Validation of an LC–MS/MS Method for Urinary Cortisol in Dogs and Reference Interval, with an Exploratory Comparison to Immunoassay
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Urine Sample Collection
2.2. Reagents and Materials
2.3. LC-MS/MS Instrumentation and Chromatographic Conditions
2.4. Quantification of Urinary Creatinine and Immunological Urinary Cortisol
2.5. Sample Processing
2.6. Analytical Method Validation
2.6.1. Calibration Curve Preparation
2.6.2. Sensitivity, Linearity, and Carryover
2.6.3. Accuracy, Precision, Recovery, Matrix Effect, and Selectivity
2.6.4. Stability Assessment
2.6.5. Reference Interval
2.6.6. Statistical Analysis
3. Results
3.1. Method Validation
3.1.1. Selectivity
3.1.2. Stability
3.1.3. Method Comparison
3.2. Reference Interval
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Validation Parameter | Assessed | Description of Assessment |
---|---|---|
Selectivity | Yes | Six individual blank urine samples and a zero standard were evaluated for interferences |
Matrix effect | Yes | Post-extraction addition method: comparison between extracted and neat standards |
Accuracy | Yes | Evaluated at LLOQ, low, medium, and high QC levels (n = 6 replicates per level) |
Precision (intra- and inter-day) | Yes | Assessed at LLOQ, low, medium, and high QC levels across three validation days |
Recovery | Yes | Determined at low, medium, and high QC concentrations |
Calibration curve | Yes | 10 non-zero calibration levels (0.1–100 ng/mL), r2 > 0.99 |
Lower Limit of Quantification (LLOQ) | Yes | 0.1 ng/mL (S/N > 10; accuracy and precision within EMA acceptance criteria) |
Carryover | Yes | Evaluated by the injection of a blank sample after the ULOQ standard |
Stability—processed samples | Yes | 24 h at room temperature; 9 days at 4 °C; 9 days at −20 °C and 3 freeze–thaw cycles |
Stock solution stability | No | Not assessed; stock solutions freshly prepared before each batch as recommended |
Working solution stability | No | Not assessed; working solutions freshly prepared before each batch as recommended |
Age (Months) | Sex | Weight (kg) | Breed | Reason | Sampling Method |
---|---|---|---|---|---|
108 | Intact male | 20 | Border Collie | Odontoiatric procedure | Cystocentesis |
161 | Neutered male | 4.8 | Mixed | Clinical examination | Cystocentesis |
141 | Spayed female | 9.2 | Italian Greyhound | Clinical examination | Free Catch |
194 | Neutered male | 2.8 | Chihuahua | Clinical examination | Cystocentesis |
57 | Spayed female | 18.3 | Siberian Husky | Pre-neutering evaluation | Cystocentesis |
81 | Intact male | 47.3 | Romanian Carpathian Shepherd Dog | Clinical examination | Cystocentesis |
78 | Intact male | 14.2 | Beagle | Clinical examination | Cystocentesis |
59 | Spayed female | 18.1 | Border Collie | Clinical examination | Free Catch |
76 | Intact male | 9.3 | Mixed | Clinical examination | Cystocentesis |
113 | Neutered male | 23 | Australian Shepherd | Pre-anaesthetic evaluation | Free Catch |
56 | Intact male | 24 | Mixed | Clinical examination | Cystocentesis |
183 | Neutered male | 9.1 | Mixed | Clinical examination | Cystocentesis |
104 | Intact male | 39 | Saarloos Wolfdog | Clinical examination | Cystocentesis |
86 | Intact male | 15.4 | Shiba Inu | Clinical examination | Free Catch |
113 | Intact male | 25.5 | Australian Cattle Dog | Pre-anaesthetic evaluation | Free Catch |
43 | Intact male | 12.5 | Collie | Clinical examination | Cystocentesis |
134 | Neutered male | 16.2 | Border Collie | Clinical examination | Free Catch |
142 | Spayed female | 30.3 | Labrador Retriever | Clinical examination | Free Catch |
96 | Spayed female | 28.3 | Mixed | Clinical examination | Free Catch |
54 | Spayed female | 15 | Lagotto Romagnolo | Clinical examination | Cystocentesis |
89 | Intact male | 40 | Saarloos Wolfdog | Clinical examination | Cystocentesis |
54 | Spayed female | 53 | Basset Hound | Estrus monitoring | Cystocentesis |
49 | Intact female | 5.9 | Pekingese | Clinical examination | Cystocentesis |
91 | Intact male | 33.8 | Czechoslovakian Wolfdog | Odontoiatric procedure | Free Catch |
75 | Intact female | 9 | Cavalier King Charles Spaniel | Odontoiatric procedure | Cystocentesis |
45 | Spayed female | 7.8 | West Highland White Terrier | Pre-neutering evaluation | Cystocentesis |
80 | Spayed female | 6.6 | Basset Hound | Odontoiatric procedure | Cystocentesis |
49 | Intact female | 3.9 | Toy Poodle | Pre-neutering evaluation | Cystocentesis |
82 | Intact female | 65 | Great Dane | Odontoiatric procedure | Free Catch |
50 | Intact female | 12.3 | Mixed | Pre-neutering evaluation | Cystocentesis |
91 | Spayed female | 7.3 | Miniature Schnauzer | Clinical examination | Cystocentesis |
50 | Intact female | 31.6 | Labrador Retriever | Clinical examination | Free Catch |
67 | Intact male | 22.7 | Mixed | Clinical examination for respiratory signs | Cystocentesis |
112 | Spayed female | 7.4 | Dachshund | Clinical examination | Cystocentesis |
50 | Intact female | 14.6 | Lagotto Romagnolo | Pre-neutering evaluation | Cystocentesis |
93 | Spayed female | 13.9 | Mixed | Clinical examination | Cystocentesis |
71 | Intact female | 24 | Chow Chow | Pre-neutering evaluation | Cystocentesis |
143 | Neutered male | 23.7 | Mixed | Odontoiatric procedure | Cystocentesis |
80 | Intact female | 18.3 | Mixed | Pre-anaesthetic evaluation | Free Catch |
87 | Spayed female | 53.3 | Great Dane | Pre-anaesthetic evaluation | Cystocentesis |
27.1 | Spayed female | 51 | German Shorthaired Pointer | Pre-neutering evaluation | Cystocentesis |
160 | Intact female | 21.7 | Shetland Sheepdog | Odontoiatric procedure | Cystocentesis |
201 | Neutered male | 7 | Jack Russell Terrier | Clinical examination | Cystocentesis |
61 | Intact female | 18 | Lagorai Shepherd | Odontoiatric procedure | Free Catch |
34 | Intact female | 22 | Standard Poodle | Clinical examination | Free Catch |
76 | Intact female | 18.7 | Standard Poodle | Clinical examination | Free Catch |
123 | Intact male | 27.3 | Standard Poodle | Clinical examination | Free Catch |
169 | Spayed female | 20 | Standard Poodle | Clinical examination | Free Catch |
References
- Ramsey, I.K.; Herrtage, M.E. Ch. 29, Canine Hypercortisolism. In BSAVA Manual of Canine and Feline Endocrinology; Mooney, C.T., Peterson, M.E., Schiel, R.E., Eds.; BSAVA Library: Gloucester, UK, 2023; pp. 271–294. ISBN 978-1-910443-86-6. [Google Scholar]
- Carvalho, M.F.; Leal, R.O.; Golinelli, S.; Fracassi, F.; Arenas, C.; Pérez-Alenza, M.; Galac, S.; Mooney, C.T.; Bennaim, M. Diagnosis of Naturally-Occurring Cushing’s Syndrome by Primary Care Veterinarians in Selected European Countries. J. Vet. Intern. Med. 2025, 39, e17166. [Google Scholar] [CrossRef]
- Lathan, P. Laboratory Diagnosis of Thyroid and Adrenal Disease. Vet. Clin. North Am. Small Anim. Pract. 2023, 53, 207–224. [Google Scholar] [CrossRef]
- Del Baldo, F.; Tirolo, A.; Dondi, F.; Sapignoli, A.; Galeotti, M.; Tardo, A.M.; Golinelli, S.; Fracassi, F. Urinary Corti-sol-to-Creatinine Ratio Using a Chemiluminescent Assay Has Limited Diagnostic Accuracy for Canine Hypercor-tisolism. Am. J. Vet. Res. 2025, 1, 1–7. [Google Scholar] [CrossRef]
- Korchia, J.; Freeman, K.P. Validation Study of Canine Urine Cortisol Measurement with the Immulite 2000 Xpi Cortisol Immunoassay. J. Vet. Diagn. Investig. 2021, 33, 1052–1068. [Google Scholar] [CrossRef] [PubMed]
- Fracassi, F.; Tirolo, A.; Galeotti, M.; Corsini, A.; Bertolazzi, A.; Tardo, A.M.; Golinelli, S.; Bertazzolo, W.; Bonfanti, U.; Procoli, F.; et al. Comparison of Urinary Cortisol, Urinary Cortisol-to-Creatinine Ratio, and Basal Serum Cortisol as Screening Tests for Hypoadrenocorticism in Dogs. Am. J. Vet. Res. 2025, 86, 1–7. [Google Scholar] [CrossRef]
- Vignesh, V.; Castro-Dominguez, B.; James, T.D.; Gamble-Turner, J.M.; Lightman, S.; Reis, N.M. Advancements in Cortisol Detection: From Conventional Methods to Next-Generation Technologies for Enhanced Hormone Moni-toring. ACS Sens. 2024, 9, 1666–1681. [Google Scholar] [CrossRef]
- Casals, G.; Hanzu, F.A. Cortisol Measurements in Cushing’s Syndrome: Immunoassay or Mass Spectrometry? Ann. Lab. Med. 2020, 40, 285–296. [Google Scholar] [CrossRef] [PubMed]
- Vega-Beyhart, A.; Araujo-Castro, M.; Hanzu, F.A.; Casals, G. Chapter Five-Cortisol: Analytical and Clinical De-terminants. In Advances in Clinical Chemistry; Makowski, G.S., Ed.; Elsevier: Amsterdam, The Netherlands, 2023; Volume 113, pp. 235–271. [Google Scholar]
- Arioli, F.; Gamberini, M.C.; Pavlovic, R.; Di Cesare, F.; Draghi, S.; Bussei, G.; Mungiguerra, F.; Casati, A.; Fidani, M. Quantification of Cortisol and Its Metabolites in Human Urine by LC-MSn: Applications in Clinical Diagnosis and Anti-Doping Control. Anal. Bioanal. Chem. 2022, 414, 6841–6853. [Google Scholar] [CrossRef] [PubMed]
- Galeandro, L.; Sieber-Ruckstuhl, N.S.; Riond, B.; Hartnack, S.; Hofmann-Lehmann, R.; Reusch, C.E.; Boretti, F.S. Urinary Corticoid Concentrations Measured by 5 Different Immunoassays and Gas Chromatography-Mass Spec-trometry in Healthy Dogs and Dogs with Hypercortisolism at Home and in the Hospital. J. Vet. Intern. Med. 2014, 28, 1433–1441. [Google Scholar] [CrossRef] [PubMed]
- Boag, A.M.; Brown, A.; Koenigshof, A.; Homer, N.; Sooy, K.; Jamieson, P.M. Glucocorticoid Metabolism in Critically Ill Dogs (Canis lupus familiaris). Domest. Anim. Endocrinol. 2020, 72, 106437. [Google Scholar] [CrossRef]
- Gal, A.; Fries, R.; Kadotani, S. Canine Urinary Lactate and Cortisol Metabolites in Hypercortisolism, Nonadrenal Disease, Congestive Heart Failure, and Health. J. Vet. Diagn. Investig. 2022, 34, 622–630. [Google Scholar] [CrossRef]
- Golinelli, S.; de Marco, V.; Leal, R.O.; Barbarossa, A.; Aniballi, C.; Maietti, E.; Tardo, A.M.; Galac, S.; Fracassi, F. Comparison of Methods to Monitor Dogs with Hypercortisolism Treated with Trilostane. J. Vet. Intern. Med. 2021, 35, 2616–2627. [Google Scholar] [CrossRef]
- Sieber-Ruckstuhl, N.S.; Boretti, F.S.; Wenger, M.; Maser-Gluth, C.; Reusch, C.E. Cortisol, Aldosterone, Cortisol Pre-cursor, Androgen and Endogenous ACTH Concentrations in Dogs with Pituitary-Dependant Hyperadrenocorti-cism Treated with Trilostane. Domest. Anim. Endocrinol. 2006, 31, 63–75. [Google Scholar] [CrossRef] [PubMed]
- Pantaleo, V.; Furlanello, T.; Carli, E.; Ventura, L.; Solano-Gallego, L. Evaluation of Urinary Podocin and Nephrin as Markers of Podocyturia in Dogs with Leishmaniosis. Parasites Vectors 2024, 17, 423. [Google Scholar] [CrossRef] [PubMed]
- European Medicines Agency (EMA). Guideline on Bioanalytical Method Validation; European Medicines Agency: Amsterdam, The Netherlands, 2011. [Google Scholar]
- Friedrichs, K.R.; Harr, K.E.; Freeman, K.P.; Szladovits, B.; Walton, R.M.; Barnhart, K.F.; Blanco-Chavez, J. ASVCP Reference Interval Guidelines: Determination of de Novo Reference Intervals in Veterinary Species and Other Re-lated Topics. Vet. Clin. Pathol. 2012, 41, 441–453. [Google Scholar] [CrossRef] [PubMed]
- Geffré, A.; Concordet, D.; Braun, J.; Trumel, C. Reference Value Advisor: A New Freeware Set of Macroinstructions to Calculate Reference Intervals with Microsoft Excel. Vet. Clin. Pathol. 2011, 40, 107–112. [Google Scholar] [CrossRef]
- Ozarda, Y. Reference Intervals: Current Status, Recent Developments and Future Considerations. Biochem. Med. 2016, 26, 5–16. [Google Scholar] [CrossRef]
- Bode, E.F.; Markby, G.R.; Boag, A.M.; Martinez-Pereira, Y.; Corcoran, B.M.; Farquharson, C.; Sooy, K.; Homer, N.Z.M.; Jamieson, P.M.; Culshaw, G.J. Glucocorticoid Metabolism and the Action of 11 Beta-Hydroxysteroid De-hydrogenase 2 in Canine Congestive Heart Failure. Vet. J. 2020, 258, 105456. [Google Scholar] [CrossRef]
- Nagata, N.; Sawamura, H.; Ikenaka, Y.; Morishita, K.; Hosoya, K.; Sasaki, N.; Nakamura, K.; Takiguchi, M. Urinary Steroid Profiling Using Liquid Chromatography-Tandem Mass Spectrometry for the Diagnosis of Canine Cushing’s Syndrome. Vet. J. 2024, 306, 106151. [Google Scholar] [CrossRef]
- Quilez, E.; Burchell, R.K.; Thorstensen, E.B.; Weidgraaf, K.; Parbhu, S.E.; Lopez-Villalobos, N.; Gal, A. Cortisol Uri-nary Metabolites in Dogs with Hypercortisolism, Congestive Heart Failure, and Healthy Dogs: Pilot Investigation. J. Vet. Diagn. Investig. 2020, 32, 317–323. [Google Scholar] [CrossRef]
- Rappold, B.A. Review of the Use of Liquid Chromatography-Tandem Mass Spectrometry in Clinical Laboratories: Part II–Operations. Ann. Lab. Med. 2022, 42, 531–557. [Google Scholar] [CrossRef]
- Rappold, B.A. Review of the Use of Liquid Chromatography-Tandem Mass Spectrometry in Clinical Laboratories: Part I-Development. Ann. Lab. Med. 2022, 42, 121–140. [Google Scholar] [CrossRef]
- Lim, L.; Hulsebosch, S.E.; Gilor, C.; Reagan, K.L.; Kopecny, L.; Maggiore, A.D.; Phillips, K.L.; Kass, P.H.; Vernau, W.; Nelson, R.W. Re-Evaluation of the Low-Dose Dexamethasone Suppression Test in Dogs. J. Small Anim. Pract. 2022, 64, 12–20. [Google Scholar] [CrossRef] [PubMed]
- Schäfer, I.; Rehbein, S.; Holtdirk, A.; Kottmann, T.; Klein, R.; Müller, E.; Thoren-Tolling, K. Diagnostic Cut-off Values for the Urinary Corticoid:Creatinine Ratio for the Diagnosis of Canine Cushing’s Syndrome Using an Automated Chemiluminescent Assay. Vet. Clin. Pathol. 2023, 52, 443–451. [Google Scholar] [CrossRef]
- Kline, G.; Venos, E.; Campbell, D.; Leung, A.; Orton, D. Big Data Determination and Validation of Reference Range for 24-h Urine Cortisol by Liquid Chromatography-Mass Spectrometry. Eur. J. Endocrinol. 2025, 192, 327–334. [Google Scholar] [CrossRef]
- Oßwald, A.; Wang, R.; Beuschlein, F.; Hartmann, M.F.; Wudy, S.A.; Bidlingmaier, M.; Zopp, S.; Reincke, M.; Ritzel, K. Performance of LC–MS/MS and Immunoassay Based 24-h Urine Free Cortisol in the Diagnosis of Cushing’s Syndrome. J. Steroid Biochem. Mol. Biol. 2019, 190, 193–197. [Google Scholar] [CrossRef]
- Honour, J.W. The Interpretation of Immunometric, Chromatographic and Mass Spectrometric Data for Steroids in Diagnosis of Endocrine Disorders. Steroids 2024, 211, 109502. [Google Scholar] [CrossRef] [PubMed]
- Tsakalof, A.; Sysoev, A.A.; Vyatkina, K.V.; Eganov, A.A.; Eroshchenko, N.N.; Kiryushin, A.N.; Adamov, A.Y.; Danilova, E.Y.; Nosyrev, A.E. Current Role and Potential of Triple Quadrupole Mass Spectrometry in Biomedical Research and Clinical Applications. Molecules 2024, 29, 5808. [Google Scholar] [CrossRef]
- Zeugswetter, F.K.; Neffe, F.; Schwendenwein, I.; Tichy, A.; Möstl, E. Configuration of Antibodies for Assay of Uri-nary Cortisol in Dogs Influences Analytic Specificity. Domest. Anim. Endocrinol. 2013, 45, 98–104. [Google Scholar] [CrossRef]
- Téblick, A.; Peeters, B.; Langouche, L.; Van Den Berghe, G. Adrenal Function and Dysfunction in Critically Ill Pa-tients. Nat. Rev. Endocrinol. 2019, 15, 417–427. [Google Scholar] [CrossRef] [PubMed]
- Bennaim, M.; Shiel, R.E.; Mooney, C.T. Diagnosis of Spontaneous Hyperadrenocorticism in Dogs. Part 2: Adrenal Function Testing and Differentiating Tests. Vet. J. 2019, 252, 105343. [Google Scholar] [CrossRef]
- Moya, M.V.; Refsal, K.R.; Langlois, D.K. Investigation of the Urine Cortisol to Creatinine Ratio for the Diagnosis of Hypoadrenocorticism in Dogs. J. Am. Vet. Med. Assoc. 2022, 260, 1041–1047. [Google Scholar] [CrossRef]
Spike Level | Intra-Assay Day 1 | Intra-Assay Day 2 | Intra-Assay Day 3 | Inter-Assay | |
---|---|---|---|---|---|
LOQ (0.1 ng/mL) | Mean (ng/mL) | 0.10 | 0.10 | 0.10 | 0.10 |
CV (%) | 13.3 | 8.25 | 6.97 | 9.45 | |
Accuracy (%) | 96.0 | 95.3 | 102.7 | 98.0 | |
Bias (%) | −3.99 | −4.69 | 2.71 | −1.99 | |
Low (0.3 ng/mL) | Mean (ng/mL) | 0.27 | 0.26 | 0.26 | 0.26 |
CV (%) | 4.48 | 4.83 | 4.79 | 4.70 | |
Accuracy (%) | 89.2 | 85.7 | 88.1 | 87.7 | |
Bias (%) | −10.8 | −14.3 | −11.9 | −12.3 | |
Medium (50 ng/mL) | Mean (ng/mL) | 50.6 | 51.5 | 49.7 | 50.6 |
CV (%) | 2.90 | 3.89 | 3.44 | 3.41 | |
Accuracy (%) | 101 | 102 | 99.3 | 101 | |
Bias (%) | 1.29 | 2.93 | −0.66 | 1.19 | |
High (100 ng/mL) | Mean (ng/mL) | 105 | 106 | 104 | 105 |
CV (%) | 2.72 | 0.85 | 3.62 | 2.39 | |
Accuracy (%) | 105 | 106 | 104 | 105 | |
Bias (%) | 5.84 | 6.45 | 4.30 | 5.53 | |
EM% | Mean | 117.8 | - | - | - |
CV | 2.30 | - | - | - |
Stability Type | Mean, ng/mL | Standard Deviation, ng/mL | Percentage Deviation from T0 |
---|---|---|---|
T0 | 0.21 | 0.01 | - |
53.9 | 8.27 | - | |
114 | 10.2 | - | |
Benchtop (24 h) | 0.23 | 0.02 | 8.62 |
50.9 | 3.94 | −5.54 | |
108 | 4.74 | −5.38 | |
Refrigerated (5 days) | 0.23 | 0.02 | 9.44 |
55.5 | 3.61 | 3.07 | |
112 | 3.86 | −1.99 | |
Frozen (5 days) | 0.22 | 0.02 | 6.78 |
47.2 | 1.97 | −12.4 | |
100 | 4.95 | −11.1 | |
Refrigerated (9 days) | 0.24 | 0.01 | 13.6 |
57.7 | 0.33 | 7.11 | |
119 | 4.56 | 3.68 | |
Frozen (9 days) | 0.24 | 0.01 | 12.1 |
54.3 | 0.22 | 0.84 | |
106 | 3.39 | −7.45 | |
Freeze–thaw | 0.23 | 0.01 | 9.33 |
58.9 | 1.23 | 0.56 | |
102 | 6.57 | −7.80 |
Value | 95% CI | ||
---|---|---|---|
Bland–Altman | Mean | −133 | −183 to −84 |
Lower LoA | −405 | −490 to −320 | |
Upper LoA | 138 | 53–222 | |
Passing–Bablok | Intercept | −38.7 | −105.4 to −61 |
Slope | 10.9 | 8.4–15.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Furlanello, T.; Bertolini, F.M.; Magna, L.; Sanchez del Pulgar, J.; Masti, R. Validation of an LC–MS/MS Method for Urinary Cortisol in Dogs and Reference Interval, with an Exploratory Comparison to Immunoassay. Animals 2025, 15, 2682. https://doi.org/10.3390/ani15182682
Furlanello T, Bertolini FM, Magna L, Sanchez del Pulgar J, Masti R. Validation of an LC–MS/MS Method for Urinary Cortisol in Dogs and Reference Interval, with an Exploratory Comparison to Immunoassay. Animals. 2025; 15(18):2682. https://doi.org/10.3390/ani15182682
Chicago/Turabian StyleFurlanello, Tommaso, Francesca Maria Bertolini, Luca Magna, Jose Sanchez del Pulgar, and Riccardo Masti. 2025. "Validation of an LC–MS/MS Method for Urinary Cortisol in Dogs and Reference Interval, with an Exploratory Comparison to Immunoassay" Animals 15, no. 18: 2682. https://doi.org/10.3390/ani15182682
APA StyleFurlanello, T., Bertolini, F. M., Magna, L., Sanchez del Pulgar, J., & Masti, R. (2025). Validation of an LC–MS/MS Method for Urinary Cortisol in Dogs and Reference Interval, with an Exploratory Comparison to Immunoassay. Animals, 15(18), 2682. https://doi.org/10.3390/ani15182682