Reproductive Diseases Are Key Determinants Influencing the Success of Embryo Transfer and Fixed-Time Artificial Insemination in Cattle
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethical Approval
2.2. Study Area and Population
2.3. Embryo Transfer (ET)
2.4. Fixed-Time Artificial Insemination (FTAI)
2.5. Statistical Analysis
3. Results
3.1. Age and Genetic Group as Determinants of Disease Prevalence
3.2. Influence of Disease Prevalence on Reproductive Success via ET and FTAI
4. Discussion
4.1. Differential Economic Impact of Reproductive Biotechnologies
4.2. Effect of Disease Prevalence on Reproductive Success with ET and FTAI
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rangel, J.; Perea, J.; De-Pablos-Heredero, C.; Espinosa-García, J.A.; Mujica, P.T.; Feijoo, M.; García, A. Structural and technological characterization of tropical smallholder farms of dual-purpose cattle in Mexico. Animals 2020, 10, 86. [Google Scholar] [CrossRef]
- Cuevas-Reyes, V.; Rosales-Nieto, C. Characterization of the dual-purpose bovine system in northwest Mexico: Producers, resources and problematic. Rev. MVZ Córdoba 2018, 23, 6448–6460. [Google Scholar] [CrossRef]
- McManus, C.; Louvandini, H.; Carneiro, H.C.; Lima, P.R.M.; Neto, J.B. Production indices for dual purpose cattle in central Brazil. Rev. Bras. De Zootec. 2011, 40, 1576–1586. [Google Scholar] [CrossRef]
- Bartl, K.; Mayer, A.C.; Gómez, C.A.; Muñoz, E.; Hess, H.D.; Holmann, F. Economic evaluation of current and alternative dual-purpose cattle systems for smallholder farms in the central Peruvian highlands. Agric. Syst. 2009, 101, 152–161. [Google Scholar] [CrossRef]
- González-Quintero, R.; Barahona-Rosales, R.; Bolívar-Vergara, D.M.; Chirinda, N.; Arango, J.; Pantévez, H.A.; Sánchez-Pinzón, M.S. Technical and environmental characterization of dual-purpose cattle farms and ways of improving production: A case study in Colombia. Pastoralism 2020, 10, 19. [Google Scholar] [CrossRef]
- Burgos-Paz, W.; Pérez-Escobar, Y.; Castillo Losada, E.; Rivera-Sanchez, L.; Falla-Tapias, S. Evaluating the Breed and Production Diversity in Dual Purpose Cattle Systems in Colombia: Opportunities for Its Sustainability. Agriculture 2025, 15, 547. [Google Scholar] [CrossRef]
- McClintock, A.E.; Cunningham, E.P. Selection in dual purpose cattle populations: Defining the breeding objective. Anim. Sci. 1974, 18, 237–247. [Google Scholar] [CrossRef]
- Galina, C.S.; Geffroy, M. Dual-Purpose Cattle Raised in Tropical Conditions: What Are Their Shortcomings in Sound Productive and Reproductive Function? Animals 2023, 13, 2224. [Google Scholar] [CrossRef]
- Crowe, A.D.; Lonergan, P.; Butler, S.T. Invited review: Use of assisted reproduction techniques to accelerate genetic gain and increase value of beef production in dairy herds. J. Dairy Sci. 2021, 104, 12189–12206. [Google Scholar] [CrossRef]
- Alfieri, A.A.; Leme, R.A.; Agnol, A.M.D.; Alfieri, A.F. Sanitary program to reduce embryonic mortality associated with infectious diseases in cattle. Anim. Reprod. 2019, 16, 386–393. [Google Scholar] [CrossRef]
- Vargas, D.S.; Góngora-Orjuela, A.; Correa, J.J. Enfermedades virales emergentes en ganado de leche de América Latina. Orinoquia 2012, 16, 88–96. [Google Scholar] [CrossRef]
- Paucar-Quishpe, V.; Berkvens, D.; Pérez-Otáñez, X.; Rodríguez-Hidalgo, R.; Cepeda-Bastidas, D.; Perez, C.; Ron-Garrido, L. What is the value of testing for tick-borne diseases in cattle in endemic areas? A case study of bovine Anaplasmosis. PLoS ONE 2025, 20, e0315202. [Google Scholar] [CrossRef]
- Salamanca-Carreño, A.; Tamasaukas, R.; Cesar-Giraldo-Forero, J.; Quintero, A.D.; Hernandez-Rodríguez, M.E. Interacción entre factores ambientales y raciales sobre la prevalencia de hemotrópicos en hembras bovinas doble propósito en sabanas inundables araucanas, Colombia. Rev. Científica 2018, 28, 52–62. [Google Scholar]
- Murcia-Mono, C.A.; Falla-Tapias, S.; Morales Cabrera, A.F.; Navia Álvarez, L.C.; Rivera-Sánchez, L.; Gómez Vargas, Y.; Burgos-Paz, W.O. Risk Factors Associated with Hemoparasites in Dual-Purpose Cattle of Colombia. Pathogens 2025, 14, 62. [Google Scholar] [CrossRef]
- Murcia-Mono, C.A.; Falla-Tapias, S.; Cabrera-Ospina, B.K.; Vargas-Domínguez, J.O.; Burgos-Paz, W.O. Epidemiology of Bovine Neosporosis in Relation to Socioeconomic, Demographic, and Transmissibility Factors in Dual-Purpose Production Systems in Colombia. Epidemiologia 2024, 5, 828–837. [Google Scholar] [CrossRef]
- Gómez-López, D.L.; Velasco-Acosta, D.A.; Chávez-Rodríguez, A.; Schneider, A.; Rocha, J.F.; Dubeibe-Marín, D.F. Chemical gasification: An alternative approach to in vitro maturation of bovine oocytes. Reprod. Domest. Anim. 2024, 59, e14701. [Google Scholar] [CrossRef]
- Stringfellow, D.A.; Givens, M.D. Manual of the International Embryo Transfer Society (IETS), 4th ed.; IETS: Champaign, IL, USA, 2010. [Google Scholar]
- Bó, G.; Mapletoft, R. Evaluation and classification of bovine embryos. Anim. Reprod. 2013, 10, 344–348. [Google Scholar]
- Bó, G.A.; Baruselli, P.S. Synchronization of ovulation and fixed-time artificial insemination in beef cattle. Animal 2014, 8, 144–150. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing; The R Foundation: Vienna, Austria, 2025; Available online: https://www.R-project.org/ (accessed on 20 June 2025).
- Ferraz, P.A.; Burnley, C.; Karanja, J.; Viera-Neto, A.; Santos, J.E.P.; Chebel, R.C.; Galvão, K.N. Factors affecting the success of a large embryo transfer program in Holstein cattle in a commercial herd in the southeast region of the United States. Theriogenology 2016, 86, 1834–1841. [Google Scholar] [CrossRef] [PubMed]
- Wieczorkiewicz, M.; Jaśkowski, J.M.; Wichtowska, A.; Olszewska-Tomczyk, M.; Jaśkowski, B.M. Effectiveness of embryo transfer in cows-risk factors including in vivo derived and in vitro produced embryos. Med. J. Cell Biol. 2021, 9, 123–131. [Google Scholar] [CrossRef]
- Cardoso, C.J.T.; Eler, J.P.; Ferraz, J.B.S.; Balieiro, J.C.C. Advances in reproductive biotechnologies and their impact on genetic gain in beef cattle systems. Theriogenology 2020, 150, 412–419. [Google Scholar]
- García-Ruiz, A.; Cole, J.B.; VanRaden, P.M.; Wiggans, G.R.; Ruiz-López, F.J.; Van Tassell, C.P. Genomic selection and reproductive technologies in dairy cattle: Current status and future challenges. Anim. Front. 2022, 12, 45–53. [Google Scholar] [CrossRef]
- Campos, R.V.; Rossi, R.S.; Miguel, M.P.; Lima, A.O.; Louvandini, H.; Saut, J.P.E. Economic losses due to reproductive failures in bovine embryo transfer programs in South America. Trop. Anim. Health Prod. 2023, 55, 42. [Google Scholar]
- Beltrán, D.; Gómez, G.; Marulanda, C. Incidencia de la receptora bovina en los costos de un programa de transferencia de embriones en el triángulo del café en Colombia. Ing. Y Compet. 2023, 25, e-21212819. [Google Scholar] [CrossRef]
- Seneda, M.M.; Costa, C.B.; Zangirolamo, A.F.; Anjos, M.M.D.; Paula, G.R.D.; Morotti, F. From the laboratory to the field: How to mitigate pregnancy losses in embryo transfer programs? Anim. Reprod. 2024, 21, e20240032. [Google Scholar] [CrossRef] [PubMed]
- Badshah, F.; Ullah, K.; Kamal, M.; Rafiq, N.; Usman, T.; De los Ríos-Escalante, P.R.; Said, M.B. Epidemiological analysis of Anaplasmosis in cattle from Khyber Pakhtunkhwa, Pakistan. Vet. World 2023, 16, 2287. [Google Scholar] [CrossRef]
- Heylen, D.J.; Kumsa, B.; Kimbita, E.; Frank, M.N.; Muhanguzi, D.; Jongejan, F.; Madder, M. Tick-borne pathogens and body condition of cattle in smallholder rural livestock production systems in East and West Africa. Parasites Vectors 2023, 16, 117. [Google Scholar] [CrossRef]
- Fesseha, H.; Eshetu, E.; Mathewos, M.; Tilante, T. Study on bovine Trypanosomiasis and associated risk factors in benatsemay district, southern Ethiopia. Environ. Health Insights 2022, 16, 11786302221101833. [Google Scholar] [CrossRef] [PubMed]
- Selim, A.; Alshammari, A.; Gattan, H.S.; Marzok, M.; Salem, M.; Al-Jabr, O.A. Neospora caninum infection in dairy cattle in Egypt: A serosurvey and associated risk factors. Sci. Rep. 2023, 13, 15489. [Google Scholar] [CrossRef]
- Venturoso, P.D.J.S.; Venturoso, O.J.; Silva, G.G.; Maia, M.O.; Witter, R.; Aguiar, D.M.; Santos-Doni, T.R.D. Risk factor analysis associated with Neospora caninum in dairy cattle in Western Brazilian Amazon. Rev. Bras. De Parasitol. Veterinária 2021, 30, e023020. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.Y.; An, Q.; Xue, N.Y.; Chen, Y.; Chen, Y.Y.; Zhang, Y.; Wang, C.R. Seroprevalence and risk factors of Neospora caninum infection in cattle in China from 2011 to 2020: A systematic review and meta-analysis. Prev. Vet. Med. 2022, 203, 105620. [Google Scholar] [CrossRef]
- Bartels, C.J.M.; Arnaiz-Seco, J.I.; Ruiz-Santa-Quitera, A.; Björkman, C.; Frössling, J.; Von Blumröder, D.; Ortega-Mora, L.M. Supranational comparison of Neospora caninum seroprevalences in cattle in Germany, The Netherlands, Spain and Sweden. Vet. Parasitol. 2006, 137, 17–27. [Google Scholar] [CrossRef]
- Saravanajayam, M.; Kumanan, K.; Balasubramaniam, A. Seroepidemiology of infectious bovine rhinotracheitis infection in unvaccinated cattle. Vet. World 2015, 8, 1416. [Google Scholar] [CrossRef]
- Masagué, M.F.O.; Rico, J.A.P.; Vega, A.L.; Giovambattista, G. Diversidad genética y estudios de asociación en genes de clase II del complejo principal de histocompatibilidad en bovinos criollos americanos. Arch. Latinoam. De Prod. Anim. 2020, 28, 121–132. Available online: https://www.cabidigitallibrary.org/doi/pdf/10.5555/20210000646 (accessed on 20 June 2025).
- Navarro, C.A.; Góngora, A.; Flórez, H. Blanco Orejinegro cattle (BON) a zoogenetic resource available for efficient livestock farming in Colombia. Arch. De Zootec. 2023, 72, 67–77. [Google Scholar] [CrossRef]
- Soares Fioravanti, M.C.; Silva Freitas, T.M.; Moura, M.I.; Lage Costa, G.; Moraes Dias, J.; Kim Pires Guimarães, L.; Gómez, M.M.; Landi, V. Resistance and resilience to diseases in local ruminant breeds: A focus on South America. Arch. De Zootec. 2020, 69, 338–352. [Google Scholar] [CrossRef]
- Baillargeon, P.; Fecteau, G.; Paré, J.; Lamothe, P.; Sauvé, R. Evaluation of the embryo transfer procedure proposed by the International Embryo Transfer Society as a method of controlling vertical transmission of Neospora caninum in cattle. J. Am. Vet. Med. Assoc. 2001, 218, 1803–1806. [Google Scholar] [CrossRef] [PubMed]
- Campero, C.M.; Moore, D.P.; Lagomarsino, H.; Odeón, A.C.; Castro, M.; Visca, H. Serological status and abortion rate in progeny obtained by natural service or embryo transfer from Neospora caninum-seropositive cows. J. Vet. Med. 2003, 50, 458–460. [Google Scholar] [CrossRef] [PubMed]
- Grillo, G.F.; Couto, S.R.B.; Guerson, Y.B.; Ferreira, J.E.; Teixeira, E.F.; Silva, A.F.; Mello, M.R.B. Neospora caninum is not transmissible via embryo transfer, but affects the quality of embryos in dairy cows. Vet. Parasitol. 2024, 331, 110287. [Google Scholar] [CrossRef]
- Takiuchi, E.; Médici, K.C.; Alfieri, A.F.; Alfieri, A. A Bovine herpesvirus type 1 abortions detected by a semi-nested PCR in Brazilian cattle herds. Res. Vet. Sci. 2005, 79, 85–88. [Google Scholar] [CrossRef]
- Pedrosa, J.; Ezepha, C.; Aymée, L.; Lilenbaum, W. Cellular inflammatory response in the bovine uterus by Leptospira infection may be related to embryo death and subfertility. Microb. Pathog. 2023, 185, 106449. [Google Scholar] [CrossRef]
- do Amaral, J.B.; Nogueira, V.J.M.; da Luz Silva, W.; Dib, C.C.; Júnior, J.A.D.; Garcia-Oliveros, L.N. Impactos da leptospirose na reprodução animal e seus aspectos legais e forenses na “Saúde Única”: Revisão. Pubvet 2024, 18, e1600. [Google Scholar] [CrossRef]
- Conde-Muñoz, J.; Reyes-Bernal, N.; Guatibonza-Garzon, M.F.; Tobon, J.C.; Valero, D.L.; Barragan, B.L.G. Seroprevalence and risk factors associated with leukosis in cattle from Villlavicencio, Colombia. Ciência Anim. Bras. 2023, 24, e-74298. [Google Scholar] [CrossRef]
- Bartley, P.M.; Katzer, F.; Rocchi, M.S.; Maley, S.W.; Benavides, J.; Nath, M.; Innes, E.A. Development of maternal and foetal immune responses in cattle following experimental challenge with Neospora caninum at day 210 of gestation. Vet. Res. 2013, 44, 91. [Google Scholar] [CrossRef] [PubMed]
- Nayeri, T.; Moosazadeh, M.; Sarvi, S.; Daryani, A. Neospora caninum infection in aborting bovines and lost fetuses: A systematic review and meta-analysis. PLoS ONE 2022, 17, e0268903. [Google Scholar] [CrossRef]
- Moore, D.P.; Odeón, A.C.; Venturini, M.C.; Campero, C.M. Neosporosis bovina: Conceptos generales, inmunidad y perspectivas para la vacunación. Rev. Argent. De Microbiol. 2005, 37, 217–228. [Google Scholar]
- Newcomer, B.W.; Cofield, L.G.; Walz, P.H.; Givens, M.D. Prevention of abortion in cattle following vaccination against bovine herpesvirus 1: A meta-analysis. Prev. Vet. Med. 2017, 138, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Talukder, A.K.; Rashid, M.B.; Takedomi, T.; Moriyasu, S.; Imakawa, K.; Miyamoto, A. Day-7 embryos generate an anti-inflammatory immune response in peripheral blood immune cells in superovulated cows. Am. J. Reprod. Immunol. 2019, 81, e13069. [Google Scholar] [CrossRef]
- Rosbottom, A.; Gibney, E.H.; Guy, C.S.; Kipar, A.; Smith, R.F.; Kaiser, P.; Williams, D.J. Upregulation of cytokines is detected in the placentas of cattle infected with Neospora caninum and is more marked early in gestation when fetal death is observed. Infect. Immun. 2008, 76, 2352–2361. [Google Scholar] [CrossRef]
Level * | OR | IC_inf | IC_sup | p Value | |
---|---|---|---|---|---|
Neosporosis | Age 36–60 | 0.99 | 0.48 | 2.05 | 0.98 |
Age 61–96 | 1.06 | 0.52 | 2.15 | 0.89 | |
Age > 96 | 1.60 | 0.56 | 4.55 | 0.38 | |
GYRHOL | 0.83 | 0.23 | 2.93 | 0.77 | |
JERHOL | 2.10 | 0.49 | 8.94 | 0.32 | |
MIXED | 0.70 | 0.21 | 2.27 | 0.55 | |
Taurine | 0.73 | 0.21 | 2.57 | 0.62 | |
Zebuine | 0.50 | 0.13 | 1.89 | 0.30 | |
Leptospirosis | Age 36–60 | 1.41 | 0.68 | 2.94 | 0.36 |
Age 61–96 | 1.51 | 0.74 | 3.08 | 0.260 | |
Age > 96 | 1.12 | 0.40 | 3.12 | 0.82 | |
GYRHOL | 1.92 | 0.51 | 7.17 | 0.33 | |
JERHOL | 1.89 | 0.46 | 7.78 | 0.38 | |
MIXED | 2.03 | 0.59 | 6.96 | 0.26 | |
Taurine | 2.52 | 0.68 | 9.38 | 0.17 | |
Zebuine | 2.87 | 0.71 | 11.60 | 0.14 | |
Anaplasmosis | Age 36–60 | 1.42 | 0.66 | 3.05 | 0.36 |
Age 61–96 | 1.74 | 0.83 | 3.65 | 0.14 | |
Age > 96 | 0.50 | 0.15 | 1.66 | 0.26 | |
GYRHOL | 7.56 | 0.90 | 63.80 | 0.06 | |
JERHOL | 13.70 | 1.53 | 123.00 | 0.01 | |
MIXED | 8.06 | 1.01 | 64.40 | 0.04 | |
Taurine | 10.30 | 1.22 | 86.40 | 0.03 | |
Zebuine | 6.99 | 0.78 | 62.70 | 0.08 | |
Babesiosis | Age 36–60 | 1.48 | 0.70 | 3.17 | 0.31 |
Age 61–96 | 1.80 | 0.85 | 3.77 | 0.12 | |
Age > 96 | 0.772 | 0.25 | 2.35 | 0.65 | |
GYRHOL | 9.16 | 1.09 | 76.90 | 0.04 | |
JERHOL | 15.90 | 1.78 | 143.00 | 0.01 | |
MIXED | 7.96 | 1.00 | 63.40 | 0.05 | |
Taurine | 11.30 | 1.34 | 94.10 | 0.02 | |
Zebuine | 7.92 | 0.90 | 70.30 | 0.06 | |
Trypanosomiasis | Age 36–60 | 2.19 | 1.01 | 4.75 | 0.04 |
Age 61–96 | 2.30 | 1.08 | 4.90 | 0.03 | |
Age > 96 | 0.88 | 0.29 | 2.69 | 0.82 | |
GYRHOL | 14.90 | 1.77 | 126.00 | 0.01 | |
JERHOL | 14.10 | 1.57 | 127.00 | 0.02 | |
MIXED | 8.54 | 1.07 | 68.20 | 0.04 | |
Taurine | 12.40 | 1.48 | 104.00 | 0.02 | |
Zebuine | 11.20 | 1.26 | 99.10 | 0.03 | |
BVDV | Age 36–60 | 1.39 | 0.67 | 2.88 | 0.38 |
Age 61–96 | 1.45 | 0.71 | 2.95 | 0.31 | |
Age > 96 | 0.83 | 0.30 | 2.34 | 0.73 | |
GYRHOL | 3.31 | 0.80 | 13.70 | 0.10 | |
JERHOL | 6.22 | 1.35 | 28.70 | 0.02 | |
MIXED | 3.75 | 0.98 | 14.4 | 0.05 | |
Taurine | 2.62 | 0.64 | 10.8 | 0.18 | |
Zebuine | 3.79 | 0.85 | 16.8 | 0.08 | |
IBR | Age 36–60 | 1.87 | 0.90 | 3.89 | 0.10 |
Age 61–96 | 1.47 | 0.72 | 3.01 | 0.29 | |
Age > 96 | 2.28 | 0.81 | 6.45 | 0.12 | |
GYRHOL | 2.56 | 0.72 | 9.13 | 0.15 | |
JERHOL | 2.73 | 0.69 | 10.80 | 0.15 | |
MIXED | 2.05 | 0.63 | 6.69 | 0.23 | |
Taurine | 2.25 | 0.63 | 7.98 | 0.21 | |
Zebuine | 1.16 | 0.30 | 4.47 | 0.83 | |
BLV | Age 36–60 | 0.91 | 0.44 | 1.91 | 0.819 |
Age 61–96 | 0.85 | 0.41 | 1.74 | 0.65 | |
Age > 96 | 0.81 | 0.29 | 2.23 | 0.68 | |
GYRHOL | 1.62 | 0.47 | 5.59 | 0.45 | |
JERHOL | 0.74 | 0.19 | 2.84 | 0.66 | |
MIXED | 1.59 | 0.50 | 5.01 | 0.43 | |
Taurine | 1.71 | 0.50 | 5.90 | 0.40 | |
Zebuine | 1.44 | 0.39 | 5.36 | 0.59 |
Infectious Disease | Confirmed Pregnancy OR (IC 95%) | Early Failure OR (IC 95%) | Embryonic Loss OR (IC 95%) | Calving Loss OR (IC 95%) |
---|---|---|---|---|
Neosporosis | 0.44 (0.21–0.94) * | 0.54 (0.25–1.17) | 7.35 (0.83–65.10) + | 20.30 (4.11–100.00) ** |
Leptospirosis | 0.88 (0.41–1.87) | 0.73 (0.35–1.56) | 0.35 (0.03–3.74) | 1.27 (0.28–5.72) |
Anaplasmosis | 1.13 (0.30–4.35) | 0.68 (0.17–2.71) | — | 1.10 (0.10–11.60) |
Babesiosis | 1.52 (0.40–5.80) | 1.13 (0.29–4.44) | 0.01 (0.0006–0.38) * | 0.65 (0.04–11.10) |
Trypanosomiasis | 0.66 (0.19–2.36) | 0.98 (0.28–3.49) | 2.41 (0.18–31.60) | 0.41 (0.04–3.99) |
BVDV | 0.84 (0.40–1.77) | 0.56 (0.26–1.19) | 0.08 (0.006–1.27) + | 1.41 (0.34–5.87) |
IBR | 1.99 (0.89–4.45) + | 1.23 (0.55–2.77) | 0.02 (0.001–0.63) * | 0.99 (0.21–4.70) |
BLV | 0.61 (0.30–1.28) | 0.68 (0.33–1.42) | 9.77 (1.05–90.90) * | 1.22 (0.29–5.12) |
Infectious Disease | Confirmed Pregnancy OR (IC 95%) | Early Failure OR (IC 95%) | Embryonic Loss OR (IC 95%) | Calving Loss OR (IC 95%) |
---|---|---|---|---|
Neosporosis | 0.87 (0.44–1.70) | 1.03 (0.54–1.99) | 1.87 (0.29–12.20) | 3.95 (1.04–15.00) * |
Leptospirosis | 0.55 (0.28–1.07) + | 0.83 (0.44–1.57) | 7.91 (1.31–47.80) * | 1.47 (0.42–5.11) |
Anaplasmosis | 0.57 (0.15–2.18) | 0.69 (0.20–2.45) | 1.92 (0.16–23.00) | 2.68 (0.42–17.00) |
Babesiosis | 1.75 (0.56–5.44) | 1.26 (0.43–3.72) | 0.38 (0.03–4.94) | 0.58 (0.08–3.99) |
Trypanosomiasis | 1.37 (0.46–4.03) | 1.33 (0.47–3.73) | 0.94 (0.14–6.41) | 1.86 (0.40–8.74) |
BVDV | 1.60 (0.83–3.10) | 1.74 (0.92–3.30) + | 0.67 (0.13–3.49) | 1.14 (0.32–4.09) |
IBR | 0.66 (0.34–1.29) | 0.50 (0.26–0.95) * | 0.22 (0.03–1.51) + | 0.37 (0.10–1.41) |
BLV | 0.87 (0.44–1.73) | 0.98 (0.50–1.89) | 2.14 (0.39–11.80) | 0.77 (0.22–2.65) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Burgos-Paz, W.O.; Carrascal-Triana, E.; Falla-Tapias, S. Reproductive Diseases Are Key Determinants Influencing the Success of Embryo Transfer and Fixed-Time Artificial Insemination in Cattle. Animals 2025, 15, 2627. https://doi.org/10.3390/ani15172627
Burgos-Paz WO, Carrascal-Triana E, Falla-Tapias S. Reproductive Diseases Are Key Determinants Influencing the Success of Embryo Transfer and Fixed-Time Artificial Insemination in Cattle. Animals. 2025; 15(17):2627. https://doi.org/10.3390/ani15172627
Chicago/Turabian StyleBurgos-Paz, William O., Erly Carrascal-Triana, and Sergio Falla-Tapias. 2025. "Reproductive Diseases Are Key Determinants Influencing the Success of Embryo Transfer and Fixed-Time Artificial Insemination in Cattle" Animals 15, no. 17: 2627. https://doi.org/10.3390/ani15172627
APA StyleBurgos-Paz, W. O., Carrascal-Triana, E., & Falla-Tapias, S. (2025). Reproductive Diseases Are Key Determinants Influencing the Success of Embryo Transfer and Fixed-Time Artificial Insemination in Cattle. Animals, 15(17), 2627. https://doi.org/10.3390/ani15172627