Exogenous hCG Reduces Fetal Losses and Increases Litter Weight in Rangeland Goats During FTAI Protocol
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethics and Animal Welfare
2.2. Climatic Conditions of the Experimental Area
2.3. Goats Handling Conditions
2.3.1. Goat Females
2.3.2. Male Goats, Extraction Process, Macro and Micrometric Semen Evaluation
2.4. Fixed-Time Artificial Insemination
2.5. Conformation of the Treatments
2.6. Response Variables
2.6.1. Body Weight, Body Condition, and Estrus Induction Protocol
2.6.2. Ovulation Rate, Corpus Luteum Diameter, Luteal Area, Embryo Implantation Rate, and Embryonic Efficiency Indices
2.6.3. Rates of Conception, Fertility, Fecundity, and Prolificacy
2.6.4. Early Fetal Losses, Birth Weight, and Total Litter Weight
2.7. Statistical Analysis
3. Results
3.1. Body Weight, Body Condition Score, and Estrus Induction
3.2. Ovulation Rate, Corpus Luteum Diameter, Luteal Area, Embryo Implantation Rate, and Embryonic Efficiency Indices
3.3. Conception, Fertility, Prolificacy, and Fecundity Rates
3.4. Early Fetal Losses, Birth Weight, and Total Litter Weight
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
hCG | Human Chorionic Gonadotropin |
FTAI | Fixed-Time Artificial Insemination |
IU | International Units |
BW | Body Weight |
BCS | Body Condition Score |
EI | Estrus Induction |
OVR | Ovulation Rate |
CLD | Corpus Luteum Diameter |
CLA | Corpus Luteum Area |
EN | Number of Embryos |
EIR | Embryo Implantation Rate |
EEI1 | Embryonic Efficiency Index 1 |
EEI2 | Embryonic Efficiency Index 2 |
CR | Conception Rate |
FR | Fertility Rate |
FCR | Fecundity Rate |
PR | Prolificacy Rate |
References
- Escareño, L.; Wurzinger, M.; Iñiguez, L.; Soelkner, J.; Salinas, H.; Meza-Herrera, C.A. Dairy goat production systems in dry areas: Status-quo, perspectives and challenges. Trop. Anim. Health Prod. 2013, 45, 17–34. [Google Scholar] [CrossRef]
- Mellado, M.; Meza-Herrera, C. Influence of season and environment on fertility of goats in a hot-arid environment. J. Agric. Sci. 2002, 138, 97–102. [Google Scholar] [CrossRef]
- Mellado, M. Técnicas para el manejo reproductivo de las cabras en agostadero (Goat reproductive management under rangeland conditions). Trop. Subtrop. Agro. 2008, 9, 47–63. [Google Scholar]
- Navarrete-Molina, C.; Meza-Herrera, C.; Herrera-Machuca, M.; Macias-Cruz, U.; Veliz-Deras, F. Not all ruminants were created equal: Environmental and socio-economic sustainability of goats under a marginalextensive production system. J. Clean. Prod. 2020, 255, 120237. [Google Scholar] [CrossRef]
- SIAP (Sistema de Información Agroalimentaria y Pesquera). Resumen Nacional. Población Ganadera, Avícola y Apícola. SAGARPA. 2021. Available online: https://www.gob.mx/agricultura/dgsiap/prensa/poblacion-ganadera-136766?idiom=es (accessed on 30 April 2022).
- Álvarez, L.; Zarco, L. Los fenómenos de bioestimulación sexual en ovejas y cabras. Vet. Méx. 2001, 32, 117–129. [Google Scholar]
- Meza-Herrera, C.A.; Santamaría-Estrada, C.E.; Flores-Hernández, A.; Cano-Villegas, O.; De la Peña, C.G.; Macias-Cruz, U.; Calderón-Leyva, G.; Angel-García, O.; Mellado, M.; Carrillo-Moreno, D. The Opuntia Effect upon the out-of-season embryo implantation rate in goats: Corpus luteal number, corpus luteal diameter and serum progesterone concentrations. Livest. Sci. 2019, 228, 201–206. [Google Scholar] [CrossRef]
- Contreras-Villarreal, V.; Meza-Herrera, C.A.; Rivas-Muñoz, R.; Angel-Garcia, O.; Luna-Orozco, J.R.; Carrillo, E.; Mellado, M.; Veliz-Deras, F.G. Reproductive performance of seasonally anovular mixed-bred dairy goats induced to ovulate with a combination of progesterone and eCG or estradiol. Anim. Sci. J. 2015, 87, 750–755. [Google Scholar] [CrossRef]
- Alvarado-Espino, A.S.; Meza-Herrera, C.A.; Carrillo, E.; González-Álvarez, V.H.; Guillen-Muñoz, J.M.; Ángel-García, O.; Mellado, M.; Véliz-Deras, F.G. Reproductive outcomes of Alpine goats primed with progesterone and treated with human chorionic gonadotropin during the anestrus-to-estrus transition season. Anim. Reprod. Sci. 2016, 167, 133–138. [Google Scholar] [CrossRef]
- Alvarado-Espino, A.S.; Menchaca, A.; Meza-Herrera, C.A.; Mellado, M.; Arellano, F.; Véliz, F. Use of injectable progesterone and hCG for fixed-time artificial insemination during the non-breeding season in goats. Theriogenology 2019, 127, 21–25. [Google Scholar] [CrossRef]
- Rodrigues, J.N.D.; Guimarães, J.D.; Rangel, P.S.C.; Oliveira, M.E.F.; Brandão, F.Z.; Bartlewski, P.M.; Fonseca, J.F. Effects of hCG administered 5 or 7 days after the onset of induced estrus on luteal morphology and function in seasonally anovular dairy goats. Anim. Reprod. Sci. 2025, 275, 107818. [Google Scholar] [CrossRef]
- Bustamante-Andrade, J.A.; Meza-Herrera, C.A.; Rodríguez-Martínez, R.; Santos-Jimenez, Z.; Ángel-García, O.; Gaytán-Alemán, L.R.; Gutierrez-Guzman, U.N.; Esquivel-Romo, A.; Véliz-Deras, F.G. Luteogenesis and Embryo Implantation Are Enhanced by Exogenous hCG in Goats Subjected to an Out-of-Season Fixed-Time Artificial Insemination Protocol. Biology 2021, 10, 429. [Google Scholar] [CrossRef]
- Coleson, M.P.; Sanchez, N.S.; Ashley, A.K.; Ross, T.T.; Ashley, R.L. Human chorionic gonadotropin increases serum progesterone, number of corpora lutea and angiogenic factors in pregnant sheep. Reproduction 2015, 150, 43–52. [Google Scholar] [CrossRef]
- Alvarado-Espino, A.S.; Menchaca, A.; Meza-Herrera, C.A.; Carrillo-Moreno, D.I.; Zúñiga-García, S.; Arellano-Rodríguez, F.; Mellado, M.; Véliz, F.G. Ovarian response is not affected by the stage of seasonal anestrus or breed of goats when using a progesterone injection plus human chorionic gonadotropin-based protocol. Anim. Reprod. Sci. 2019, 204, 60–65. [Google Scholar] [CrossRef] [PubMed]
- Pokharel, K.; Peippo, J.; Weldenegodguad, M.; Honkatukia, M.; Li, M.H.; Kantanen, J. Gene expression profiling of corpus luteum reveals important insights about early pregnancy in domestic sheep. Genes 2020, 11, 415. [Google Scholar] [CrossRef] [PubMed]
- Diskin, M.G.; Morris, D.G. Embryonic and early foetal losses in cattle and other ruminants. Reprod. Dom. Anim. 2008, 43, 260–267. [Google Scholar] [CrossRef]
- Khan, T.H.; Beck, N.F.G.; Khalid, M. The effect of hCG treatment on Day 12 post-mating on ovarian function and reproductive performance of ewes and ewe lambs. Anim. Reprod. Sci. 2009, 116, 162–168.Al. [Google Scholar] [CrossRef] [PubMed]
- Bazer, F.W.; Seo, H.; Wu, G.; Johnson, G.A. Interferon tau: Influences on growth and development of the conceptus. Theriogenology 2020, 150, 75–83. [Google Scholar] [CrossRef]
- Spencer, T.E.; Burghardt, R.C.; Johnson, G.A.; Bazer, F.W. Conceptus signals for establishment and maintenance of pregnancy. Anim. Reprod. Sci. 2004, 82, 537–550. [Google Scholar] [CrossRef]
- Fernandez, J.; Galarraga, M.M.B.; Soto, A.T.; Sota, R.L.; Cueto, M.I.; Lacau-Mengido, I.M. Effect of GnRH or hCG administration on Day 4 post insemination on reproductive performance in Merino sheep of North Patagonia. Theriogenology 2019, 126, 63–67. [Google Scholar] [CrossRef]
- Pohler, K.G.; Green, J.A.; Geary, T.W.; Peres, R.F.G.; Pereira, M.H.C.; Vasconcelos, J.L.M.; Smith, M.F. Predicting embryo presence and viability. Adv. Anat. Embryol. Cell Biol. 2015, 216, 253–270. [Google Scholar]
- Peter, A.T.; Beg, M.A.; Ahmad, E.; Bergfelt, D.R. Trophoblast of domestic and companion animals: Basic and applied clinical perspectives. Anim. Reprod. 2018, 14, 1209–1224. [Google Scholar] [CrossRef]
- FASS. Guide for the Care and Use of Agricultural Animals in Agricultural Research and Teaching, 3rd ed.; Federation Animal Science Society: Champaing, IL, USA, 2010; p. 177. [Google Scholar]
- NAM-National Academy of Medicine. Guide for the Care and Use of Laboratory Animals, 1st ed.; National Academy of Medicine–Mexico and the Association for Assessment and Accreditation of Laboratory Animal Care International: Harlan, Mexico, 2010.
- INEGI (Instituto Nacional de Estadística y Geografía). Información Nacional por Entidad Federativa y Municipios. 2015. Available online: https://www.inegi.org.mx/programas/intercensal/2015/ (accessed on 19 February 2015).
- INIFAP (Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias). Boletín técnico. Coeficientes de agostadero de la República Mexicana: Estados de Baja California, Sonora, Chihuahua, Zacatecas, Coahuila, Tamaulipas, Nuevo León, Durango y San Luis Potosí. México. Available online: https://www.gob.mx/cms/uploads/attachment/file/920817/REPORTE_ANUAL_2023_La_Laguna.pdf (accessed on 1 September 2025).
- Luna-Orozco, J.R.; Guillen-Muñoz, J.M.; De Santiago-Miramontes, M.d.l.A.; García, J.E.; Rodríguez-Martínez, R.; Meza-Herrera, C.A.; Mellado, M.; Véliz, F.G. Influence of sexually inactive bucks subjected to long photoperiod or testosterone on the induction of estrus in anovulatory goats. Trop. Anim. Health Prod. 2012, 44, 71–75. [Google Scholar] [CrossRef]
- Walkden-Brown, S.; Restall, B.; Scaramuzzi, R.; Martin, G.; Blackberry, M. Seasonality in male Australian cashmere goats: Long term effects of castration and testosterone or oestradiol treatment on changes in LH, FSH and prolactin concentrations, and body growth. Small Rumin. Res. 1997, 26, 239–252. [Google Scholar] [CrossRef]
- Rostami, B.; Hajizadeh, R.; Shahir, M.; Aliyari, D. The effect of post-mating hCG or progesterone administration on reproductive performance of Afshariv-Booroola-Merino crossbred ewes. Trop. Anim. Health Prod. 2017, 49, 245–250. [Google Scholar] [CrossRef] [PubMed]
- Dias, L.M.K.; Sales, J.N.S.; Viau, P.; Barros, M.B.P.; Nicolau, S.S.; Simões, L.M.S.; Alves, N.G.; Alonso, M.A.; Valentim, R.; Oliveira, C.A. Although it induces synchronized ovulation, hCG reduces the fertility of Santa Ines ewes submitted to TAI. Arq. Bras. Med. Veterinária Zootec. 2018, 70, 122–130. [Google Scholar]
- Bai, H.; Sakurai, T.; Fujiwara, H.; Ideta, A.; Aoyagi, Y.; Godkin, J.D.; Imakawa, K. Functions of interferon tau as an immunological regulator for establishment of pregnancy. Reprod. Med. Biol. 2012, 11, 109–116. [Google Scholar] [CrossRef]
- Spencer, T.E.; Johnson, G.A.; Bazer, F.W.; Burghardt, R.C.; Palmarini, M. Pregnancy recognition and conceptus implantation in domestic ruminants: Roles of progesterone, interferons, and endogenous retroviruses. Reprod. Fertil. Dev. 2007, 19, 65–78. [Google Scholar] [CrossRef]
- Brooks, K.; Burns, G.W.; Moraes, J.G.N.; Spencer, T.E. Analysis of the uterine epithelial and conceptus transcriptome and luminal fluid proteome during the peri-implantation period of pregnancy in sheep. Biol. Reprod. 2016, 95, 88. [Google Scholar] [CrossRef] [PubMed]
- Raheem, K.A. Cytokines, growth factors, and macromolecules as mediators of implantation in mammalian species. Int. J. Vet. Sci. Med. 2018, 6, 6–14. [Google Scholar] [CrossRef] [PubMed]
- Côrtes, L.R.; Souza-Fabjan, J.M.G.; Dias, D.S.; Martins, B.B.; Maia, A.L.R.S.; Veiga, M.O.; Arashiro, E.K.N.; Brandão, F.Z.; Oliveira, M.E.F.; Bartlewski, P.M. Administration of a single dose of 300 IU of human chorionic gonadotropin seven days after the onset of estrus improves pregnancy rate in dairy goats by an unknown mechanism. Dom. Anim. Endo. 2020, 74, 106579. [Google Scholar] [CrossRef]
- Rodrigues, J.N.D.; Guimarães, J.D.; Rangel, P.S.C.; Oliveira, M.E.F.; Brandão, F.Z.; Bartlewski, P.M.; Fonseca, J.F. Ovarian function and pregnancy rates in dairy goats that received 300 IU of human chorionic gonadotropin (hCG) intravaginally at the time of artificial insemination. Small Rumin. Res. 2023, 227, 107061. [Google Scholar] [CrossRef]
- Raheem, K.A. An insight into maternal recognition of pregnancy in mammalian species. J. Saudi Soc. Agric. Sci. 2015, 16, 1–6. [Google Scholar] [CrossRef]
- Al-Samawi, K.; Al-Hassan, M.; Migdadi, H.; Ammar, M.; Alghamdi, S. Interferon-stimulated gene 15 and interferon-1 stimulated gene 17 messenger rna-based detection of early pregnancy in Aardi goats in Saudi Arabia. J. Zool. 2021, 53, 1005. [Google Scholar] [CrossRef]
- Rodríguez-Martínez, R.; Meza-Herrera, C.A.; Tapia-Robles, K.I.; Alvarado-Espino, A.S.; Luna-Orozco, J.R.; Leyva, C. Effect of two routes of administration of human chorionic gonadotropin upon oestrus induction and reproductive outcomes in adult acyclic mix-breed goats. J. Appl. Anim. Res. 2017, 46, 190–194. [Google Scholar] [CrossRef]
- Martins, A.L.; Côrtes, L.R.; Rodrigues, J.N.; Rangel, P.S.C.; Brandão, F.Z.; Siqueira, L.G.B.; Fonseca, J.F. Luteal features and serum concentrations of progesterone and hCG in dairy goats submitted to estrus induction followed by intrauterine or intramuscular hCG administration. Domest. Anim. Endocrinol. 2025, 93, 106957. [Google Scholar] [CrossRef] [PubMed]
- Fonseca, J.F.; Souza-Fabjan, J.M.; Oliveira, M.E.F.; Cruz, R.C.; Esteves, L.V.; de Paiva, M.P.S.M.; Mancio, A.B. Evaluation of cervical mucus and reproductive efficiency of seasonally anovular dairy goats after short-term progestagen-based estrous induction protocols with different gonadotropins. Reprod. Biol. 2017, 17, 363–369. [Google Scholar] [CrossRef]
- Chen, Q.; Zhang, Y.; Elad, D.; Jaffa, A.J.; Cao, Y.; Ye, X.; Duan, E. Navigating the site for embryo implantation: Biomechanical and molecular regulation of intrauterine embryo distribution. Mol. Aspects Med. 2013, 34, 1024–1042. [Google Scholar] [CrossRef]
- Mamo, S.; Mehta, J.P.; Forde, N.; McGettigan, P.; Lonergan, P. Conceptus-endometrium crosstalk during maternal recognition of pregnancy in cattle. Biol. Reprod. 2012, 87, 1–9. [Google Scholar] [CrossRef]
- Rickard, J.P.; Ryan, G.; Hall, E.; de Graaf, S.P.; Hermes, R. Using transrectal ultrasound to examine the efect of exogenous progesterone on early embryonic loss in sheep. PLoS ONE 2017, 12, e0183659. [Google Scholar] [CrossRef]
- Smith, M.F.; Geisert, R.D.; Parrish, J.J. Reproduction in domestic ruminants during the past 50 yr: Discovery to application. J. Anim. Sci. 2018, 96, 2952–2970. [Google Scholar] [CrossRef] [PubMed]
- Bartolome, J.A.; Wallace, S.P.; De la Sota, R.L.; Thatcher, W.W. The effect of administering equine chorionic gonadotropin (eCG) and human chorionic gonadotropin (hCG) post artificial insemination on fertility of lactating dairy cows. Theriogenology 2012, 15, 1110–1116. [Google Scholar] [CrossRef] [PubMed]
- García-Pintos, C.; Menchaca, A. Pregnancy establishment and maintenance after the administration of equine chorionic gonadotropin (eCG) associated or not with gonadotropin-releasing hormone (GnRH) after insemination in sheep. Anim. Prod. Sci. 2017, 58, 1802–1806. [Google Scholar] [CrossRef]
Variables | G100-7 (n = 8) | G100-14 (n = 8) | G300-7 (n = 8) | G300-14 (n = 8) | CONT (n = 8) | p Value |
---|---|---|---|---|---|---|
BW (kg) | 45.6 ± 1.84 | 44.8 ± 1.14 | 45.2 ± 1.06 | 45.7 ± 1.60 | 45.4 ± 1.49 | 0.90 |
BCS (units) | 2.0 ± 0.09 | 1.9 ± 0.07 | 2.0 ± 0.13 | 2.0 ± 0.08 | 1.9 ± 0.13 | 0.56 |
EI (n, %) | 8/10 (80.0) | 8/9 (88.8) | 8/10 (80.0) | 8/10 (80.0) | 8/9 (88.8) | 0.90 |
Variables | G100-7 (n = 8) | G100-14 (n = 8) | G300-7 (n = 8) | G300-14 (n = 8) | CONT (n = 8) | p Value |
---|---|---|---|---|---|---|
OVR (n) | 0.87 ± 0.33 | 1.1 ± 0.48 | 1.4 ± 0.17 | 1.5 ± 0.33 | 0.68 ± 0.17 | 0.46 |
CLD (mm) | 10.6 ± 0.42 | 9.9 ± 0.45 | 10.9 ± 0.96 | 12.9 ± 0.72 | 8.68 ± 0.98 | 0.23 |
CLA (mm) 2 | 87.35 ± 0.18 b | 97.58 ± 0.32 b | 100.11 ± 0.45 b | 135.66 ± 0.25 a | 95.02 ± 0.36 b | 0.04 |
EN (n) | 1.60 ± 0.18 | 1.80 ± 0.42 | 1.80 ± 0.20 | 2.0 ± 0.26 | 1.40 ± 0.20 | 0.59 |
EIR (n, %) | 5/8 (62.5) b | 5/8 (62.5) b | 6/8 (75.0) b | 8/8 (100.0) a | 3/8 (37.5) b | 0.03 |
EEI 1 (%) | 23.43 ± 0.25 b | 31.25 ± 0.21 b | 46.87 ± 0.21 b | 87.50 ± 0.20 a | 14.06 ± 0.24 b | 0.02 |
EEI 2 (%) | 31.25 ± 0.33 b | 23.43 ± 0.21 b | 37.5 ± 0.29 b | 87.50 ± 0.33 a | 9.37 ± 0.29 b | 0.03 |
Variables | G100-7 (n = 8) | G100-14 (n = 8) | G300-7 (n = 8) | G300-14 (n = 8) | CONT (n = 8) | p Value |
---|---|---|---|---|---|---|
CR (n, %) | 3/8 (37.5) b ± 0.27 | 4/8 (50.0) b ± 0.14 | 5/8 (62.5) b ± 0.2 | 8/8 (100) a ±0.14 | 3/8 (37.5) b ± 0.1 | 0.04 |
FR (n, %) | 3/8 (37.5) b ±0.09 | 3/8 (37.5) b ± 0.14 | 4/8 (50.0) b ± 0.1 | 7/8 (87.5) a ±0.25 | 2/8 (25.0) b ± 0.13 | 0.05 |
PR (n) | 1.3 ± 0.23 | 1.5 ± 0.33 | 1.5 ± 0.33 | 2.0 ± 0.29 | 1.2 ± 0.29 | 0.25 |
FCR (n, %) | 4/8 (50.0) b ± 0.2 | 3/8 (37.5) b ± 0.11 | 4/8 (50.0) b ± 0.1 | 9/8 (112.5) a ± 0.2 | 2/8 (25.0) b ± 0.06 | 0.03 |
Variables | G100-7 (n = 8) | G100-14 (n = 8) | G300-7 (n = 8) | G300-14 (n = 8) | CONT (n = 8) | p Value |
---|---|---|---|---|---|---|
Fetal losses at d 30 post FTAI (%) | 3/8 (37.5 ± 0.12) b | 3/8 (37.5 ± 0.25) b | 2/8 (25.0 ± 0.19) b | 0/8 (0.0) a | 5/8 (62.5 ± 0.13) b | 0.04 |
Fetal losses at d 45 post FTAI (%) | 5/8 (62.5 ± 0.1) b | 4/8 (50 ± 0.13) b | 3/8 (37.5 ± 0.15) b | 0/8 (0.0) a | 5/8 (62.5 ± 0.18) b | 0.03 |
Fetal losses between days 30 and d 45 post FTAI (%) | 2/8 (25 ± 0.12) | 1/8 (12.5 ± 0.23) | 1/8 (12.5 ±0.2) | 0/8 (0.0) | 0/8 (0.0) | 0.53 |
Fetal losses between d 45 post FTAI and the birth (%) | 0/8 (0.0) | 1/8 (12.5 ± 0.25) | 1/8 (12.5 ± 0.14) | 1/8 (12.5 ± 0.1) | 1/8 (12.5 ±0.25) | 0.76 |
Total fetal loss (%) | 5/8 (62.5 ±0.2) b | 5/8 (62.5 ±0.2) b | 4/8 (50 ± 0.10) b | 1/8 (12.5 ± 0.2) a | 6/8 (75 ± 0.1) b | 0.02 |
Birth weight of kids (kg) | ||||||
Single (n = 11) | 3.8 ± 0.51 (2) | 3.5 ± 0.32(1) | 3.7 ± 0.42(2) | 3.6 ± 0.5 (4) | 3.5 ± 0.6 (2) | 0.45 |
Twin (n = 8) | 2.6 ± 0.15(2) | 2.4 ± 0.23(2) | 2.8 ± 0.56(2) | 2.9 ± 0.63(2) | nd * (0) | 0.65 |
Triple (n = 3) | nd * (0) | nd * (0) | nd * (0) | 2.2 ± 0.36(3) | nd * (0) | - |
Totals (n = 22) | (4) | (3) | (4) | (9) | (2) | 0.10 |
Total litter weight (kg) | 12.8 ± 0.31 b | 8.3 ± 0.25 b | 13 ± 0.6 b | 26.8 ± 0.23 a | 7 ± 0.10 b | 0.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bustamante-Andrade, J.A.; Meza-Herrera, C.A.; Angel-García, O.; Castillo-Zuñiga, M.S.; Esquivel-Romo, A.; De Santiago-Miramontes, A.; Moreno-Avalos, S.; Legarreta-González, M.A.; Contreras-Villarreal, V.; Véliz-Deras, F.G. Exogenous hCG Reduces Fetal Losses and Increases Litter Weight in Rangeland Goats During FTAI Protocol. Animals 2025, 15, 2704. https://doi.org/10.3390/ani15182704
Bustamante-Andrade JA, Meza-Herrera CA, Angel-García O, Castillo-Zuñiga MS, Esquivel-Romo A, De Santiago-Miramontes A, Moreno-Avalos S, Legarreta-González MA, Contreras-Villarreal V, Véliz-Deras FG. Exogenous hCG Reduces Fetal Losses and Increases Litter Weight in Rangeland Goats During FTAI Protocol. Animals. 2025; 15(18):2704. https://doi.org/10.3390/ani15182704
Chicago/Turabian StyleBustamante-Andrade, Jorge A., Cesar A. Meza-Herrera, Oscar Angel-García, Ma Silvia Castillo-Zuñiga, Amaury Esquivel-Romo, Angeles De Santiago-Miramontes, Silvestre Moreno-Avalos, Martín Alfredo Legarreta-González, Viridiana Contreras-Villarreal, and Francisco G. Véliz-Deras. 2025. "Exogenous hCG Reduces Fetal Losses and Increases Litter Weight in Rangeland Goats During FTAI Protocol" Animals 15, no. 18: 2704. https://doi.org/10.3390/ani15182704
APA StyleBustamante-Andrade, J. A., Meza-Herrera, C. A., Angel-García, O., Castillo-Zuñiga, M. S., Esquivel-Romo, A., De Santiago-Miramontes, A., Moreno-Avalos, S., Legarreta-González, M. A., Contreras-Villarreal, V., & Véliz-Deras, F. G. (2025). Exogenous hCG Reduces Fetal Losses and Increases Litter Weight in Rangeland Goats During FTAI Protocol. Animals, 15(18), 2704. https://doi.org/10.3390/ani15182704