When the Evidence Points to the Non-Invasive Nature of an Allegedly Invasive Alien Species: The Case of the Aoudad in Mainland Spain
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Sites
2.2. Sample Collection
2.3. Laboratory Analyses
- (a)
- Graminoid herbaceous plants. Very long, rectangular epidermal cells, often interspersed with short, silicosuberous cells. Stomata are of the graminoid type, with bone-like guard cells. Trichomes are spine-like, resembling rose thorns.
- (b)
- Other herbaceous plants. Rounded or lobed epidermal cells with very thin walls, typical of annual species with a thin cuticle. Stomata possess kidney-shaped guard cells. Trichomes may be long and slender, needle-shaped, either unicellular or segmented conical (always unbranched), or unicellular and star-shaped.
- (c)
- Woody plants. Polygonal or rounded cells, rarely lobed, with very thick walls, are typical of evergreen species with a thick cuticle. Stomata also have kidney-shaped guard cells. Trichomes may be short and thick, needle-shaped, multicellular and star-shaped, or segmented and branched.
2.4. Statistical Analyses
3. Results
4. Discussion
4.1. Aoudad Invasiveness in Question
- It is a species with a marked grazing behavior, even higher than that of a wild sheep such as the European mouflon [13].
- It has an incidence on protected woody plant species similar to that of native species such as red deer Cervus elaphus and the Iberian ibex [21]
- Contrary to previous alarming expectations [11], we appreciate that its expansion potential has not been reached after more than half a century since its introduction. The reasons for that may lie in constraints to aoudad population dispersal associated with the intensity of human disturbance and land use [11]. Also, recent eradication attempts undertaken by the Murcia regional authorities resulted in an important decrease in their population size [3].
- In the present work, substantial and significant differences between aoudad and Iberian ibex trophic behavior are shown, suggesting a new more plausible hypothesis on a viable coexistence between both herbivore species [28], and furthermore, a positive ecosystemic role played by the aoudad, by markedly influencing the herbaceous layer and therefore facilitating the existence of clearings in forest lands and greater biodiversity in natural pastures [29,30]. In contrast, comparative feeding studies between sympatric aoudad and wild sheep species (i.e., the European mouflon [13] and desert bighorn sheep [31]) have reported greater diet overlap, which may indicate a greater potential for trophic competition between these species.
4.2. Comparative Trophic Incidence of Aoudads and Ibexes
- A first hypothesis would suggest the formation of mixed groups of both species as an adaptive defense strategy against predators [33], where the smaller species follows the path and thus the feeding sites selected by the larger and stronger species. Regarding the ungulates studied, the average body weight of adult aoudad males may be more than 50% greater than that of Iberian ibex males, 82 kg vs. 50 kg, according to [34,35], respectively.
- Another hypothesis would be related to the selection of highly nutritious food [36]. In sympatry, populations of both species may coincide in time and space, and as the aoudad tends to preferentially graze on good pastures, a hypothetical explanation of the higher selection of herbs by the Iberian ibex, a more opportunistic herbivore, when in sympatry, may lie on the fact that aoudads are able to nutritionally exploit grasses and forbs as they move through their grazing paths, and this, in turn, provokes a compensatory regrowth that may be exploited by the ibex. We do not consider that this greater dietary overlap under sympatric conditions supports an increase in resource competition. On the contrary, what we observe is a trophic shift in the diet of the Iberian ibex as a consequence of the presence of the aoudad—a selective change that is not related to differences in pasture availability in those areas, since all study sites share a very similar vegetation mosaic structure.
4.3. Ecological Implications and Management Proposals
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bergmans, W.; Blom, E.; Turlings, L. (Eds.) Invasive Plants and Animals: Is There a Way Out? Proceedings of a Conference on Alien Invasive Species on the 26th of September, 2000 in the National Museum of Natural History Naturalis in Leiden, the Netherlands; The Netherlands Committee for IUCN: Amsterdam, The Netherlands, 2001. [Google Scholar]
- Gurevitch, J.; Padilla, D. K. Are invasive species a major cause of extinctions? Trends Ecol. Evol. 2004, 19, 470–474. [Google Scholar] [CrossRef]
- Cassinello, J. Misconception and mismanagement of invasive species: The paradoxical case of an alien ungulate in Spain. Conserv. Lett. 2018, 11, e12440. [Google Scholar] [CrossRef]
- Cassinello, J. Ovis aries musimon (European mouflon). In Invasive Species Compendium; CABI: Wallingford, UK, 2016. [Google Scholar]
- Cassinello, J. Ammotragus lervia: A review on systematics, biology, ecology and distribution. Ann. Zool. Fennici 1998, 35, 149–162. [Google Scholar]
- Cassinello, J.; Bounaceur, F.; Brito, J.C.; Bussière, E.; Cuzin, F.; Gil-Sánchez, J.; Herrera-Sánchez, F.; Wacher, T. Ammotragus lervia (amended version of 2021 assessment). IUCN Red List. Threat. Species 2022, e.T1151A214430287. [Google Scholar] [CrossRef]
- Cassinello, J. Ammotragus lervia (aoudad). In Invasive Species Compendium; CABI: Wallingford, UK, 2015; Available online: https://www.cabi.org/isc/datasheet/94507 (accessed on 10 June 2025).
- Šprem, N.; Gančević, P.; Safner, T.; Jerina, K.; Cassinello, J. Barbary sheep (Ammotragus lervia, Pallas 1777). In Handbook of the Mammals of Europe; Hackländer, K., Zachos, F.E., Eds.; Springer: Berlin/Heidelberg, Germany, 2021. [Google Scholar]
- Valverde, J.A. Reyes, osos, Lobos, Espátulas y otros Bichos. Memorias de un Biólogo Heterodoxo; Quercus V&V: Madrid, Spain, 2005. [Google Scholar]
- Cassinello, J.; Serrano, E.; Calabuig, G.; Pérez, J.M. Range expansion of an exotic ungulate (Ammotragus lervia) in southern Spain: Ecological and conservation concerns. Biodivers. Conserv. 2004, 13, 851–866. [Google Scholar] [CrossRef]
- Cassinello, J.; Acevedo, P.; Hortal, J. Prospects for population expansion of the exotic aoudad (Ammotragus lervia; Bovidae) in the Iberian Peninsula: Clues from habitat suitability modelling. Divers. Distrib. 2006, 12, 666–678. [Google Scholar] [CrossRef]
- Acevedo, P.; Cassinello, J.; Hortal, J.; Gortázar, C. Invasive exotic aoudad (Ammotragus lervia) as a major threat to native Iberian ibex (Capra pyrenaica): A habitat suitability model approach. Divers. Distrib. 2007, 13, 587–597. [Google Scholar] [CrossRef]
- Miranda, M.; Sicilia, M.; Bartolomé, J.; Molina-Alcaide, E.; Gálvez-Bravo, L.; Cassinello, J. Contrasting feeding patterns of native red deer and two exotic ungulates in a Mediterranean ecosystem. Wildlife Res. 2012, 39, 171–182. [Google Scholar] [CrossRef]
- Martínez, T. Selección y estrategia alimentaria de los machos, hembras y jóvenes de cabra montés (Capra pyrenaica Schinz, 1838) en el sureste de España. Galemys 2010, 22, 483–515. [Google Scholar] [CrossRef]
- Ben Mimoun, J.; Nouira, S. Food habits of the aoudad Ammotragus lervia in the Bou Hedma mountains, Tunisia. S. Afr. J. Sci. 2015, 111, 185–189. [Google Scholar] [CrossRef]
- Bounaceur, F.; Benamor, N.; Bissaad, F.Z.; Douba, F.; Benmammar-Hasnaoui, H.; Guellil, L. État des populations et régime alimentaire du mouflon à manchette Ammotragus lervia (Pallas, 1777) au niveau de la réserve de chasse de Moutas à Tlemcen. Rev. Écologie-Environ. 2016, 12, 42–52. [Google Scholar]
- Bachiri, H.; Znari, M.; Ait Baamranne, M.A.; Aourir, M. Spring diet differs among age–sex classes in Atlas Barbary sheep (Ammotragus lervia lervia) in a fenced nature reserve, Morocco. Mammalia 2021, 85, 315–324. [Google Scholar] [CrossRef]
- Eguía, S.; Martínez-Noguera, E.; Botella, F.; Pascual, R.; Giménez-Casalduero, A.; Sánchez-Zapata, J.A. Evolución delárea de distribución del arruí (Ammotragus lervia Pallas 1777) y la cabra montés (Capra pyrenaica Schinz, 1838) en la Región de Murcia. In V Congreso de la Naturaleza de la Región de Murcia; Asociación de Naturalistas del Sureste: Murcia, Spain, 2015. [Google Scholar]
- Erena, M.; García, P.; Robledo, A.; Vicente, M.; Alcaraz, F.; Correal, E. Gestión de recursos pascícolas en la región de Murcia: Delimitación de distritos ganaderos en el término de Totana. In Medio Ambiente, Recursos y Riesgos Naturales: Análisis mediante Tecnología SIG y Teledetección; Conesa-García, C., Álvarez-Rogel, Y., Granell Pérez, C., Eds.; Región de Murcia: Murcia, Spain, 2004; pp. 105–116. [Google Scholar]
- Perea, R.; Perea-García-Calvo, R.; Díaz-Ambrona, C.G.; San Miguel, A. The reintroduction of a flagship ungulate Capra pyrenaica: Assessing sustainability by surveying woody vegetation. Biol. Conserv. 2015, 181, 9–17. [Google Scholar] [CrossRef]
- Velamazán, M.; San Miguel, A.; Escribano, R.; Perea, R. Threatened woody flora as an ecological indicator of large herbivore introductions. Biodivers. Conserv. 2017, 26, 917–930. [Google Scholar] [CrossRef]
- Cassinello, J. Ammotragus free-ranging population in the south east of Spain: A necessary first account. Biodivers. Conserv. 2000, 9, 887–900. [Google Scholar] [CrossRef]
- Stewart, D.R.M. Analysis of plant epidermis in faeces: A technique for studying the food preferences of grazing herbivores. J. Appl. Ecol. 1967, 4, 83–111. [Google Scholar] [CrossRef]
- Bartolomé, J.; Plaixats, J.; Franch, J.; Seligman, N. Diet selection by sheep and goats on Mediterranean heath-woodland range. J. Range Manage. 1998, 51, 379–384. [Google Scholar] [CrossRef]
- Jarque-Bascuñana, L.; Bartolomé, J.; Serrano, E.; Espunyes, J.; Garel, M.; Calleja Alarcón, J.A.; López-Olvera, J.R.; Albanell, E. Near Infrared Reflectance Spectroscopy Analysis to Predict Diet Composition of a Mountain Ungulate Species. Animals 2021, 11, 1449. [Google Scholar] [CrossRef]
- IUCN. IUCN Guidelines for the Prevention of Biodiversity Loss due to Biological Invasion; IUCN: Gland, Switzerland, 2000. [Google Scholar]
- CBD. Decision VI/23: Alien species that threaten ecosystems, habitats or species. In Convention on Biological Diversity; 2002; Available online: https://www.cbd.int/kb/record/decision/7197?RecordType=decision&Subject=IAS (accessed on 10 June 2025).
- Behmer, S.T.; Joern, A. Coexisting generalist herbivores occupy unique nutritional feeding niches. Proc. Natl. Acad. Sci. USA 2008, 105, 1977–1982. [Google Scholar] [CrossRef]
- McNaughton, S.J. Biodiversity and function of grazing ecosystems. In Biodiversity and Ecosystem Function; Schulze, E.D., Mooney, H.A., Eds.; Springer: Berlin/Heidelberg, Germany, 1994; pp. 361–383. [Google Scholar]
- Stein, A.; Gerstner, K.; Kreft, H. Environmental heterogeneity as a universal driver of species richness across taxa, biomes and spatial scales. Ecol. Lett. 2014, 17, 866–880. [Google Scholar] [CrossRef]
- Parikh, G.L.; Etchart, J.L.; O’Shaughnessy, R.; Harveson, L.A.; Cain, J.W., III. Feeding habits of sympatric aoudad (Ammotragus lervia) and desert bighorn (Ovis canadensis mexicana) in West Texas. J. Wildl. Manag. 2025, 89, e70008. [Google Scholar] [CrossRef]
- Alados, C.L.; Escós, J. Cabra montés—Capra pyrenaica. In Enciclopedia Virtual de los Vertebrados Españoles; Salvador, A., Barja, I., Eds.; Museo Nacional de Ciencias Naturales: Madrid, Spain, 2017; Available online: www.vertebradosibericos.org (accessed on 10 June 2025).
- Fitzgibbon, C.D. Mixed-species grouping in Thomson’s and Grant’s gazelles: The antipredator benefits. Anim. Behav. 1990, 39, 1116–1126. [Google Scholar] [CrossRef]
- Cassinello, J. High levels of inbreeding in captive Ammotragus lervia (Bovidae, Artiodactyla): Effects on phenotypic variables. Can. J. Zool. 1997, 75, 1707–1713. [Google Scholar] [CrossRef]
- Granados, J.E.; Pérez, J.M.; Soriguer, C.; Fandos, P.; Ruiz-Martínez, I. On the biometry of the Spanish ibex, Capra pyrenaica, from Sierra Nevada (southern Spain). Folia Zool. 1997, 46, 9–14. [Google Scholar]
- Villalba, J.J.; Provenza, F.D. Learning and dietary choice in herbivores. Rangel. Ecol. Manag. 2009, 62, 399–406. [Google Scholar] [CrossRef]
- Perevolotsky, A.; Seligman, N.G. Role of grazing in Mediterranean rangeland ecosystems: Inversion of a paradigm. BioScience 1998, 48, 1007–1017. [Google Scholar] [CrossRef]
- Dubrovský, M.; Hayes, M.; Duce, P.; Trnka, M.; Svoboda, M.; Zára, P. Multi-GCM projections of future drought and climate variability indicators for the Mediterranean region. Reg. Environ. Change 2014, 14, 1907–1919. [Google Scholar] [CrossRef]
- Schlaepfer, M.A.; Lawler, J.J. Conserving biodiversity in the face of rapid climate change requires a shift in priorities. WIREs Clim. Change 2022, 14, e798. [Google Scholar] [CrossRef]
- Fernández-Olalla, M.; Martínez-Jauregui, M.; Perea, R.; Velamazán, M.; San Miguel, A. Threat or opportunity? Effects of an alien ungulate on the highly diverse vegetation of southeastern Spain. J. Arid Environ. 2016, 129, 9–15. [Google Scholar] [CrossRef]
Large Herbivores Present | Mountain Ranges | Area Covered |
---|---|---|
Iberian ibex | Mojantes | 2244 ha |
Aoudad | Espuña | 16,277 ha |
Iberian Ibex and aoudad | Burete, Quipar and Cabras | 6196 ha |
Iberian Ibex and aoudad | Cambrón | 4906 ha |
Species | Distribution | Season | Woody% | Herbs% | ||
---|---|---|---|---|---|---|
Min–Max | Mean | Min–Max | Mean | |||
Aoudad | Allopatric | Spring | 27.27–37.74 | 32.51 | 62.26–72.73 | 67.5 |
Aoudad | Allopatric | Summer | 51.00–71.00 | 60.54 | 29.00–49.00 | 39.46 |
Aoudad | Allopatric | Autumn | 26.67–43.24 | 36.29 | 56.76–73.33 | 63.71 |
Aoudad | Allopatric | Winter | 27.00–30.00 | 28.5 | 70.00–73.00 | 71.5 |
Aoudad | Sympatric | Spring | 19.23–53.33 | 35.1 | 46.67–80.77 | 64.9 |
Aoudad | Sympatric | Summer | 33.00–60.18 | 43.21 | 39.82–67.00 | 56.79 |
Aoudad | Sympatric | Autumn | 9.35–40.20 | 21.31 | 59.80–90.65 | 78.69 |
Aoudad | Sympatric | Winter | 49.00–62.00 | 55.5 | 38.00–51.00 | 44.5 |
Ibex | Allopatric | Spring | 67.65–68.22 | 67.94 | 31.78–32.35 | 32.06 |
Ibex | Allopatric | Summer | 66.99–78.50 | 71.91 | 21.50–33.01 | 28.08 |
Ibex | Allopatric | Autumn | 43.69–76.24 | 56.18 | 23.76–56.31 | 43.82 |
Ibex | Allopatric | Winter | 84.00–93.00 | 88.5 | 7.00–16.00 | 11.5 |
Ibex | Sympatric | Spring | 35.34–38.39 | 36.86 | 61.61–64.66 | 63.14 |
Ibex | Sympatric | Summer | 25.49–39.13 | 31.63 | 60.87–74.51 | 68.37 |
Ibex | Sympatric | Autumn | 56.03–90.10 | 71.95 | 9.90–43.97 | 28.05 |
Ibex | Sympatric | Winter | 33.00–48.21 | 39.07 | 51.79–67.00 | 60.93 |
Species | Distribution | Season | Woody% | Herbs% | ||
---|---|---|---|---|---|---|
Min–Max | Mean | Min–Max | Mean | |||
Aoudad | Allopatric | Spring | 1.36–73.79 | 36.01 | 26.37–96.82 | 58.81 |
Aoudad | Allopatric | Summer | 15.47–96.69 | 50.94 | 13.63–77.54 | 47.49 |
Aoudad | Allopatric | Autumn | 3.65–74.27 | 45.19 | 40.3–92.12 | 57.78 |
Aoudad | Allopatric | Winter | 10.24–78.15 | 31.84 | 11.66–85.19 | 65.98 |
Aoudad | Sympatric | Spring | 19.71–76.05 | 34.59 | 26.86–82.44 | 67.08 |
Aoudad | Sympatric | Summer | 29.73–101.19 | 64.1 | 6.99–71.15 | 36.71 |
Aoudad | Sympatric | Autumn | 7.18–60.61 | 23.83 | 37.79–86 | 68.37 |
Aoudad | Sympatric | Winter | 26–90.29 | 53.55 | 4.54–68 | 42.16 |
Ibex | Allopatric | Spring | 7.61–88.04 | 65.89 | 4.72–62.36 | 27.08 |
Ibex | Allopatric | Summer | 22.97–100.42 | 76.6 | 6.29–94.87 | 25.01 |
Ibex | Allopatric | Autumn | 40.04–85.82 | 64.91 | 13.78–59.73 | 31.37 |
Ibex | Allopatric | Winter | 27.4–82.58 | 67.27 | 12.98–69.13 | 23.72 |
Ibex | Sympatric | Spring | 24.04–63.96 | 44.69 | 33.51–77.25 | 52.83 |
Ibex | Sympatric | Summer | 35.89–82.95 | 61.66 | 18.13–66.65 | 39.95 |
Ibex | Sympatric | Autumn | 20.5–93.35 | 62.45 | 6.96–76.96 | 35.82 |
Ibex | Sympatric | Winter | 22.56–90.91 | 60.36 | 2.15–66.85 | 34.93 |
Explanatory Variables | DF | F Ratio | Probability |
---|---|---|---|
Species | 1 | 109.9875 | <0.0001 |
Distribution | 1 | 4.4087 | 0.0366 |
Season | 3 | 15.6357 | <0.0001 |
Species × Distribution | 1 | 11.6917 | 0.0007 |
Species × Season | 3 | 3.5585 | 0.0147 |
Distribution × Season | 3 | 4.9621 | 0.0022 |
Species × Distribution × Season | 3 | 8.1056 | <0.0001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cassinello, J.; Albanell, E.; Eguía, S.; Roverso, A.; San Miguel, A.; Bartolomé, J. When the Evidence Points to the Non-Invasive Nature of an Allegedly Invasive Alien Species: The Case of the Aoudad in Mainland Spain. Animals 2025, 15, 2683. https://doi.org/10.3390/ani15182683
Cassinello J, Albanell E, Eguía S, Roverso A, San Miguel A, Bartolomé J. When the Evidence Points to the Non-Invasive Nature of an Allegedly Invasive Alien Species: The Case of the Aoudad in Mainland Spain. Animals. 2025; 15(18):2683. https://doi.org/10.3390/ani15182683
Chicago/Turabian StyleCassinello, Jorge, Elena Albanell, Sergio Eguía, Andrea Roverso, Alfonso San Miguel, and Jordi Bartolomé. 2025. "When the Evidence Points to the Non-Invasive Nature of an Allegedly Invasive Alien Species: The Case of the Aoudad in Mainland Spain" Animals 15, no. 18: 2683. https://doi.org/10.3390/ani15182683
APA StyleCassinello, J., Albanell, E., Eguía, S., Roverso, A., San Miguel, A., & Bartolomé, J. (2025). When the Evidence Points to the Non-Invasive Nature of an Allegedly Invasive Alien Species: The Case of the Aoudad in Mainland Spain. Animals, 15(18), 2683. https://doi.org/10.3390/ani15182683