Molecular Diagnostics and Control of Zoonotic Dermatophytosis: First Detection of Trichophyton indotineae in a Dog in Africa
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Sample Collection
2.3. Direct Microscopical Examination of Samples
2.4. Isolation and Identification of Dermatophyte Species
2.5. DNA Extraction and PCR Assays
2.5.1. RFLP Analysis
2.5.2. DNA Sequencing and Sequence Analysis
2.6. Treatment Trials
2.7. Data Analysis
3. Results
3.1. Clinical Presentations
3.2. Direct Microscopy and Fungal Culture of Samples
3.3. Dermatophyte Species Isolated from Dogs and Cats
3.4. Potential Risk Factors for Dermatophytosis in Pets
3.5. Treatment Outcomes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CI | Confidence interval |
DTM | Dermatophyte test media |
ITS | Internal transcribed spacer region |
KOH | Potassium hydroxide |
OR | Odds ratio |
PCR | Polymerase chain reaction |
RFLP | Restriction fragment length polymorphism |
RR | Relative risk |
SDA | Sabouraud dextrose agar |
S.E. | Standard error |
VIF | variance inflation factor |
References
- Moraru, R.; Chermette, R.; Guillot, J. Superficial mycoses in dogs and cats. In Recent Trends in Human and Animal Mycology; Springer: Singapore, 2019; pp. 26–47. [Google Scholar]
- Paryuni, A.D.; Indarjulianto, S.; Widyarini, S. Dermatophytosis in companion animals: A review. Vet. World 2020, 13, 1174–1181. [Google Scholar] [CrossRef]
- Moriello, K.A.; Coyner, K.; Paterson, S.; Mignon, B. Diagnosis and treatment of dermatophytosis in dogs and cats: Clinical consensus guidelines of the world association for veterinary dermatology. Vet Dermatol. 2017, 28, 266–268. [Google Scholar] [CrossRef] [PubMed]
- de Hoog, G.S.; Dukik, K.; Monod, M.; Packeu, A.; Stubbe, D.; Hendrickx, M.; Kupsch, C.; Stielow, J.B.; Freeke, J.; Göker, M.; et al. Toward a novel multilocus phylogenetic taxonomy for the dermatophytes. Mycopathologia 2017, 182, 5–31. [Google Scholar] [CrossRef]
- Fattahi, A.; Shirvani, F.; Ayatollahi, A.; Rezaei-Matehkolaei, A.; Badali, H.; Lotfali, E.; Ghasemi, R.; Pourpak, Z.; Firooz, A. Multidrug-resistant Trichophyton mentagrophytes genotype VIII in an Iranian family with generalized dermatophytosis: Report of four cases and review of literature. Int. J. Dermatol. 2021, 60, 686–692. [Google Scholar] [CrossRef]
- Brasch, J.; Gräser, Y.; Beck-Jendroscheck, V.; Voss, K.; Torz, K.; Walther, G.; Schwarz, T. “Indian” strains of Trichophyton mentagrophytes with reduced itraconazole susceptibility in Germany. JDDG J. Der Dtsch. Dermatol. Ges. 2021, 19, 1723–1727. [Google Scholar] [CrossRef] [PubMed]
- Jia, S.; Long, X.; Hu, W.; Zhu, J.; Jiang, Y.; Ahmed, S.; de Hoog, G.S.; Liu, W.; Jiang, Y. The epidemic of the multiresistant dermatophyte Trichophyton indotineae has reached China. Front. Immunol. 2023, 13, 1113065. [Google Scholar] [CrossRef]
- Kano, R.; Kimura, U.; Kakurai, M.; Hiruma, J.; Kamata, H.; Suga, Y.; Harada, K. Trichophyton indotineae sp. nov.: A new highly terbinafine-resistant anthropophilic dermatophyte species. Mycopathologia 2020, 185, 947–958. [Google Scholar] [CrossRef]
- Uhrlaß, S.; Verma, S.B.; Gräser, Y.; Rezaei-Matehkolaei, A.; Hatami, M.; Schaller, M.; Nenoff, P. Trichophyton indotineae—An emerging pathogen causing recalcitrant dermatophytoses in India and worldwide—A multidimensional perspective. J. Fungi 2022, 8, 757. [Google Scholar] [CrossRef]
- Kumar, M.; Thomas, P.; Nair, S.S.; Bagra, J.K.; Chaturvedi, V.K.; Kumar, B.; Kumar, A.; Rudramurthy, S.M.; Abhishek, V.A. Molecular epidemiology of Trichophyton infections among canines from northern India. J. Med. Mycol. 2023, 33, 101352. [Google Scholar] [CrossRef]
- Oladzad, V.; Omran, A.N.; Haghani, I.; Nabili, M.; Seyedmousavi, S.; Hedayati, M.T. Multi-drug resistance Trichophyton indotineae in a stray dog. Res. Vet. Sci. 2023, 166, 105105. [Google Scholar] [CrossRef] [PubMed]
- Moretti, A.; Agnetti, F.; Mancianti, F.; Nardoni, S.; Righi, C.; Moretta, I.; Morganti, G.; Papini, M. Dermatophytosis in animals: Epidemiological, clinical and zoonotic aspects. G Ital. Dermatol. Venereol. 2013, 148, 563–572. [Google Scholar]
- Fehr, M. Zoonotic potential of dermatophytosis in small mammals. J. Exot. Pet Med. 2015, 24, 308–316. [Google Scholar] [CrossRef]
- Ilhan, Z.; Karaca, M.; Ekin, I.H.; Solmaz, H.; Akkan, H.A.; Tutuncu, M. Detection of seasonal asymptomatic dermatophytes in Van cats. Braz. J. Microbiol. 2016, 47, 225–230. [Google Scholar] [CrossRef]
- Afonso, P.; Quintas, H.; Vieira, A.F.; Pinto, E.; Matos, M.; Soares, A.S.; Cardoso, L.; Coelho, A.C. Furry hosts and fungal guests: Investigating dermatophyte carriage in shelter and clinic cats and dogs of northern Portugal. Vet. Glas. 2024, 78, 28–46. [Google Scholar] [CrossRef]
- Tartor, Y.H.; El Damaty, H.M.; Mahmmod, Y.S. Diagnostic performance of molecular and conventional methods for identification of dermatophyte species from clinically infected Arabian horses in Egypt. Vet. Dermatol. 2016, 27, 12372. [Google Scholar] [CrossRef]
- Fajarningsih, N.D. Internal transcribed Spacer (ITS) as DNA barcoding to Identify fungal species: A review. Squalen Bull. Mar. Fish. Postharvest Biotechnol. 2016, 11, 37. [Google Scholar] [CrossRef]
- Mohammadi, R.; Abastabar, M.; Mirhendi, H.; Badali, H.; Shadzi, S.; Chadeganipour, M.; Pourfathi, P.; Jalalizand, N.; Haghani, I. Use of restriction fragment length polymorphism to rapidly identify dermatophyte species related to dermatophytosis. Jundishapur J. Microbiol. 2015, 8, 4–9. [Google Scholar] [CrossRef] [PubMed]
- Puls, C.; Johnson, A.; Young, K.; Hare, J.; Rosenkrans, K.; Young, L.; Moriello, K. Efficacy of itraconazole oral solution using an alternating-week pulse therapy regimen for treatment of cats with experimental Microsporum canis infection. J. Feline Med. Surg. 2018, 20, 869–874. [Google Scholar] [CrossRef]
- Robert, R.; Pihet, M. Conventional methods for the diagnosis of dermatophytosis. Mycopathologia 2008, 166, 295–306. [Google Scholar] [CrossRef]
- Moriello, K.A.; Coyner, K. Dermatophytosis. In Greene’s Infectious Diseases of the Dog and Cat, 5th ed.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 961–977. [Google Scholar] [CrossRef]
- Colella, V.; Nguyen, V.L.; Tan, D.Y.; Lu, N.; Fang, F.; Zhijuan, Y.; Wang, J.; Liu, X.; Chen, X.; Dong, J.; et al. Zoonotic vectorborne pathogens and ectoparasites of dogs and cats in eastern and Southeast Asia. Emerg. Infect. Dis. 2020, 26, 1221–1233. [Google Scholar] [CrossRef] [PubMed]
- Taylor, M.A.; Coop, R.L.; Wall, R. Veterinary Parasitology; Wiley-Blackwell: Hoboken, NJ, USA, 2015; pp. 290–311. [Google Scholar]
- Kidd, S.; Halliday, C.; Ellis, D. Descriptions of Medical Fungi; CAB International: Oxfordshire, UK, 2022. [Google Scholar]
- White, T.J.; Bruns, T.; Lee, S.; Taylor, J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR Protoc. 1990, 18, 315–322. [Google Scholar] [CrossRef]
- Rezaei-Matehkolaei, A.; Makimura, K.; Shidfar, M.R.; Zaini, F.; Eshraghian, M.R.; Jalalizand, N.; Nouripour-Sisakht, S.; Hosseinpour, L.; Mirhendi, H. Use of single-enzyme PCR-restriction digestion barcode targeting the internal transcribed spacers (ITS rDNA) to identify dermatophyte species. Iran. J. Public Health 2012, 41, 82–94. [Google Scholar] [PubMed]
- Rochette, F.; Engelen, M.; Vanden Bossche, H. Antifungal agents of use in animal health—Practical applications. J. Vet. Pharmacol. Ther. 2003, 26, 31–53. [Google Scholar] [CrossRef]
- Moriello, K.A.; Deboer, D.J.; Schenker, R.; Blum, J.L.; Volk, L.M. Efficacy of pre-treatment with lufenuron for the prevention of Microsporum canis infection in a feline direct topical challenge model. Vet. Dermatol. 2004, 15, 357–362. [Google Scholar] [CrossRef] [PubMed]
- Ural, K.; Ulutas, B. Immunization with Trichophyton verrucosum vaccine in hunter/jumper and dressage horses with naturally occurring Trichophyton equinum infection: A prospective, randomized, double blinded, placebo-controlled clinical trial. J. Equine Vet. Sci. 2008, 28, 590–593. [Google Scholar] [CrossRef]
- Stuntebeck, R.L.; Moriello, K.A. One vs. two negative fungal cultures to confirm mycological cure in shelter cats treated for Microsporum canis dermatophytosis: A retrospective study. J. Feline Med. Surg. 2020, 22, 598–601. [Google Scholar] [CrossRef]
- Łagowski, D.; Gnat, S.; Nowakiewicz, A.; Osińska, M.; Zięba, P. The Prevalence of symptomatic dermatophytoses in dogs and cats and the pathomechanism of dermatophyte infections. Postępy Mikrobiol.—Adv. Microbiol. 2019, 58, 165–176. [Google Scholar] [CrossRef]
- Heinrich, N.A.; Eisenschenk, M.; Harvey, R.G.; Nuttall, T. Skin Diseases of the Dog and Cat; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Ghojoghi, A.; Falahati, M.; Abastabar, M.; Ghasemi, Z.; Ansari, S.; Farahyar, S.; Roudbary, M. Molecular identification and epidemiological aspects of dermatophytosis in Tehran, Iran. Res. Mol. Med. 2015, 3, 11–16. [Google Scholar] [CrossRef]
- Alehashemi, R.; Arghavan, B.; Abastabar, M.; Niknejad, F.; Aghili, S.R. Molecular epidemiology of dermatophytosis in Golestan, Iran: A cross-sectional study. Microb. Pathog. 2025, 199, 107223. [Google Scholar] [CrossRef]
- Endrawati, D.; Kusumaningtyas, E. Molecular profile of Trichophyton mentagrophytes and Microsporum canis based on PCR-RFLP of internal transcribed spacer. J. Ilmu Ternak Vet. 2021, 26, 10–21. [Google Scholar] [CrossRef]
- Petrucelli, M.F.; de Abreu, M.H.; Cantelli, B.A.M.; Segura, G.G.; Nishimura, F.G.; Bitencourt, T.A.; Marins, M.; Fachin, A.L. Epidemiology and diagnostic perspectives of dermatophytoses. J. Fungi 2020, 6, 310. [Google Scholar] [CrossRef]
- Gupta, A.K.; Kohli, Y.; Summerbell, R.C. Molecular differentiation of seven Malassezia Species. J. Clin. Microbiol. 2000, 38, 1869. [Google Scholar] [CrossRef]
- Las Heras-Vazquez, F.J.; Mingorance-Cazorla, L.; Clemente-Jimenez, J.M.; Rodriguez-Vico, F. Identification of yeast species from orange fruit and juice by RFLP and sequence analysis of the 5.8S rRNA gene and the two internal transcribed spacers. FEMS Yeast Res. 2003, 3, 3–9. [Google Scholar] [CrossRef] [PubMed]
- El Damaty, H.M.; Tartor, Y.H.; Mahmmod, Y.S. Species identification, strain differentiation, and antifungal susceptibility of dermatophyte species isolated from clinically infected Arabian horses. J. Equine Vet. Sci. 2017, 59, 26–33. [Google Scholar] [CrossRef]
- Nweze, E.I. Dermatophytoses in domesticated animals. Rev. Inst. Med. Trop. Sao Paulo 2011, 53, 95–99. [Google Scholar] [CrossRef] [PubMed]
- Cafarchia, C.; Romito, D.; Sasanelli, M.; Lia, R.; Capelli, G.; Otranto, D. The epidemiology of canine and feline dermatophytoses in southern Italy. Mycoses 2004, 47, 508–513. [Google Scholar] [CrossRef]
- Mihaylov, G.; Petrov, V.; Zhelev, G. Comparative investigation on several protocols for treatment of dermatophytoses in pets. Trakia J. Sci. 2008, 6, 102–105. [Google Scholar]
- Savinov, V.A.; Kapustin, A.V.; Ovchinnikov, R.S.; Shastin, P.N.; Laishevtsev, A.I. Incidence and seasonal variation of pet dermatophytosis in Moscow region. IOP Conf. Ser. Earth Environ. Sci. 2020, 548, 072048. [Google Scholar] [CrossRef]
- Hind, A.; Farag, H.; Abdel Haleem, M.; Elsaid, H. Topical Treatment of Feline Dermatophytosis. Vet. Med. J. 2020, 66, 28–43. [Google Scholar] [CrossRef]
- Ibrahim, M.A.; Abdel-Latef, G.K.; Rahim, M.M.A.; Aziz, S.A.A.A. Epidemiologic and molecular characterization of zoonotic dermatophytes from pet dogs and cats in Egypt. Adv. Anim. Vet. Sci. 2021, 9, 2225–2233. [Google Scholar] [CrossRef]
- Roshanzamir, H.; Naserli, S.; Ziaie, B.; Fakour, M. Incidence of dermatophytes isolated from dogs and cats in the city of Baku, Azerbaijan. Comp. Clin. Pathol. 2016, 25, 327–329. [Google Scholar] [CrossRef]
- Outerbridge, C.A. Mycologic Disorders of the Skin. Clin. Tech. Small Anim. Pract. 2006, 21, 128–134. [Google Scholar] [CrossRef] [PubMed]
- Diren sığırcı, B.; Metiner, K.; Çelik, B.; Başaran Kahraman, B.; İkiz, S.; Bağcıgil, A.F.; Özgür, N.Y.; Ak, S. Dermatophytes isolated from dogs and cats suspected dermatophytoses in Istanbul, Turkey within a 15-year-period: An updated report. Kocatepe Vet. J. 2019, 12, 116–121. [Google Scholar] [CrossRef]
- Lopes, R.; Garcês, A.; Silva, A.; Brilhante-Simões, P.; Martins, Â.; Cardoso, L.; Duarte, E.L.; Coelho, A.C. Dermatophytosis in companion animals in Portugal: A comprehensive epidemiological retrospective study of 12 years (2012–2023). Microorganisms 2024, 12, 1727. [Google Scholar] [CrossRef]
- Ahmed, A.; Mohamed, N.S.; Siddig, E.E. Diversity and distribution of zoonotic fungal diseases in Africa: Multisectoral one health strategy is crucial for cost-effective preparedness and prevention. J. Fungi 2025, 11, 569. [Google Scholar] [CrossRef]
- Dellière, S.; Jabet, A.; Abdolrasouli, A. Current and emerging issues in dermatophyte infections. PLoS Pathog. 2024, 20, e1012258. [Google Scholar] [CrossRef]
- Cabañes, F.J.; Abarca, M.L.; Bragulat, M.R. Dermatophytes isolated from domestic animals in Barcelona, Spain. Mycopathologia 1997, 137, 107–113. [Google Scholar] [CrossRef]
- Murmu, S.; Debnath, C.; Pramanik, A.K.; Mitra, T.; Jana, S.; Dey, S.; Banerjee, S.; Batabyal, K. Detection and characterization of zoonotic dermatophytes from dogs and cats in and around Kolkata. Vet. World. 2015, 8, 1078–1082. [Google Scholar] [CrossRef]
- Philpot, C.M.; Newman, M.J. Preliminary report on the isolation of a dysgonic variety of Microsporum canis together with the normal variety from a cattery. Mycopathologia 1992, 120, 73–77. [Google Scholar] [CrossRef]
- Hermoso de Mendoza, M.; Hermoso de Mendoza, J.; Alonso, J.M.; Rey, J.M.; Sanchez, S.; Martin, R.; Bermejo, F.; Cortes, M.; Benitez, J.M.; Garcia, W.L.; et al. A zoonotic ringworm outbreak caused by a dysgonic strain of Microsporum canis from stray cats. Rev. Iberoam. Micol. 2010, 27, 62–65. [Google Scholar] [CrossRef] [PubMed]
- Marbaniang, Y.V.; Leto, D.; Almohri, H.; Hasan, M.R. Treatment and diagnostic challenges associated with the novel and rapidly emerging antifungal-resistant dermatophyte, Trichophyton indotineae. J. Clin. Microbiol. 2025, 63, e0140724. [Google Scholar] [CrossRef] [PubMed]
- Al-Janabi, A.A.H.S. Expanding the prevalence of Trichophyton indotineae-associated skin infection by transmission from humans to animals. J. Med. Microbiol. 2025, 74, 002023. [Google Scholar] [CrossRef] [PubMed]
- Kong, X.; Tang, C.; Singh, A.; Ahmed Sarah, A.; Al-Hatmi Abdullah, M.S.; Chowdhary, A.; Nenoff, P.; Gräser, Y.; Hainsworth, S.; Zhan, P.; et al. Antifungal susceptibility and mutations in the squalene epoxidase gene in dermatophytes of the Trichophyton mentagrophytes species complex. Antimicrob. Agents Chemother. 2021, 65, 10–1128. [Google Scholar] [CrossRef]
- Dario Corrêa-Junior, R.; Almeida Paes, S.F. One Health and dermatophytes, what is the link between them? Biomed. J. Sci. Tech. Res. 2022, 44, 35191–35193. [Google Scholar] [CrossRef]
- Gupta, A.K.; Wang, T.; Susmita; Talukder, M.; Bakotic, W.L. Global dermatophyte infections linked to human and animal health: A scoping review. Microorganisms 2025, 13, 575. [Google Scholar] [CrossRef]
- Mattei, A.S. Dermatophytosis in small animals. SOJ Microbiol. Infect. Dis. 2014, 2, 124. [Google Scholar] [CrossRef]
- Jarjees, K.I.; Issa, N.A. First study on molecular epidemiology of dermatophytosis in cats, dogs, and their companions in the Kurdistan region of Iraq. Vet. World 2022, 15, 2971–2978. [Google Scholar] [CrossRef]
- Venturini Copetti, M.; Morais Santurio, J.; Sydnei Cavalheiro, A.; Aurea Boeck, A.; Siqueira Argenta, J.; Canabarro Aguiar, L.; Hartz Alves, S. Dermatophytes isolated from dogs and cats suspected of dermatophytosis in Southern Brazil. Acta Sci. Vet. 2006, 34, 119–124. [Google Scholar]
- Yamada, S.; Anzawa, K.; Mochizuki, T. An epidemiological study of feline and canine dermatophytoses in Japan. Med. Mycol. J. 2019, 60, 39–44. [Google Scholar] [CrossRef]
- Shadskaya, A.V. Comprehensive treatment of small domestic animals with dermatomycosis as a method of prevention of these diseases in humans. Bull. Agrar. Sci. 2021, 6, 48–52. [Google Scholar] [CrossRef]
- Brescini, L.; Fioriti, S.; Morroni, G.; Barchiesi, F. Antifungal combinations in dermatophytes. J. Fungi 2021, 7, 727. [Google Scholar] [CrossRef]
- Sonego, B.; Corio, A.; Mazzoletti, V.; Zerbato, V.; Benini, A.; di Meo, N.; Zalaudek, I.; Stinco, G.; Errichetti, E.; Zelin, E. Trichophyton indotineae, an emerging drug-resistant dermatophyte: A review of the treatment options. J. Clin. Med. 2024, 13, 3558. [Google Scholar] [CrossRef]
- Kurtdede, A.; Haydardedeoglu, A.E.; Alihosseini, H.; Colakoglu, E.C. Dermatophytosis caused by Trichophyton mentagrophytes var. erinacei in a dog: A case report. Vet. Med. 2007, 59, 349–351. [Google Scholar] [CrossRef]
Test | Fungal Culture | Concordance (k), (95% CI) | p-Value | |
---|---|---|---|---|
Negative | Positive | |||
Direct microscopical examination | ||||
In dogs | ||||
Negative | 30/42 (71.43) | 9/47 (19.15) | 0.53 (0.35–0.70) | <0.0001 |
Positive | 12/42 (28.57) | 38/47 (80.85) | ||
In cats | ||||
Negative | 15/15 (100) | 0/35 (0) | 1 (1–1) | <0.0001 |
Positive | 0/15 (0) | 35/35 (100) |
Fungal Species | No. of Fungal Isolates (%) | p-Value a, (95% CI) | Total no. of Fungal Isolates (n = 85) | |
---|---|---|---|---|
Dogs (n = 50) | Cats (n = 35) | |||
Microsporum canis | 22 (44) | 29 (82.86) | 0.001 **, (0.14–0.66) | 51 (60) |
Microsporum canis var distortum | - | 1 (2.86) | 0.412, (0.92–1) | 1 (1.18) |
Nannizzia gypsea (Microsporum gypseum) | 1 (2) | 1 (2.86) | 1, (0.93–1.1) | 2 (2.35) |
Trichophyton mentagrophytes | 13 (26) | 4 (11.42) | 0.167, (0.98–1.5) | 17 (20) |
Trichophyton verrucosum | 5 (10) | - | 0.074, (1–1.2) | 5 (5.88) |
Trichophyton indotineae | 1 (2) | - | 1, (0.98–1.1) | 1 (1.18) |
Malassezia pachydermatis | 6 (12) | - | 0.077, (1.1–1.3) | 6 (7.06) |
Trichosporon asahii | 2 (4) | - | 0.51, (0.98–1.1) | 2 (2.35) |
p-value b, (95% CI) | <0.0001, (0–0.01) | <0.0001, (0–0.01) | <0.0001, (0–0.04) |
Risk Factor | Yes | No | Prevalence (%) | Β a | S.E. (β) | OR b (95% CI) | RR (95% CI) |
---|---|---|---|---|---|---|---|
Age (p = 0.01) | |||||||
<1 (ref.) | 24 | 12 | 66.67 | ||||
1–5 | 17 | 25 | 40.47 | −0.78 | 0.46 | 0.34 (0.22–0.73) | 0.61 (0.38–0.97) |
>5 | 6 | 6 | 50 | −0.57 | 0.32 | 0.50 (0.29–1.04) | 0.75 (0.36–1.16) |
Sex (p = 0.57) | |||||||
Male (ref.) | 29 | 29 | 50 | ||||
Female | 18 | 14 | 56.25 | 0.25 | 0.14 | 1.28 (0.54–2.06) | 1.13 (0.84–1.52) |
Breed (p = 0.19) | |||||||
Large (ref.) | 34 | 36 | 48.57 | ||||
Small | 13 | 7 | 65 | 0.54 | 0.17 | 0.19 (1.53–2.63) | 1.34 (1.04–1.89) |
Housing environment (p = 0.97) | |||||||
Indoor (ref.) | 21 | 19 | 52.50 | ||||
Outdoor | 17 | 15 | 53.13 | 0.03 | 0.01 | 1.03 (0.70–1.60) | 1.01 (0.88–1.36) |
Indoor/outdoor | 9 | 9 | 50 | −0.10 | 0.06 | 0.90 (0.59–1.75) | 0.95 (0.66–1.20) |
Season (p = 0.29) | |||||||
Summer (ref.) | 15 | 17 | 46.88 | ||||
Winter | 8 | 6 | 57.14 | 0.41 | 0.14 | 1.51 (0.82–2.35) | 1.22 (0.89–1.43) |
Spring | 8 | 12 | 40 | −0.28 | 0.17 | 0.75 (0.24–1.34) | 0.85 (0.60–1.02) |
Autumn | 16 | 8 | 66.67 | 0.82 | 0.56 | 2.26 (1.76–3.79) | 1.42 (1.23–1.72) |
Nutrition (p = 0.95) | |||||||
Good (ref.) | 20 | 18 | 52.63 | ||||
Poor | 27 | 25 | 51.92 | −0.03 | 0.01 | 0.97 (0.42–1.55) | 0.98 (0.77–1.12) |
Deworming (p = 0.41) | |||||||
Yes (ref.) | 27 | 21 | 56.25 | ||||
No | 20 | 22 | 47.62 | −0.35 | 0.124 | 0.71 (0.41–1.62) | 0.85 (0.63–1.19) |
Hygienic measures and grooming practices (p = 0.02) | |||||||
Good (ref.) | 15 | 5 | 75 | ||||
Poor | 32 | 38 | 45.71 | −1.27 | 0.57 | 0.28 (0.09–0.85) | 0.61 (0.42–0.90) |
Ectoparasites (p < 0.0001) | |||||||
Yes (ref.) | 16 | 42 | 27.59 | ||||
No | 31 | 1 | 96.88 | 4.39 | 1.05 | 81.37 (69.25–98.32) | 3.51 (1.32–1.59) |
Stress factors (p = 0.97) | |||||||
Infectious | 9 | 8 | 52.94 | ||||
Noninfectious | 24 | 22 | 52.17 | −0.024 | 0.07 | 0.97 (0.75–1.18) | 0.98 (0.63–1.32) |
Negative | 14 | 13 | 51.85 | −0.011 | 0.002 | 0.96 (0.64–1.39) | 0.98 (0.58–1.40) |
Risk Factor | Yes | No | Prevalence (%) | β a | S.E. (β) | OR b (95% CI) | RR (95% CI) |
---|---|---|---|---|---|---|---|
Age (p = 0.02) | |||||||
<1(ref.) | 19 | 11 | 63.33 | ||||
>1 | 16 | 4 | 80 | 0.86 | 0.39 | 2.35 (1.47–4.14) | 1.26 (0.88–1.71) |
Sex (p = 0.05) | |||||||
Male (ref.) | 10 | 2 | 83.33 | ||||
Female | 25 | 13 | 65.79 | −0.955 | 0.55 | 0.38 (0.07–0.72) | 0.78 (0.42–1.54) |
Breed (p = 0.01) | |||||||
Persian (ref.) | 30 | 9 | 76.92 | ||||
Crossbreed | 4 | 4 | 50 | −1.20 | 0.80 | 0.30 (0.16–0.85) | 0.65 (0.22–1.17) |
Local breed | 1 | 2 | 33.33 | −1.89 | 1.28 | 0.15 (0.01–0.45) | 0.43 (0.15–0.79) |
Housing environment (p < 0.0001) | |||||||
Indoor (ref.) | 26 | 2 | 92.86 | ||||
Indoor/outdoor | 9 | 13 | 40.91 | −2.93 | 0.85 | 0.05 (0.01–0.28) | 0.44 (0.23–0.79) |
Season (p = 0.01) | |||||||
Summer (ref.) | 1 | 2 | 33.33 | ||||
Winter | 5 | 1 | 83.33 | 2.30 | 1.64 | 10 (5.63–14.96) | 2.50 (1.43–3.37) |
Spring | 19 | 2 | 90.48 | 2.94 | 1.43 | 19 (15.32–23.96) | 2.71 (1.64–4.76) |
Autumn | 10 | 10 | 50 | 0.69 | 0.30 | 2 (0.86–3.26) | 1.50 (0.98–2.23) |
Nutrition (p = 0.31) | |||||||
Good (ref.) | 23 | 12 | 65.71 | ||||
Poor | 12 | 3 | 80 | 0.74 | 0.24 | 2.08 (0.49–4.85) | 1.22 (0.71–1.81) |
Deworming (p= 0.41) | |||||||
Yes (ref.) | 11 | 3 | 78.57 | ||||
No | 24 | 12 | 66.67 | −0.61 | 0.32 | 0.55 (0.13–2.23) | 0.85 (0.67–1.41) |
Hygienic measures and grooming practices (p = 0.26) | |||||||
Good (ref.) | 20 | 6 | 76.92 | ||||
Poor | 15 | 9 | 62.50 | −0.69 | 0.33 | 0.50 (0.15–1.71) | 0.81 (0.55–1.34) |
Ectoparasites (p = 0.001) | |||||||
Yes (ref.) | 12 | 13 | 48 | ||||
No | 23 | 2 | 92 | 2.52 | 0.84 | 12.45 (8.33–14.23) | 1.92 (1.12–2.69) |
Stress factors (p = 0.001) | |||||||
Infectious | 2 | 1 | 66.66 | ||||
Noninfectious | 26 | 2 | 92.85 | 2.84 | 1.21 | 6.50 (4.43–8.38) | 1.39 (1.093–1.839) |
Negative | 7 | 12 | 36.84 | −1.14 | 0.73 | 0.29 (0.08–0.43) | 0.55 (0.38–0.71) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zineldar, H.A.; El-Neshwy, W.M.; Cristina, R.T.; Abouzeid, N.Z.; Eisa, M.I.; Muselin, F.; Dumitrescu, E.; Abdelkhalek, A.; Tartor, Y.H. Molecular Diagnostics and Control of Zoonotic Dermatophytosis: First Detection of Trichophyton indotineae in a Dog in Africa. Animals 2025, 15, 2622. https://doi.org/10.3390/ani15172622
Zineldar HA, El-Neshwy WM, Cristina RT, Abouzeid NZ, Eisa MI, Muselin F, Dumitrescu E, Abdelkhalek A, Tartor YH. Molecular Diagnostics and Control of Zoonotic Dermatophytosis: First Detection of Trichophyton indotineae in a Dog in Africa. Animals. 2025; 15(17):2622. https://doi.org/10.3390/ani15172622
Chicago/Turabian StyleZineldar, Hend A., Wafaa M. El-Neshwy, Romeo T. Cristina, Nasser Z. Abouzeid, Mohammed I. Eisa, Florin Muselin, Eugenia Dumitrescu, Adel Abdelkhalek, and Yasmine H. Tartor. 2025. "Molecular Diagnostics and Control of Zoonotic Dermatophytosis: First Detection of Trichophyton indotineae in a Dog in Africa" Animals 15, no. 17: 2622. https://doi.org/10.3390/ani15172622
APA StyleZineldar, H. A., El-Neshwy, W. M., Cristina, R. T., Abouzeid, N. Z., Eisa, M. I., Muselin, F., Dumitrescu, E., Abdelkhalek, A., & Tartor, Y. H. (2025). Molecular Diagnostics and Control of Zoonotic Dermatophytosis: First Detection of Trichophyton indotineae in a Dog in Africa. Animals, 15(17), 2622. https://doi.org/10.3390/ani15172622