [Google Scholar]
- Gao, W.F. Fish Resources and Conservation Strategies in Dongjiang (Huizhou Section). Fish. Sci. Technol. 2010, 196, 37–39. [Google Scholar]
- Li, G.F.; Zhao, J.; Zhu, X.P.; Zhang, J.D.; Zhao, H.H.; Liu, L.; Chen, G.; Chen, K.C.; Chen, Y.L.; Chu, Q.Z. Investigation and Research on Freshwater Fish Resources of Guangdong; Science Press: Beijing, China, 2013. [Google Scholar]
- Li, B.W.; Lan, Z.J.; Li, Q.; Huang, Y.Q.; Mo, J.H.; Wang, X.B.; Li, C.Z.; Li, M. Investigation of Fish Resources in Freshwater and Estuary of Dongguan City. South China Fish. Sci. 2011, 7, 22–28. [Google Scholar] [CrossRef]
- Liu, Y.; Lin, X.T.; Sun, J.; Zhang, P.F.; Chen, G.Z. Fish Community Changes in Huizhou Segment of Dongjiang River. Chin. J. Zool. 2011, 46, 1–11. [Google Scholar] [CrossRef]
- Liu, Y. Fish Community Changes and the Evaluating the Biotic Integrity in Dongjiang River Mainstream. Master’s Thesis, Jinan University, Guangzhou, China, 2011. [Google Scholar]
- Deng, F.Y.; Zhang, C.G.; Zhao, Y.H.; Zhou, Q.H.; Zhang, J. Diversity and Community Structure of the Fishes in the Headstream Region of the Dongjiang River. Chin. J. Zool. 2013, 48, 161–173. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, S.; Cui, Y.D. Research on Water Environment and Ecology in Dongjiang River; Science Press: Beijing, China, 2020. [Google Scholar]
- Yang, Z.P.; Lu, Q.Q. Exotic Fish Potential Hazards in Dongguan Reaches of Dongjiang River and Its Coping Strategies. J. Green Sci. Technol. 2016, 10, 149–151. [Google Scholar] [CrossRef]
- Wang, S. Structure of Fish Food Webs and Energy Flow of Ecosystems in the East River. Ph.D. Thesis, Jinan University, Guangzhou, China, 2016. [Google Scholar]
- Ding, Y.X. General Situation and Change Rule of Main Economic Fish Resources in Dongjiang River Basin. Master’s Thesis, South China Agricultural University, Guangzhou, China, 2018. [Google Scholar]
- Yang, T.; Chen, Y.Q.; Chen, X.; Yang, H.W.; Chen, X.H.; Jiang, T. Hydrological Variation Caused by Damming in the Middle and Upper Reaches of the Dongjiang River in South China under Complex Environment. J. Lake Sci. 2009, 21, 8. [Google Scholar] [CrossRef]
- Geist, D.R.; Brown, R.S.; Cullinan, V.; Brink, S.R.; Lepla, K.; Bates, P.; Chandler, J.A. Movement, Swimming Speed, and Oxygen Consumption of Juvenile White Sturgeon in Response to Changing Flow, Water Temperature, and Light Level in the Snake River, Idaho. Trans. Am. Fish. Soc. 2005, 134, 803–816. [Google Scholar] [CrossRef]
- Tan, X.C.; Guo, X.G. Retrospective Analysis of the Causes of the Endangerment of Tenualosa reevesii in the Pearl River System. In Proceedings of the 2014 Annual Academic Conference of the Fisheries Resources and Environment Branch of the Chinese Fisheries Society, Yichang, China, 24 December 2014. [Google Scholar]
- Zhang, B. Analysis of Discharge Integration at Dongjiang Hydrological Station. Water Power Econ. 2017, 12, 2. [Google Scholar]
- Liao, G.Z. Breeding Protection of Megalobrama hoffmanni in the Pearl River. Guangdong Sci. Technol. 1997, 6, 2. [Google Scholar]
- Jalkanen, J.; Toivonen, T.; Moilanen, A. Identification of Ecological Networks for Land—Use Planning with Spatial Conservation Prioritization. Landsc. Ecol. 2019, 35, 353–371. [Google Scholar] [CrossRef]
- Santos, A.B.I.; Albieri, R.J.; Araujo, F.G. Influences of Dams with Different Levels of River Connectivity on the Fish Community Structure along a Tropical River in Southeastern Brazil. J. Appl. Ichthyol. 2013, 29, 163–171. [Google Scholar] [CrossRef]
- Yujun, Y.; Yanning, G.; Shanghong, Z. The Impact of Dams on the River Connectivity of the Two Largest River Basins in China. Rivers Res. Appl. 2022, 38, 185–193. [Google Scholar] [CrossRef]
- Pryke, J.S.; Samways, M.J. Ecological Networks Act as Extensions of Protected Areas for Arthropod Biodiversity Conservation. J. Appl. Ecol. 2012, 49, 591–600. [Google Scholar] [CrossRef]
- Wang, G.X.; Liu, G.M.; Chang, J. Review of Ecological Hydrology Research at Basin Scale. Acta Ecol. Sin. 2005, 25, 12. [Google Scholar] [CrossRef]
- Priyadarshana, T.; Asaeda, T. Swimming Restricted Foraging Behavior of Two Zooplanktivorous Fishes Pseudorasbora parva and Rasbora daniconius (Cyprinidae) in a Simulated Structured Environment. Environ. Biol. Fishes 2007, 80, 473–486. [Google Scholar] [CrossRef]
- Ferreira, L.V.; Cunha, D.A.; Chaves, P.P.; Matos, D.C.L.; Parolin, P. Impacts of Hydroelectric Dams on Alluvial Riparian Plant Communities in Eastern Brazilian Amazonian. An Acad. Bras. Cienc. 2013, 85, 1013–1023. [Google Scholar] [CrossRef] [PubMed]
- Schiemer, F.; Keckeis, H.; Winkler, G.; Flore, L. Large Rivers: The Relevance of Ecotonal Structure and Hydrological Properties for the Fish Fauna. Large Rivers 2001, 12, 487–508. [Google Scholar] [CrossRef]
- Agócsová, A.; Hgyeová, M.; Chodasová, Z.; Ondrejika, O.; Jamen, U. River Restoration as a Method Towards Harmonization of Natural Habitats in the Context of Ecological Corridors Preservation: A Case Study on the Hron River. In IOP Conference Series: Materials Science and Engineering; IOP Publishing Ltd: Bristol, UK, 2020; Volume 960, p. 022058. [Google Scholar] [CrossRef]
- Mattocks, S.; Hall, C.; Jordaan, A. Damming, Lost Connectivity, and the Historical Role of Anadromous Fish in Freshwater Ecosystem Dynamics. BioScience 2017, 67, 713–728. [Google Scholar] [CrossRef]
- Rodeles, A.A.; Galicia, D.; Miranda, R. A New Method to Include Fish Biodiversity in River Connectivity Indices with Applications in Dam Impact Assessments. Ecol. Indic. 2020, 117 Pt 1, 106605. [Google Scholar] [CrossRef]
- Magilligan, F. River Restoration by Dam Removal: Assessing Riverine Re—Connectivity Across New England; University of California Press: Oakland, CA, USA, 2014. [Google Scholar]
- Humston, R.; Bernard, T.; Thomas, M.; Casto, E.; Barnard, A.; Hallacher, J. Documenting Changes in Fish Passage and Ecological Connectivity Following Low-Head Dam Removal: Challenges and Opportunities in a Mid-size River. Authorea 2025, 2, 005–006. [Google Scholar] [CrossRef]
- Liu, H.Z. Discussion on Several Issues Regarding the Conservation of the Chinese Sturgeon (Acipenser sinensis). Acta Hydrobiol. Sin. 2024, 48, 1603–1609. [Google Scholar] [CrossRef]
- Raabe, J.K.; Hightower, J.E. Assessing Distribution of Migratory Fishes and Connectivity following Complete and Partial Dam Removals in a North Carolina River. N. Am. J. Fish. Manag. 2014, 34, 955–969. [Google Scholar] [CrossRef]
Cascade Dam | DCI | △DCI | |
---|---|---|---|
Before the Improvement of Passability p | After the Improvement of Passability p | ||
Fengshuba (Reservoir) | 26.75 | 27.49 | 0.74 |
Longtan (1st Cascade) | 26.75 | 27.45 | 0.7 |
Rengkeng (2nd Cascade) | 26.75 | 27.43 | 0.68 |
Luoyingkou (3rd Cascade) | 26.75 | 27.35 | 0.6 |
Suleiba (4th Cascade) | 26.75 | 27.34 | 0.58 |
Zhutouzhai (5th Cascade) | 26.75 | 27.38 | 0.63 |
Liucheng (6th Cascade) | 26.75 | 27.54 | 0.79 |
Lan Kou (7th Cascade) | 26.75 | 27.67 | 0.92 |
Yuhe (8th Cascade) | 26.75 | 28.44 | 1.69 |
Mu Jing (9th Cascade) | 26.75 | 28.91 | 2.15 |
Fengguang (10th Cascade) | 26.75 | 29.59 | 2.84 |
Li Kou (11th Cascade) | 26.75 | 29.54 | 2.79 |
Xiaji Jiao (12th Cascade) | 26.75 | 29.59 | 2.84 |
Jian Tan (13th Cascade) | 26.75 | 29.8 | 3.05 |
Shi Long (14th Cascade) | 26.75 | 28.72 | 1.97 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Li, Y.; Wang, L.; Cao, K.; Zhu, S.; Luo, J.; Li, J.; Su, X. From Fragmentation to Recovery: Hydropower Impacts on River Connectivity and Fish Diversity Conservation in China’s Dongjiang River. Animals 2025, 15, 2708. https://doi.org/10.3390/ani15182708
Li H, Li Y, Wang L, Cao K, Zhu S, Luo J, Li J, Su X. From Fragmentation to Recovery: Hydropower Impacts on River Connectivity and Fish Diversity Conservation in China’s Dongjiang River. Animals. 2025; 15(18):2708. https://doi.org/10.3390/ani15182708
Chicago/Turabian StyleLi, Huifeng, Yuefei Li, Lin Wang, Kun Cao, Shuli Zhu, Jinghua Luo, Jie Li, and Xin Su. 2025. "From Fragmentation to Recovery: Hydropower Impacts on River Connectivity and Fish Diversity Conservation in China’s Dongjiang River" Animals 15, no. 18: 2708. https://doi.org/10.3390/ani15182708
APA StyleLi, H., Li, Y., Wang, L., Cao, K., Zhu, S., Luo, J., Li, J., & Su, X. (2025). From Fragmentation to Recovery: Hydropower Impacts on River Connectivity and Fish Diversity Conservation in China’s Dongjiang River. Animals, 15(18), 2708. https://doi.org/10.3390/ani15182708